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Astrocytic endfeet are specialized cell compartments whose important homeostatic roles
depend on their enrichment of water and ion channels anchored by the dystrophin
associated protein complex (DAPC). This protein complex is known to disassemble in
patients with mesial temporal lobe epilepsy and in the latent phase of experimental
epilepsies. The mechanistic underpinning of this disassembly is an obvious target of future
therapies, but remains unresolved. Here we show in a kainate model of temporal lobe
epilepsy that astrocytic endfeet display an enhanced stimulation-evoked Ca2+ signal that
outlast the Ca2+ signal in the cell bodies. While the amplitude of this Ca2+ signal is reduced
following group I/II metabotropic receptor (mGluR) blockade, the duration is sustained.
Based on previous studies it has been hypothesized that the molecular disassembly
in astrocytic endfeet is caused by dystrophin cleavage mediated by Ca2+ dependent
proteases. Using a newly developed genetically encoded Ca2+ sensor, the present study
bolsters this hypothesis by demonstrating long-lasting, enhanced stimulation-evoked Ca2+

signals in astrocytic endfeet.
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INTRODUCTION
Evidence is accruing that perivascular astrocytic endfeet are highly
specialized cell compartments in terms of molecular organization
and functional roles (Nagelhus and Ottersen, 2013). Many of
the unique features of these processes can be explained by their
expression of the brain dystrophin DP71 which orchestrates a
molecular assembly that includes the water channel aquaporin-
4 (AQP4; Frigeri et al., 2001; Neely et al., 2001; Enger et al.,
2012; Waite et al., 2012). The endfoot complement of AQP4
determines the rate by which water accumulates in brain in
conditions favoring the development of brain edema (Vajda
et al., 2002; Amiry-Moghaddam et al., 2003; Haj-Yasein et al.,
2011b). The endfeet are also enriched in the inwardly rectifying
K+ channel Kir4.1 (Nagelhus et al., 1999; Higashi et al., 2001).
This channel is thought to mediate K+ siphoning in the retina
(Kofuji et al., 2000) and contributes to K+ spatial buffering
in the CNS at large (Chever et al., 2010; Haj-Yasein et al.,
2011a). The unique features of the astrocytic endfeet imply that
astrocytes are highly polarized cells, biochemically as well as
functionally.

It was recently found that loss of astrocyte polarization is
common to several neurological conditions. The endfoot pool
of AQP4 drops abruptly after an ischemic insult (Frydenlund
et al., 2006; Steiner et al., 2012), and is also strongly reduced

in models of Alzheimer’s disease (Yang et al., 2011) and
traumatic brain injury (Ren et al., 2013). Similarly, loss of
astrocyte polarization—with reductions in AQP4 as well as
Kir4.1—has been described in the hippocampus of patients
with temporal lobe epilepsy (Schröder et al., 2000; Eid et al.,
2005; Heuser et al., 2012). These changes are reproduced in
experimental models of epilepsy, including the kainate model
(Lee et al., 2012; Alvestad et al., 2013). The loss of Kir4.1
in particular is likely to be pathophysiologically relevant, as
glial-conditional Kir4.1 knockout animals display deficient K+

spatial buffering and severe epilepsy (Chever et al., 2010;
Haj-Yasein et al., 2011a). Disassembly of endfoot protein
complexes emerges as one of several mechanisms whereby
astroglia may contribute to hyperexcitability and epileptogenesis
(Binder et al., 2012; Binder and Carson, 2013; Crunelli et al.,
2014).

The mechanisms underlying the loss of astrocyte polarization
in epilepsy have not been resolved. One possible mechanism is
that an early injury causes Ca2+ accumulation in endfeet, leading
to proteolytic cleavage of the dystrophin associated protein
complex (DAPC) at these sites. Such a mechanism is plausible,
as astrocytes activated by injury contain calpain (Shields et al.,
2000)—a protease that shows affinity to dystrophin and that is
activated by Ca2+ (Yoshida et al., 1992).
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This hypothesis cannot be tested by conventional Ca2+

imaging, as bulk-loaded synthetic Ca2+ dyes mainly reveal
Ca2+ signals at the level of the cell bodies (Reeves et al., 2011).
Here we use an approach that allows Ca2+ signals to be monitored
in the fine astrocytic processes, including the perivascular endfeet.
Specifically, we employed recombinant adeno-associated virus
(rAAV) gene delivery of the genetically encoded Ca2+ indicator
GCaMP5E (Akerboom et al., 2012) to hippocampal astrocytes
in a mouse model of temporal lobe epilepsy. Two-photon Ca2+

imaging of acute hippocampal slices obtained in the epilepsy
latent phase revealed elevated stimulation-evoked astrocytic Ca2+

signals, both in endfeet and in astrocytic cell bodies. Indeed,
the Ca2+ signals in endfeet outlasted those in cell bodies. The
present data point to endfoot Ca2+ signaling as a possible
mechanism underpinning the loss of astrocyte polarization in
epilepsy.

MATERIAL AND METHODS
ANIMALS
Male C57BL/6N mice of 2–4 months of age (Charles River) were
used for all experiments. All procedures were approved by the
animal use and care committee of the Institute of Basic Medical
Sciences, University of Oslo, and the Centre for Comparative
Medicine, Oslo University Hospital.

PLASMID CONSTRUCTS
The plasmid constructs were generated as described in a separate
paper (Tang et al., 2015). In brief, the GCaMP5E DNA sequence
was directly taken out from the expression vector pRGCAMP5E
(Akerboom et al., 2012) by restriction digest with BamHI and
HindIII, and subcloned into the rAAV vector pAAV-6P-SEWB
(Shevtsova et al., 2005) with the human SYNAPSIN-1 (SYN)
promoter to generate the construct of pAAV-SYN-GCaMP5E.
The human GFAP promoter (Hirrlinger et al., 2009) was then
inserted with MluI and BamHI into the pAAV-SYN-GCaMP5E
vector resulting in the pAAV-GFAP-GCaMP5E construct.

VIRAL TRANSDUCTION
rAAVs serotype 1 and 2 were generated as described (Tang et al.,
2009), and purified by AVB Sepharose affinity chromatography
(Smith et al., 2009). For the virus preparation, the genomic titer
was determined by Real-Time PCR (∼1.0 × 1012 viral genomes
(vg)/ml, TaqMan Assay, Applied Biosystems). For virus infection,
adult mice were deeply anesthetized with a mixture of zolazepam
(188 mg/kg body weight), tiletamine (188 mg/kg body weight),
xylazine (4.5 mg/kg body weight) and fentanyl (26 µg/kg body
weight) before viruses were stereotactically injected (Shevtsova
et al., 2005) into both hippocampi. Coordinates relative to
Bregma were: anteroposterior −2.0 mm, lateral ±1.5 mm,
depth 1.5 mm. During each injection, 0.3 µl of purified rAAV
(∼1.0× 1012 vg/ml) was delivered.

INTRACORTICAL KAINATE INJECTION MODEL FOR MESIAL TLE
We used deep cortical (juxtahippocampal) kainate injection to
elicit an initial status epilepticus (SE). Using this approach, more
than 90% of injected animals developed recurrent behavioral
seizures after a 5–8 day long latent period. For kainate injections,

mice were anesthetized with a mixture of medetomidine
(0.3 mg/kg, i.p.) and ketamine (40 mg/kg, i.p.) and kept on
a heating blanket. A small craniotomy was performed in a
stereotactic frame and kainate (50 nl; 20 mM; Tocris) was
injected by a Hamilton pipette (Hamilton Company, NV) at
a depth of 1.7 mm at the following coordinates relative to
Bregma: anteroposterior −2 mm, lateral +1.5 mm (right).
Anesthesia was stopped with atipamezol (300 mg/kg, i.p.)
and SE was observed either clinically or by telemetric EEG
recording and video monitoring. The animal model has been
described in detail in a separate paper (Bedner et al., 2015).
The non-injected side served as control for the kainate injected
side.

IMMUNOHISTOCHEMISTRY AND CONFOCAL IMAGING
Virus transduced mice were anesthetized with ∼4% isoflurane
and intracardially perfused with 1 × phosphate buffered saline
(PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4/2H2O,
1.4 mM KH2PO4, pH 7.4, all from Sigma-Aldrich) and 4%
paraformaldehyde (PFA, Merck) in PBS prior to decapitation.
Brains were removed and fixed in ice-cold 4% PFA/PBS for
2 h, embedded in 2.5% Agarose (Invitrogen) in PBS and sliced
on a Vibratome (Leica) into 70 µm sections. Immunostaining
was performed with polyclonal rabbit anti-GFP (1:3000,
Abcam, #ab6556), chicken anti-GFAP (1:1000, Covance,
#PCK-591P), rat anti-CD31 (1:200, BD Biosciences, #550274)
and FITC-coupled anti-rabbit, Cy3-coupled anti-chicken,
Cy5-coupled anti-rat secondary antibodies (1:200, Jackson
Immuno Research, #711095152, #703165155 and #712175153
respectively). Confocal images were acquired on a Zeiss LSM5
PASCAL confocal laser scanning microscopy with 63x/1.4NA
oil-immersion objective, equipped with an Argon laser (457,
476, 488, 514 nm) and a Helium Neon laser (543 nm, Carl
Zeiss).

ELECTROPHYSIOLOGY AND TWO-PHOTON Ca2+ IMAGING
Experiments were performed on hippocampal slices prepared
3–4 weeks after injection of rAAV-GFAP-GCaMP5E and 1, 3
and 7 days after juxtahippocampal, cortical kainate injections.
The animals were sacrificed with an overdose of desflurane
(Baxter), and brains were removed and cooled in artificial
cerebrospinal fluid (ACSF, 0–4◦C, bubbled with 95% O2/5%
CO2, pH 7.4) containing (in mM): 124 NaCl, 2 KCl, 1.25
KH2PO4, 2 MgSO4, 1 CaCl2, 26 NaHCO3 and 12 glucose.
Transverse slices (400 µm) were cut from the dorsal portion of
each hippocampus with a Vibratome slicer (Leica) and placed
in a humidified interface chamber at 30 ± 1◦C and perfused
with ACSF containing 2 mM CaCl2. In some experiments the
group I/II mGluR antagonist α-methyl-4-carboxyphenylglycine
(MCPG; 1 mM, Tocris) or the mGluR5 selective antagonist 2-
methyl-6-phenylethynyl pyridine hydrochloride (MPEP; 100 µM,
Tocris) were added to the ACSF. Two glass electrodes filled with
ACSF and positioned 200–300 µm away from each other in CA1
stratum radiatum served as stimulation and recording electrodes,
respectively. Orthodromic synaptic stimulations at 20 Hz for 10
s were delivered and excitatory postsynaptic potentials (fEPSPs)
were monitored. Neuronal stimulation-evoked (simultaneous
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FIGURE 1 | Experimental design. (A) rAAV-GFAP-GCaMP5E virus was
injected into both hippocampi 2–3 weeks prior to unilateral, intracortical
kainate injection. Acute hippocampal slices were prepared and imaged at
1, 3 and 7 days post kainate injection. (B) Immunofluorescence with green
fluorescent protein (GFP) antibodies (green) showed robust GGaMP5E

expression in GFAP immunopositive (red) astrocytes. The vascular
endothelium was labeled with CD31 antibodies (blue). Arrow: astrocyte
soma, double arrow: astrocyte process, arrowhead: endfoot. or, stratum
oriens; pyr, stratum pyramidale; rad, stratum radiatum. Scale bars, 50 µm and
20 µm (boxed motif expanded in inset).

recording while electrical stimulations) astrocytic GCaMP5
fluorescence signals were recorded by a two-photon laser
scanning microscope (model “Ultima”, Prairie Technologies),
as described previously (Tang et al., 2015). Astrocytic Ca2+

responses on the kainate injected side were compared with
those on the non-injected (control) side. Images were recorded
with a model “XLPLN 25 × WMP” 1.05NA, water-immersion
objective (Olympus, Japan) at 900–910 nm laser pulses. The
laser was a model “Chameleon Vision II” (Coherent, Santa
Clara, CA). The recording was done either with 1 Hz or 4 Hz
frame rate, the images were 512 × 512 px or 256 × 256 px,
respectively.

IMAGING ANALYSIS
Time-series of fluorescence images were first imported into Fiji
ImageJ (Fiji), and regions of interest (ROIs) were manually
selected based on morphology. Astrocytic cell bodies were
identified by their projecting branches and endfeet by their
characteristic circular pattern around transversely cut vessels and
elongated, linear appearance along obliquely cut vessels. ROIs
over processes were chosen at least 5 µm away from the perimeter
of the soma. The relative change in fluorescence (∆F/F) in each
ROI, the individual traces and the histograms were all calculated
and plotted by MATLAB (R2011b, MathWorks, Inc.) with custom

written scripts. Standard deviation (SD) images were generated
from time-lapse image recordings by Fiji ImageJ.

STATISTICAL ANALYSIS
Statistical analyses were performed using Prism (Version 6.0b for
Mac OSX, GraphPad Software). One-way ANOVA with Tukey
multiple comparisons test was used for comparison of GCaMP5E
fluorescence changes in astrocytic somata, processes and endfeet
following stimulation of Schaffer collaterals/commissural fibers.
Paired t-test was used for comparison before and after wash-
in with MCPG and MPEP. P < 0.05 was considered statistically
significant.

RESULTS
VIRAL TRANSDUCTION YIELDED EXPRESSION OF THE Ca2+ INDICATOR
GCaMP5E IN ADULT MOUSE HIPPOCAMPAL ASTROCYTES
Injection of the rAAV-GFAP-GCaMP5E construct into the
hippocampus yielded robust and selective GCaMP5E expression
in hippocampal astrocytes, as revealed by immunolabeling
with antibodies against green fluorescent protein (GFP) and
glial fibrillary acidic protein (GFAP; Figures 1A,B). Notably,
GCaMP5E was expressed within all astrocytic compartments,
including the fine astrocytic processes and endfeet adjacent to
CD31-immunopositive blood vessels (Figure 1B).
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FIGURE 2 | Two-photon imaging of stimulation-evoked astrocytic Ca2+

signals in adult mouse hippocampal slices 1, 3 and 7 days after
intracortical kainate injection. (A) Standard deviation (SD) images of
GCaMP5E fluorescence intensities from 1 Hz time-lapse recording 1 day after
kainate injection. GCaMP5E fluorescent astrocytic somata (s), processes (p),
and endfeet (e) are indicated. The fluorescence traces from the astrocytic
compartments indicated in the images are shown below. Scale bar, 20 µm.

(B) Amplitudes, duration, latency and rise rate of Schaffer
collateral/commissural fiber (Scc) stimulation (20 Hz, 10 s) evoked GCaMP5E
fluorescence transients in astrocytic somata, processes and endfeet in
control (non-injected side; 20 mice, 22 slices), 1 day (11 mice, 16 slices),
3 days (3 mice, 6 slices) and 7 days (6 mice, 9 slices) after kainate injection.
Lower panel shows average fEPSP for the different time points. Values are
mean ± s.e.m. Asterisk, P < 0.05. Double asterisk, P < 0.0001.

STIMULATION INDUCED Ca2+ SIGNALS WITHIN ASTROCYTIC SOMATA,
PROCESSES AND ENDFEET ARE ENHANCED IN THE LATENT PHASE OF
EPILEPSY
Stimulation (20 Hz, 10 s) of Schaffer collateral/commissural fibers
(Scc) in acute hippocampal slices from the control side of rAAV-
GFAP-GCaMP5E-transduced animals 1 day after intracortical
kainate injection elicited brisk Ca2+ signals in the majority of
stratum radiatum astrocytes (Figure 2A), as reported for slices
from healthy adult mice (Tang et al., 2015). Compared to the
control side, the amplitudes of stimulation evoked Ca2+ signals
in the kainate injected side were significantly increased in all
astrocytic compartments 1 day post injection (Figures 2A,B;
soma contralateral 6.8± 0.4 vs. ipsilateral 12.0± 1.1, P < 0.0001,
n = 74 cells, 22 slices, 20 mice and n = 69 cells, 16 slices, 11 mice,
respectively; processes 10.7 ± 0.7 vs. 22.2 ± 2.7, P < 0.0001,
n = 91 processes, 22 slices, 20 mice and n = 76 processes, 16 slices,
11 mice, respectively; endfeet 7.2 ± 0.7 vs. 14.1 ± 2.1, P = 0.001,
n = 36 endfeet, 22 slices, 20 mice vs. 14 endfeet, 16 slices,
11 mice).

At day 3 the Ca2+ signal amplitudes were still significantly
elevated in astrocytic somata and endfeet, but not in processes
(soma contralateral 6.8 ± 0.4 vs. ipsilateral 10.3 ± 0.8, P = 0.029,
n = 74 cells, 22 slices, 20 mice and n = 39 cells, 6 slices, 3 mice
respectively; processes 10.7 ± 0.7 vs. 16.6 ± 1.3, P = 0.12,
n = 91 processes, 22 slices, 20 mice and n = 40 processes,
6 slices, 3 mice, respectively; endfeet 7.2 ± 0.7 vs. 18.4 ± 2.4,

P < 0.0001, n = 36 endfeet, 22 slices, 20 mice vs. 9 endfeet, 6 slices,
3 mice, respectively). At day 7 the Ca2+ signal amplitudes in all
astrocytic compartments had returned to control values. At day
1 post kainate injection the duration of the stimulation evoked
Ca2+ signal was significantly increased in the astrocytic endfeet
compared to the non-injected side (26.30 ± 2.8 vs. 14.83 ± 0.6,
P < 0.0001, 20 endfeet, 16 slices, 11 mice, and n = 36 endfeet,
22 slices, 20 mice, respectively), while no changes were observed
in other astrocytic processes or in the cell bodies. The latency from
start of Scc stimulation to Ca2+ fluorescence increase was similar
in all astrocytic subcompartments and not affected by kainate
injection. However, kainate injection increased the Ca2+ signal
rise rate in all compartments (for somata and processes at day 1;
for endfeet at day 3; Figure 2B).

THE AUGMENTED STIMULATION EVOKED ASTROCYTIC Ca2+

RESPONSES FOLLOWING KAINATE INJECTION WAS DEPENDENT ON
mGLuR5
Administration of the group I/II mGluR antagonist MCPG
significantly reduced the amplitude of stimulation evoked Ca2+

signals in all astrocyte compartments at day 1 post kainate
injection (soma, P = 0.04, 32 somata, 9 slices, 6 mice; processes
P = 0.0001, 36 processes, 9 slices, 6 mice; endfeet P = 0.04,
14 endfeet, 9 slices, 6 mice). The duration and latency of the
Ca2+ signals were not affected by MCPG, whilst rise rate was
significantly reduced only in processes (Figure 3A).
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FIGURE 3 | Effect of mGluR antagonists on the stimulation evoked
astrocytic Ca2+ signals in the kainate injected side. (A) Amplitude,
duration, latency and rise rate of Ca2+ signals in different astrocytic territories
before (−) and after (+) administration of the mGluR I/II antagonist MCPG.

(B) Representative fEPSP traces before (CTRL; blue) and after (red) MCPG
administration and mean fEPSP amplitudes. (C) As in (A), but with MPEP
instead of MCPG. (D) As in (B), but with MPEP instead of MCPG. Values are
mean ± s.e.m. Asterisk, P < 0.05. Double asterisk, P < 0.0001.

As mGluR5 receptors have been shown to mediate enhanced
astrocytic Ca2+ signaling following pilocarpine induced SE
(Ding et al., 2007), we applied the mGluR5 selective antagonist
MPEP in our model. Similarly to MCPG, administration of
MPEP significantly reduced the amplitude of stimulation evoked
Ca2+ signals at day 1 after kainate injection in astrocytic
somata (P = 0.003, 19 somata, 5 slices, 4 mice), processes
(P < 0.0001, 19 processes, 5 slices, 4 mice) and endfeet (P = 0.04,
7 endfeet, 5 slices, 4 mice). MPEP reduced the amplitudes of
the Ca2+ transients by 30–40%, i.e., to the level at the non-
injected side (Figure 3C). The nonselective antagonist MCPG
reduced the Ca2+ transients to the same extent, suggesting
that mGluR5 alone is mediating the enhanced Ca2+ signal
amplitude in the latent phase. Similarly to MCPG, MPEP did
not affect the duration and latency of the Ca2+ signals, and
had inconsistent effects on transient rise rate in the three
compartments (Figure 3C).

Neither MPEP nor MCPG significantly affected the fEPSP
amplitudes (Figures 3B,D).

DISCUSSION
Astrocytes are highly polarized cells, structurally as well as
functionally, opening for the possibility of a compartmentation
of Ca2+ signaling analogous to that found in neurons. With
the advent of genetically encoded Ca2+ sensors this possibility

can be experimentally explored. A key question is whether
Ca2+ signaling in the astrocytic endfeet could play a role
in epileptogenesis, by initiating a sequence of events that
lead to disassembly of the DAPC in the endfoot plasma
membrane. This complex, known to be critical for K+ and water
homeostasis in brain, is lost in patients with mesial temporal
lobe epilepsy (Eid et al., 2005; Heuser et al., 2012) and in
the latent phase of kainate induced epilepsy (Alvestad et al.,
2013).

Here we show that intracortical kainate application leads to a
stimulation evoked Ca2+ signal in the endfeet that outlasts the
Ca2+ signal in the astrocytic cell bodies. This underlines the idea
that endfeet are distinct subcompartments of astroglia (Nagelhus
and Ottersen, 2013) and, more specifically, that endfeet serve as
diffusion-limited subcellular compartments (Nuriya and Yasui,
2013).

The Ca2+ signal in endfeet is attenuated by blockade of
group I/II mGluRs and thus dependent on Ca2+ mobilization
from intracellular stores. However, mGluR blockade does not
cancel out the difference between endfeet and cell bodies when
it comes to the duration of the Ca2+ signal. This suggests
that the increased signal duration primarily reflects reduced
clearance of Ca2+. An uncoupling of astrocytes could contribute
to reduced clearance (Bedner and Steinhäuser, 2013; Bedner et al.,
2015).
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A disassembly of the DAPC in astrocytic endfeet and the loss of
astrocyte polarization that this entails now emerge as a signature
event in mesial temporal lobe epilepsy and epilepsy models
(Nagelhus and Ottersen, 2013). The disassembly is reflected by a
loss of dystrophin DP71, while β-dystroglycan remains (Heuser
et al., 2012). Beta-dystroglycan is a member of the DAPC and
normally serves to link this complex to extracellular matrix
molecules of the pericapillary basal lamina (Neely et al., 2001;
Amiry-Moghaddam and Ottersen, 2003).

It has been proposed that the molecular disassembly in
astrocytic endfeet is caused by calpain activation (Nagelhus and
Ottersen, 2013). Calpain is capable of cleaving DP71, and the
expression of this protease is increased in activated astrocytes
(Shields et al., 2000). It has not been resolved, however, whether
endfeet sustain Ca2+ signals necessary for activation of calpain or
any other Ca2+ dependent protease with affinity for dystrophin or
dystrophin associated molecules. The present study fills this void
and shows that endfeet display Ca2+ signals that even outlast those
in the astrocytic cell bodies. The cascade of events underlying the
molecular disassembly in endfeet is an obvious target for future
therapies.
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