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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder charac-
terized by the loss of dopaminergic neurons. The vast majority of PD patients develop the disease
sporadically and it is assumed that the cause lies in polygenic and environmental components. The
overall polygenic risk is the result of a large number of common low-risk variants discovered by
large genome-wide association studies (GWAS). Polygenic risk scores (PRS), generated by compiling
genome-wide significant variants, are a useful prognostic tool that quantifies the cumulative effect
of genetic risk in a patient and in this way helps to identify high-risk patients. Although there are
limitations to the construction and application of PRS, such as considerations of limited genetic
underpinning of diseases explained by SNPs and generalizability of PRS to other populations, this
personalized risk prediction could make a promising contribution to stratified medicine and tailored
therapeutic interventions in the future.

Keywords: Parkinson’s disease; polygenic risk scores; personalized medicine

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
characterized by the abnormal aggregation of the protein a-synuclein in the form of Lewy
bodies and Lewy neurites and the degeneration predominantly of dopaminergic neurons
of the midbrain. PD presents with cardinal motor symptoms including resting tremor,
muscular rigidity, and bradykinesia as well as various non-motor symptoms like cognitive
impairment [1]. A positive family history of PD is found in approximately 15% of patients
and in 5–10% of cases inheritance follows a classic Mendelian pattern [2]. However, the
vast majority of PD patients are sporadic and in those, causation is thought to be polygenic
with environmental components. Consistent with the common disease-common variant
(CDCV) hypothesis, PD overall genetic risk can be considered to be a consequence of the
synergistic effect of a large number of common low-risk variants [3]. Tremendous progress
has been made over the past decade, particularly with the advent of large genome-wide
association studies (GWAS) that have been improving our ability to understand and define
disease risk in sporadic PD by increasingly identifying these low-risk variants [4].

PD is incurable and imposes an enormous medical and societal burden and its preva-
lence is expected to rise [5]. To date, extensive research has been conducted to explore the
etiology, progression, and ultimately the treatment and prevention of the disease. The ap-
parent PD heterogeneity necessitates the personalized medicine concept, which postulates
that various genetic and pathophysiological contributions may underlie distinct subgroups.
This, in turn, has encouraged the search for targeted treatments, for example for subgroups
of patients who have particular genetic mutations [6]. Beyond Mendelian mutations, i.e.,
rare variants with strong effects, efforts to quantify the joint effect of dozens of common
genetic variants, and to develop predictive tools measuring this cumulative genetic load
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within each individual, are hoped to facilitate population stratification and identification
of high-risk individuals. This personalized risk prediction may hold promise for the future
by the means of stratified medicine and tailored therapeutic interventions. However, each
such claim will require extensive investigation to justify its practical application (GBD 2016
Neurology Collaborators, 2019) [5,7].

So-called Polygenic scores (PRS) have been constructed through the compilation of
genome-wide significant variants emerging from successive and ever-larger GWAS with
the intention to capture the cumulative effect of many low to intermediate risk variants in
a patient population. The first disease studied with the PRS method was schizophrenia.
The researchers who performed the first schizophrenia GWAS constructed scores of risk
propensity and then called them polygenic scores [8]. PRS are hoped to be a prediction
and risk stratification tool that holds promise for identifying individuals with a higher
predisposition to complex diseases such as schizophrenia or PD as well as providing
insights into the biological basis and predicting age-dependent clinical outcomes [9,10].

Here, we used search terms including “Parkinson’s disease,” “polygenic risk scores,”
“PRS,” and “polygenic scores” in the PubMed advanced search engine to access all papers
to review the current PRS approaches and their applications in PD.

2. PRS Calculation and Data Interpretation

Single nucleotide polymorphisms (SNPs) are the most common type of genetic vari-
ation in humans. Their frequencies in a population are identified through genome-wide
association studies. A genome-wide association study (GWAS) is an approach used in
genetic research to associate specific genetic variations with a particular trait, for example, a
disease. This method involves scanning the genomes numerous unrelated individuals with
and without the disease and looking for statistically significant differences in the frequency
of SNPs, given a strictly adjusted P-value threshold, which can be used to predict the
presence of a disease (www.genome.gov (accessed on 1 August 2015)). The vast majority
of SNPs are located in non-coding regions of the genome and are therefore not changing
the amino acid composition of gene products. Rather, they are thought to be involved in
the regulation of gene expression. These SNPs represent so-called Expressed Quantitative
Trait Loci (eQTL) contributing to disease risk [11]. Most human traits are influenced by
a large number of SNPs, each with small effects, along with the environment, and this
genetic profile and its subsequent interplay with the environment renders each individual
unique [12].

PRS are usually calculated as the sum of common variants (SNPs) weighted by
corresponding effect size estimates and certain P-values derived from GWAS summary
statistics data.

To obtain a reliable PRS capable of predicting both disease risk and continuous clinical
outcomes, variables such as linkage disequilibrium (LD) and P-value thresholds must be
considered when using SNP weights, i.e., GWAS betas. The logic behind this is to take into
account the overlap of SNP weights, as each individual GWAS beta has some degree of
overlap with neighboring SNPs and not taking this into account would lead to an overesti-
mation of the predictive utility of PRS. How these variables are accounted for determines
our method for PRS construction. There are several tools including those using standard
clumping plus thresholding (C+T) such as PRSice and PLINK, and fancier dedicated tools
including LDPred, PRS-CS, JAMPred, and Lassosum that model the LD by taking ad-
vantage of computational shrinkage strategies based on LD reference data [8,13–17]. In
C+T, which is the basic method used by most publications to date, SNPs are clumped
and prioritized at the locus with the smallest GWAS P-value so that the retained SNPs
are largely independent of each other and thus their effects can be aggregated under the
assumption of additivity. In turn, more advanced methods take all SNPs while account-
ing for the LD between them by applying shrinkage techniques to their weights. These
shrinkage strategies help mitigate the inherently noisy nature of the weights due to the LD
redundancy of SNPs. Put differently, each beta corresponding to a SNP may share some
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information in terms of LD with nearby SNPs, leading to double counting of the weights
and ultimately overestimating the results. Nevertheless, for a whole range of diseases there
is a relatively subtle difference between the conventional C+T and the shrinkage methods
in terms of predictive power and accuracy of PRS models [18].

Regardless of the computational method, PRS analyses can be characterized by the
two main input datasets they require: (i) base data consisting of GWAS summary statistics
and (ii) target data, consisting of genotypes (often imputed) and phenotypes of individuals
which should be independent of the GWAS samples as any overlap between base and
target data can give rise to overestimation in final results. A practical solution to this end
is often used in consortial meta-analyses, for example, the generation of “leave-one-out“
meta-analysis GWAS results [19], whereby each contributing study is excluded from the
meta-analysis in turn [20].

To ensure generalizability of the results, the PRS analyses were performed in an
independent target sample, referred to as out-of-sample prediction. The computational
outputs include different plots which need to be interpreted correctly and carefully. A
typical PRS study tests for an association between a PRS and the phenotype (disease
status or clinical outcome) in the target data. This association can be measured with
goodness-of-fit metrics and the effect size estimate between specific strata. Goodness-of-
fit or explained variance is represented by incremental R2. Additionally, this is usually
reported for case/control outcomes as Nagelkerke’s R2 which is a statistically adjusted R2,
and since the case/control ratio is not equal to the disease prevalence, it should be adjusted
in this respect on the liability scale [20,21]. Other PRS results from the typical C+T method
include strata plots showing how trait values vary with increasing PRS or measuring
increased risk folding for disease in individuals with the highest PRS. Density and violin
plots are also commonly used to visualize the discriminatory power of PRS between cases
and controls. The predictive accuracy of the PRS models as a binary target predictor can be
assessed using Area Under the Receiver Operating Characteristic curve (AUC) analysis.
The AUC can be interpreted as the probability that a case ranks higher than the control, and
by analogy, the higher the AUC, the better a PRS model can discriminate between cases
and controls [22]. Finally, the predictive value of PRS models should be also validated
in a validation cohort (must be independent and is usually a subset of prediction cohort)
in a process known as out-of-sample validation [20,23]. A typical PRS study workflow is
depicted in Figure 1.
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Figure 1. PRS calculation, results, and validation workflow. Summary risk statistics data should
be filtered of rare variants (MAF > 0.01) and insignificant variants (p-value < 0.05). Additionally,
target data-imputed genotypes should be filtered with a filter score (R2) of 0.8. In the PRS calculation
box, C+T stands for clumping plus thresholding implemented in tools, e.g., PRSice software and LD
modeling includes methods using shrinkage strategies implemented in tools, e.g., LDpred.
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2.1. PRS in PD Status Prediction

The primary goal of a polygenic score as a prognostication tool is to classify individu-
als according to their disease risk and predict disease status by distinguishing cases from
controls. Several studies conducted in recent years using different GWASs have established
various general polygenic score models and reported their ability to adequately discrimi-
nate patients with PD from neurologically normal individuals. The accuracy range of these
predictions, i.e., Area Under the Curve (AUC) analysis varies across studies (Table 1).

Table 1. Summary of general PRS studies that have performed PD risk prediction.

Study Base Data Number
of SNPs Target Population Size PRS Calculation

Tool
Predictive Accuracy

(AUC)

Nalls (Nalls,
Blauwendraat et al.

2019) [4]

2019 Nalls
metaGWAS 90

37,688 cases, 18,618 UK Biobank
proxy-cases (i.e., individuals who
do not have Parkinson’s disease
but have a first-degree relative

that does), and 1.4 million
controls

PRSice2 65%

Nalls (Nalls,
Blauwendraat et al.

2019) [4]

2019 Nalls
metaGWAS 1805

37,688 cases, 18,618 UK Biobank
proxy-cases (i.e., individuals who
do not have Parkinson’s disease
but have a first-degree relative

that does), and 1.4 million
controls

PRSice2 69%

Ibanez (Ibanez,
Dube et al. 2017) [24]

2014 Nalls
metaGWAS 26 829 cases and 432 controls Plink Not published

Han (Han, Teeple et al.
2021) [10]

2019 Nalls
metaGWAS 90 1654 PD Cases: 79,123 controls LDpred 76%

Li (Li, Fan et al. 2019)
[25]

2014 Nalls
metaGWAS

2009 Satake GWAS
2017 Redensek

metaGWAS

46 418 PD patients and 426 controls Plink 61%

Foo (Foo, Chew et al.
2020) [26] Asian GWAS 11 2536 PD cases and 21,840 controls Plink 60.20%

Foo (Foo, Chew et al.
2020) [26]

Asian GWAS
Nalls GWAS 11 + 90 2536 PD cases and 21,840 controls Plink 63.10%

Abbreviations. SNP: single nucleotide polymorphism, PRS: polygenic risk scores, AUC: area under the receiver operating characteristic
curve, GWAS: genome wide association studies, PD: Parkinson’s disease, LD: linkage disequilibrium.

2.2. PRS and PD Clinical Outcomes

Some studies have examined the associations between PD PRS and clinical outcomes,
such as age at onset (AAO) and motor and non-motor function. It was hypothesized that
sporadic PD cases with earlier AAO might carry a higher cumulative burden of genetic
risk factors with relatively low effect sizes. In fact, several studies have confirmed that
higher PRS is significantly associated with earlier AAO tendency [24–29]. Genes that can
be assigned to the mitochondrial function and maintenance pathways have been shown
to contribute to PD risk [30]. A study conducted by Billingsley et al. [31] established a
mitochondria-specific PRS calculating effects of all PD risk variants within genes implicated
in mitochondrial function. This study found, to the contrary, that higher mitochondria-
specific PRS was associated with later AAO. Additionally, the largest PD AAO GWAS [32]
showed that not all PD risk loci influence AAO with significant differences between risk
alleles for AAO. These all indicate that overall PD risk and PD AAO may be caused by
partially overlapped biological processes.

Motor dysfunction is the cardinal symptom of PD. The PRS was also found to be
associated with faster motor decline, measured by the time from diagnosis to Hoehn and
Yahr Scale stage 3 and change in Unified Parkinson’s Disease Rating Scale part III (UPDRS
III) score, after adjusting sex and AAO [9,33]. Levodopa is the most effective treatment for
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PD motor symptoms, but long-time dopamine replacement treatment may cause levodopa-
induced dyskinesias (LID) [34]. Eusebi et al. [35] reported that LID development was
significantly correlated with higher PRS (HR = 1.39, 95% CI = 1.08–1.78), indicating the
association between the aggregate burden of known genetic risk variants of PD and LID
development. However, a recent study conducted by Liu et al. [36] did not find the
association between PRS and motor progression and explained that disease initiation and
progression might be driven by different genetics.

Cognitive impairment is also common in PD and an important non-motor symptom
associated with quality of life and caregiver burden [37]. Though it is established that PD
patients with GBA mutations usually present more severe cognitive decline compared
with non-carriers, Paul et al. [9] found that cognitive impairment in PD is also linked to
the polygenic load of common risk variants, i.e., higher PRS. A prospective and general
population-based study by Adams et al. [38] investigated the association between mild
cognitive impairment (MCI) and subsequent conversion to dementia and PRS of genetic
variants for PD. It was found that PD PRS was associated with non-amnestic MCI as well.
Liu et al. performed a longitudinal genome-wide survival study in 3821 PD patients to
identify genetic variants associated with progression from PD to PD dementia (PDD). It
was found that a novel RIMS2 locus (HR = 4.77, P = 2.78 × 10−11) was associated with the
prediction of PDD, while PRS was not associated with cognitive progression.

Interestingly, a longitudinal study by Kusters et al. [39] reported that hallucinations
among PD patients are associated with AD PRS, especially driven by APOE, but not
formally significant in the statistical analysis with PD PRS after adjusting for confounders.
PRS was also not associated with impulse control disorders (ICDs) in PD patients [40,41].
These results may support that PD-associated symptoms like hallucinations and ICDs, and
PD itself have different genetic backgrounds.

2.3. PRS and Penetrance of LRRK2 and GBA

Mutations in the LRRK2 gene are the most common cause of monogenic PD and
also strong risk factors for sporadic PD [42]. G2019S is the most frequent mutation and
has incomplete penetrance. The risk of LRRK2 G2019S mutation carriers developing PD
was 28% at age 59 years, 51% at 69 years, and 74% at 79 years [43]. Iwaki et al. [44]
analyzed 833 heterozygous G2019S carriers (including 439 PD) to investigate if a cumu-
lative genetic risk affects the penetrance of PD among G2019S carriers. They found PRS
(OR 1.34, p = 0.005) was significantly associated with a higher penetrance of the G2019S
mutation, especially among younger carriers. This result is in line with the latest study
by Lai et al. [45], which included 1879 LRRK2 mutation carriers (1810 G2019S carriers and
776 cases). It conducted the GWAS of penetrance of PD in LRRK2 mutation carriers and
also its correlation with PD PRS. They found a significant CORO1C locus signal and PRS
was also found to be a significant predictor of penetrance of LRRK2 variants.

Heterozygous GBA mutations are another common genetic risk factor for PD. The pene-
trance of GBA variants is 10–30% and age-related [46,47]. A study by Blauwendraat et al. [48]
reported that common variants in SNCA and CTSB, known PD risk loci, are associated
with the penetrance of GBA and PRS and could also modify the penetrance. Given ongoing
clinical trials focusing on GBA and LRRK2 PD patients, identification of factors influencing
penetrance of them could be used to stratify carriers and for personalized prevention.

2.4. PRS and Biomarkers

The pathological hallmark of PD is the accumulation of Lewy bodies composed mostly
of aggregated α-synuclein (α-Syn) [49]. A meta-analysis shows that cerebrospinal fluid
(CSF) levels of total α-syn is slightly decreased in PD cases compared with healthy controls,
but it is not sufficient as a diagnostic biomarker [50]. Moreover, Alzheimer’s disease CSF
biomarkers including total tau (t-tau), phosphorylated tau (p-tau), and amyloid-beta 42
(Aβ42) are also significantly lower in PD individuals [51]. Several studies have examined
the associations between PD PRS and these CSF biomarkers. Two studies conducted by
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Ibanez et al., [24,52], and one study by Li et al. [25] did not find an association between
PRS and CSF α-syn, while Lee et al. [53] found that higher PD PRS was associated with
lower CSF α-syn. Notably, Ibanez et al. [52] found that PD PRS was correlated with CSF
Aβ42 and PD cases with higher PRS present lower CSF Aβ42 levels, indicating that PD
development and accumulation of Aβ42 in the brain may share similar pathways.

Interestingly, a recent study [54] investigated the associations between PD PRS and
blood levels of 370 lipid species and lipid-related molecules. It revealed eight specific
lipid species (e.g., arachidonic acid) were associated with PD PRS, which implies the
involvement these lipids in PD etiology. In addition, Tirozzi et al. [55] reported that platelet
distribution width (PDW), a measurement of the variability in platelet size distribution
in the blood, was also related to PD PRS (rg [SE] = 0.080 [0.034]; p = 0.019). However,
the functional meaning of PDW and its potential utility as a biomarker for PD remains to
be clarified.

PD progression is known to be associated with nigrostriatal dopaminergic degenera-
tion and dopamine transporter (DAT) scans can quantify striatal dopaminergic activity [56].
Lee et al. [53] investigated the longitudinal association between PD PRS and striatal
dopaminergic activity measured by 123I-N-3-fluoropropyl-2-β-carboxymethoxy-3β-(4-
iodophenyl) nortropane (123I-FP-CIT) SPECT on 335 PD cases. The authors established
two PRS: (1) PRS-1: PRS including 27 risk SNPs and (2) PRS-2: PRS using 23 risk SNPs
with minor allele frequency > 0.05. PRS-1 was not associated with striatal dopaminergic
activity and PRS-2 was associated with a slower decline of activity, but the other 4/27 rare
variants were associated with faster deterioration of activity. This suggested PD risk SNPs
with different allele frequencies have heterogeneous effects on striatal dopaminergic de-
generation and more studies are needed to further investigate the association between PRS
and dopaminergic activity.

2.5. PRS in the Identification of Biological Pathways

In spite of the great success of continuing GWAS at identifying risk variants, many
of the underlying molecular pathways and cellular processes involved in PD remain
elusive. Several studies have attempted to construct pathway-specific PRS (cumula-
tive effect of pathway-specific genetic variation on PD risk) to shed light on the PD-
related biological pathways. Previous findings suggest that dysfunction in the endosomal
membrane-trafficking pathway (EMTP) could contribute to PD pathogenesis [55], and
Bandres-Ciga et al. [57] assessed the role of the EMTP comprehensively in the risk for
PD. The authors constructed an EMTP-specific PRS using risk variants within 252 EMTP-
related genes in a cohort involving 18,869 cases and 22,452 controls. The EMTP-specific PRS
showed a 1.25 time increase of PD risk per standard deviation of genetic risk, providing
powerful genetic evidence that the EMTP plays a role in PD etiology.

Studies have shown the autosomal recessive PD genes (e.g., PINK1, PRKN, and DJ-1)
are associated with mitochondrial quality control system and mitophagy, implicating mito-
chondria in the etiology of monogenic PD. Billingsley et al. [31] comprehensively studied
the role of genes regulating mitochondrial function in sporadic PD using mitochondrial-
specific PRS in the same cohort. The authors constructed two gene lists based on the
evidence of indicating relevant protein products relating to mitochondrial function. The
“primary” gene list including 196 genes has the strictest evidence implicated in mitochon-
drial disorders. The “secondary” gene list including 1487 genes is implicated in mito-
chondrial function and morphology. The “primary” mitochondrial-specific PRS showed a
1.12-times increase of PD risk per standard deviation of genetic risk, while “secondary” PRS
showed a 1.28-times increase. This study further provided evidence of the involvement of
mitochondrial dysfunction in PD etiology.

Notably, a recent study by Bandres-Ciga et al. [21] applied PRS to a total of 2199 publicly
available gene sets representative of canonical pathways to define the cumulative effect of
pathway-specific genetic variation on PD risk. The training dataset comprising 7218 PD
cases and 9424 controls was used to construct the PRS, while the testing dataset comprising
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5429 PD cases and 5814 controls was used for validation. Besides identifying previously
reported EMTP and mitochondrial pathways, this study also nominated some novel molec-
ular pathways (e.g., chromatin remodeling and epigenetic mechanisms) contributing to
PD etiology.

Bandres-Ciga et al. [58] also integrated the PRS approach and single-cell RNA se-
quencing data from 24 brain cell types to investigate in which cell types risk variants
are active. They observed PD risk is associated with increased cell expression specificity
in dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and
neural progenitors, indicating that these cell types are essential for understanding PD-
relevant biological pathways. Andersen et al. [59] applied the PRS approach in the same
training and testing dataset to investigate heritability enrichment partitioned by cell type,
focusing on immune and brain cells. The cell-type-PRS was constructed based on risk
variants within open chromatin regions of the specific brain and immune cell types, as
defined by ATAC-seq peaks [59]. Compared with other brain cell types, the author found
microglial-PRS showed the strongest association with PD risk in both training and testing
datasets. This study highlighted the role of microglial in PD etiology.

2.6. PRS for the Establishment of Stratified PD Trials

Using PRS to stratify patients by identifying high- and low-risk subgroups may
help to conduct stratified trials that use medications that are effective in some forms of PD
proportionate to genetic risk. It turns out that such stratified designs can potentially increase
the efficiency of a trial. The use of genetic, clinical, imaging, or other molecular biomarkers
to recruit patients who are more likely to respond efficiently to intervention is key to trial
success and a central concept in stratified trials. This was exemplified in the relevant success
attributable to the recruitment strategy of the aducanumab trial in 2015 for Alzheimer’s
disease by the means of shift away from this strategy, potentially linked to fewer positive
results in drug development (https://www.alzforum.org/therapeutics/aduhelm, accessed
on 1 August 2015) [60]. Additionally, regarding pathway PRS, as the predictive potential
of pathway PRS can extend the evidence of the pathways involved in PD pathogenesis,
they can be used to identify patients at risk because of the disturbance of a particular
pathway, i.e., a particular endophenotype, e.g., PD patients with severe impairment in the
mitochondrial pathway, and then try to boost mitochondrial function in these patients by
medications e.g., coenzyme Q10 known as “mitochondrial enhancer” [61].

2.7. Translating PRS onto the Absolute Scale

There is mounting interest in the clinical application of PRS in terms of interpreting the
results to the people seeking to know about their genetic risk, though there have been few
efforts in this specific respect. Developing handy tools that convert PRS onto the absolute
scale, i.e., the probability an individual will develop the outcome [62], is a milestone in
terms of confident interpretation of their results in the clinic. The absolute risk conferred by
a given relative risk is determined by the predictive utility of the PRS that is standardized
to a Z-score and the population prevalence of the phenotype. For example, an individual’s
polygenic Z-score for disease may be 1.96, indicating their polygenic score is higher than
97.5% of an ancestry matched population.

However, at the moment, PRS can only be converted to the absolute scale if a validation
sample is available, which imposes a major limitation on its use. Pain and colleagues
recently developed a method to convert polygenic scores to the absolute scale for binary
and normally distributed phenotypes. This method requires only the predictive accuracy
(AUC) or the adjusted variance explained by the PRS (R2) and provides a practical choice
for educational and clinical purposes [63].

3. Future Directions and Limitations

Although advancements in PD polygenic scoring have improved our ability to identify
high-risk individuals, there are still caveats about using PRS in the clinic to select people
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for potential clinical follow-up and therapeutic intervention. These concerns surrounding
the clinical implementation of PRS can be due to technical drawbacks in its construction
and also subsequent psycho-social implications of its use.

In terms of PRS calculation, in addition to the noisy nature of SNP weights and
their LD redundancy, there is a concern that we incorporate genetic variants that may
not correlate perfectly with the causal factor, leading to uncertainty in the interpretation
of results. In addition, as PRS is preferably a surrogate for SNP-driven heritability, it
does not fully represent the entire picture of genetic architecture in PD and overlooks
other contributors such as rare and structural variants, gene-gene, and gene-environment
interactions; therefore, it must be interpreted carefully. Additionally, the fact that the
scores so far have largely been calculated from eurocentric data, i.e., European ancestry
GWAS, gives rise to the biased behavior of PRS and reduces its applicability in populations
other than the European population. As a hint shedding light on the future direction of
PRS application in stratified medicine, conducting large genome-wide studies in African
populations could rapidly improve the accuracy of PRS for all populations [64].

When it comes to the use of PRS in the clinical setting, another caveat that requires
scrupulous attention is that a PRS, like any other diagnostic uncertainty, must be interpreted
contextually for the patients. Although feedback of genetic risk of complex disease in at-
risk patients does not always result in significant self-reported negative behaviors, and
some potentially positive behavioral changes have been noted [65], knowing genetic risk
for a disease may convey a sense of insecurity in some people. Hence, the way PRS results
are explained to the patients is of importance as well. On the other hand, future efforts to
reduce this uncertainty by focusing on transparency in informing people about their PRS
seem necessary. Looking at the example of other diseases such as coronary heart disease,
Torkamani and his team developed MyGeneRank, an app that can calculate a person’s PRS
for coronary heart disease from their genetic data from 23andMe, health data collected
on mobile devices, and a series of questionnaires. Their aim was to understand how
people respond to receiving the score and monitor any changes in health-related behavior
thereafter [66]. In summary, however, PRS significantly improves genetic risk assessment
at the individual level for PD patients, as the growing evidence suggests, it should be
evaluated in the context of realistic expectations of what PRS can and cannot deliver [67].
Further research is also needed to ascertain how PRS can be effectively mainstreamed into
clinical practice and more data, e.g., biomarker data, are needed to allow implementation
of PRS in this context.
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