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Network science and graph theory applications have recently spread widely to help in understanding
how human cognitive functions are linked to neuronal network structure, thus providing a conceptual
frame that can help in reducing the analytical brain complexity and underlining how network topology
can be used to characterize and model vulnerability and resilience to brain disease and dysfunction. The
present review focuses on few pivotal recent studies of our research team regarding graph theory appli-
cation in functional dynamic connectivity investigated by electroencephalographic (EEG) analysis. The
article is divided into two parts. The first describes the methodological approach to EEG functional con-
nectivity data analysis. In the second part, network studies of physiological aging and neurological disor-
ders are explored, with a particular focus on epilepsy and neurodegenerative dementias, such as
Alzheimer’s disease.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Network science and graph theory methods can significantly
contribute to understand age-related brain function and dysfunc-
tion (Bullmore and Sporns, 2009; Griffa et al., 2013) and, in partic-
ular, to map brain from structure to function, to explore how
cognitive processes emerge from their morphological substrates,
and to better evaluate the linkage between structural changes
and functional derangement (Sporns et al., 2005); in the near
future, this approach might even help to develop new individual-
ized therapeutic/rehabilitative strategies.

Several research groups (Sporns and Zwi, 2004; Stam and
Reijneveld, 2007; De Vico et al., 2007; He et al., 2007; de Haan

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnp.2017.09.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cnp.2017.09.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fabrizio.vecchio@uniroma1.it
mailto:fabrizio.vecchio@sanraffaele.it
https://doi.org/10.1016/j.cnp.2017.09.003
http://www.sciencedirect.com/science/journal/2467981X
http://www.elsevier.com/locate/cnp


F. Vecchio et al. / Clinical Neurophysiology Practice 2 (2017) 206–213 207
et al., 2009; Rubinov and Sporns, 2010; Vecchio et al., 2014a,
2015b; Miraglia et al., 2017) have recently engaged themselves
with brain functional dataset analysis by graph theory applica-
tions. These applications are made with different methodological
approaches and on different kinds of datasets.

The present review focuses on few pivotal recent studies of our
research team regarding graph theory application in functional
dynamic connectivity investigated by electroencephalographic
(EEG) analysis. Much of the text has been adapted from a series
of articles from our Unit, particularly Miraglia et al. (2015, 2016,
2017) and Vecchio et al. (2015a, 2016a,b,c) as listed in the Refer-
ences. The article is divided into two parts. The first one describes
the methodological approach to EEG functional connectivity data
analysis. The second one explores network studies of physiology
and neurological disorders, particularly neurodegenerative dis-
eases, such as Alzheimer’s disease (AD) and epilepsy.
2. Graph theory approach

The human brain is probably the most complex container of
interconnected networks in nature, and the ‘‘network science of
the brain,” or network neuroscience, remains a very recent venture
in its starting exploring phase. It defines the connection matrix of
the human brain as the human ‘‘Connectome.”

Network-based algorithms provide parameters that define the
global organization of the brain and its alterations at different
levels of investigation (Griffa et al., 2013). Previous studies have
applied graph theory to EEG data for the investigation of brain net-
work organization during aging and, in particular, along the con-
tinuous line that connects normal aging (Nold), mild cognitive
impairment (MCI), and dementia (Vecchio et al., 2014a,b) Thus, it
was observed that both measures of global integration (path length
as an index of information transfer efficiency) and local segregation
Fig. 1. Adapted image from Tijms et al. (2013) showing the main graph theory
concepts. Reproduced with permission.
(clustering as an index of local interconnectedness and network
segregation) can discriminate cortical network features, which rep-
resent the boundaries separating physiological from pathological
neurodegenerative brain aging. On the basis of how both special-
ized and integrated information processing in the brain are sup-
ported by the small-world model (Sporns et al., 2004; Bassett
and Bullmore, 2006), this new approach allows the evaluation of
functional connectivity patterns and aims to specify whether an
optimal balance can be found between local independence and glo-
bal integration as a favorable condition for information processing
(Gaal et al., 2010).

Fig. 1 shows a picture from Tijms et al. (2013) to help the read-
ers in the comprehension of the graph theory concepts.

A brain graph theory network is a mathematical representation
of the real brain architecture that consists of a set of nodes (ver-
tices) and links (edges) interposed between them. Nodes usually
represent brain regions, while links represent anatomical, func-
tional, or effective connections (Friston, 1994; Rubinov and
Sporns, 2010), depending on the problem under investigation. In
general, the number of nodes is important, but it is not clear
whether a minimum number is required.

Mathematically speaking, a network is a matrix, where each
row represents a node and each column represents the relationship
between the current node and every other node in the network.
Links between nodes can be weighted or unweighted. Weighted
links can represent the size, density, or coherence of anatomical
tracts in anatomical networks, whereas these links can represent
the strength of correlation or causal interactions in functional net-
works. Unweighted (binary) networks are often used by applying a
threshold to a weighted network, with links indicating the pres-
ence or absence of connection. Although in literature most studies
use unweighted networks, interest in weighted network analysis is
increasing because of the more specific information they can pro-
vide (Telesford et al., 2011).

In this review, network analyses on resting-state EEG data,
which are considered undirected and weighted or unweighted net-
works, are reported, focusing on their applications to physiological
aging and neurological diseases such as AD and epilepsy. Analysis
from EEG in a resting-state condition was chosen because it pro-
vides a measure of connectivity based on the level of co-
activation between the functional time series of brain regions
(Biswal et al., 1995).

Finally, although MRI technique is not discussed in the present
review, the potential usefulness of combining EEG and MRI tech-
nologies should be critically considered, particularly MRI, which
provides much higher spatial resolution and detailed structural
information. The use of functional MRI techniques, including acti-
vation and resting-state studies, has reduced the use of EEG in clin-
ical research also, but the reasons for using EEG for connectome
analysis instead of MRI could be as follows: the low cost and large
diffusion of EEG in clinical centers. Furthermore, the physiological
meaning of connectivity within different frequency bands should
be obtained just in EEG data and could be more correlated with
behavioral pathologies.

2.1. Data recording and analysis

In general, few minutes of resting EEG with subjects’ eyes
closed and eyes open are recorded with subjects seated relaxed
in a sound attenuated and dimly lit room. EEG signals are usually
recorded at least from 19 scalp electrodes (Fp1, Fp2, F7, F8, F3,
F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz, Cz, and Pz) positioned
according to the International 10–20 system. The sampling rate
frequency was set at 256 or 512 Hz. Eye movements were moni-
tored by two different channels: vertical and horizontal EOGs;
skin/electrode impedances were kept below 5 kX.
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2.2. Preprocessing of EEG data

EEG signals were band-pass filtered from 0.1 to 47 Hz using a
finite impulse response filter. Imported EEG data were segmented
in 2-s epochs after identifying and extracting visible artifacts (i.e.,
eye movements, cardiac activity, and scalp muscle contraction)
and after using an independent component analysis (ICA) proce-
dure for artifact rejection. Data were analyzed with Matlab
R2011b software (MathWorks, Natick, MA) and using scripts based
on EEGLAB 11.0.5.4b toolbox (Swartz Center for Computational
Neurosciences http://www.sccn.ucsd.edu/eeglab). ICA was per-
formed using the Infomax ICA algorithm (Bell and Sejnowski,
1995) as implemented in EEGLAB.

2.3. Functional connectivity analysis

EEG connectivity analysis was performed using the exact low-
resolution electromagnetic tomography eLORETA (Pascual-
Marqui et al., 2011). The eLORETA algorithm is a linear inverse
solution for EEG signals that has no localization error to point
sources under ideal (noise-free) conditions (Pascual-Marqui,
2002). The connectivity values were obtained by lagged linear
coherence (LagR) algorithm as a measure of functional physiologi-
cal connectivity (Pascual-Marqui, 2007a; Pascual-Marqui, 2007b).
On the basis of the scalp-recorded electric potential distribution,
eLORETA was used to compute the cortical three-dimensional dis-
tribution of current density. The description of the method,
together with the proof of its exact zero-error localization prop-
erty, is provided by Pascual-Marqui (2007b, 2009).

Several recent studies from independent groups (Canuet et al.,
2011; Barry et al., 2014; Vecchio et al., 2014a,b, 2015, 2016b;
Aoki et al., 2015; Ikeda et al., 2015; Ramyead et al., 2015) have sup-
ported the idea of a correct source localization using eLORETA, also
by the 10–20 EEG montage.

By performing an individual analysis, brain connectivity was
computed by eLORETA software in the regions of interest (ROIs)
defined according to the available Brodmann areas for left and
right hemispheres (Talairach and Tournoux, 1988). Intracortical
LagR, extracted by ‘‘all nearest voxels” or those in a sphere of 19
mm radius method, selected on the basis of the number of consid-
ered nodes (Pascual-Marqui, 2007a; Pascual-Marqui et al., 2011),
was individually computed between all possible pairs of ROIs for
each EEG frequency band (Kubicki et al., 1979; Niedermeyer and
da Silva, 2005): delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5
Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz),
and gamma (30–45 Hz). We used the eLORETA current density
time series of each Brodmann area (BA) to estimate the functional
connectivity; LagR algorithm was implemented in eLORETA as a
measure of functional physiological connectivity that is not
affected by volume conduction and low spatial resolution
(Pascual-Marqui, 2007a). For each EEG frequency, we computed
the mean connectivity matrix between all frequency bins for each
subject.

2.4. Parameters derived by graph theory

The core measures of graph theory were computed using the
toolkit available at http://www.brain-connectivity-toolbox.net
and adapted by Matlab scripts (Vecchio et al., 2014b; Miraglia
et al., 2015, 2016). In such scripts, segregation refers to the degree
to which network elements form separate clusters and correspond
to clustering coefficient (C) (Rubinov and Sporns, 2010), while inte-
gration refers to the capacity of network to become interconnected
and exchange information (Sporns, 2013), and it is defined by the
characteristic path length (L) coefficient (Rubinov and Sporns,
2010).
The mean clustering coefficient is computed for all the nodes of
the graph and then averaged (Onnela et al., 2005; Rubinov and
Sporns, 2010). It is a measure of the tendency of network elements
to form local clusters (de Haan et al., 2009). Starting by the defini-
tion of L (Onnela et al., 2005; Rubinov and Sporns, 2010), the
weighted characteristic path length Lw (Onnela et al., 2005;
Rubinov and Sporns, 2010) represents the shortest weighted path
length between two nodes.

Small-world (SW) parameter is defined as the ratio between
normalized C and L – Cw and Lw – with respect to the frequency
bands. For example, to obtain individual normalized measures, in
our studies, we divided the values of the characteristic path length
and the clustering coefficient by the mean obtained from the aver-
age values of each parameter in all the EEG frequency bands of
each subject. Of note, it should be emphasized that the normaliza-
tion of the data with respect to surrogate networks could not be
done because of the weighted values of the considered networks.

The SW coefficient describes the balance between local connec-
tivity and global integration of a network. Small-world organiza-
tion is intermediate between that of random networks, the short
overall path length which is associated with a low level of local
clustering, and that of regular networks or lattices and the high
level of clustering which is accompanied by a long path length
(Vecchio et al., 2014b). This implies that nodes are linked through
relatively few intermediate steps, and most nodes maintain few
direct connections.
3. Graph theory applications to EEG data

Considering the above methodological remarks, in the following
sections, network studies of physiological aging and neurological
disorders, such as AD and epilepsy, are explored.
3.1. EEG for the study of physiological aging

This first section reviews studies aimed at understanding
whether graph theory application can reveal how normal aging
affects the network structure.

Boersma and colleagues recorded resting-state eye-closed EEG
of young children (5–7 years). The graphs were weighted using
synchronization likelihood (SL); the results showed an increase
in average clustering and path length, suggesting that a shift from
random to more organized small-world functional networks char-
acterizes normal brain maturation (Boersma et al., 2011).

Micheloyannis and colleagues studied SL in the EEG of children
(8–12 years) and young students (21–26 years). They found that
beta and gamma values of C in children were higher than those
in students. They also found that in beta band SWwas significantly
higher in children than in students. They concluded that the higher
synchronization of fast frequencies observed in children reflects
brain maturational processes (Micheloyannis et al., 2009).

Smit and colleagues found that connectivity was more random
in adolescence and old age but was more ‘‘structured” in middle
age. Decrease in SW was also observed in older adults (Gaal
et al., 2010; Smit et al., 2010).

When we analyzed (Vecchio et al., 2014a) EEG data in a sample
of 113 healthy human volunteers divided into three groups
depending on their ages (young, adult, and elderly), we found that
in physiological aging, the normalized characteristic path length
showed the pattern Young > Adult > Elderly in the higher alpha
band. Furthermore, elderly subjects showed an increase in delta
and theta bands unlike young subjects (Fig. 2).

This alpha result extends those of previous clinical EEG studies
(Delbeuck et al., 2003; de Haan et al., 2009), in which a reduction in
the characteristic path length in the alpha band was observed in
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Fig. 2. ANOVA interaction of the normalized characteristic path length (k) among the factors group (young, adult, and elderly) and band (delta, theta, alpha 1, alpha 2, beta 1,
beta 2, and gamma). The lower panel of the figure shows the concomitant cerebral connectivity, mapped by eLORETA, for the alpha 2 band in the three groups, in which the
red tract representation belongs to ROIs well connected over the cut-off threshold.
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patients with AD, compared with that in normal elderly subjects.
The increase in normalized alpha path length characterizing AD
(Vecchio et al., 2014b) was also interpreted as a loss of efficiency
of communication between distant brain regions. An increase in
delta connectivity might therefore reflect a progressive disconnec-
tion process of the aging brain as a loss of efficiency of communi-
cation between distant brain regions. The loss of structure, as
partially expressed by the lower path length in the higher alpha
frequency bands, supports, together with the well-known slowing
of EEG brain activity and the loss of functional connectivity, the
idea that brain aging is –at least in part- a process of progressive
disconnection.

Of note, a shorter path length related to physiological aging
seems counter-intuitive. However, at least in theory, a shorter path
length is not necessarily an advantage in a complex network
affected by age because it might increase the processing time
and the background ‘‘noise” and because the overall structure must
maintain an effective balance between local specialization and glo-
bal integration. In this context, the modulation of the global but
not of the local network parameters during the aging process could
be considered a loss in the balancing of the most efficacious type of
brain connectivity of the young-adult group. A possible interpreta-
tion of the present results is that aging processes provoke progres-
sive disconnection among brain areas. This effect has been revealed
in older subjects by an increase in slow and a decrease in fast EEG
characteristic path length values, which measure the average
shortest path length of a network. This indicates a progressive loss
of efficiency in a global index of transfer of information from one
part of the network to another.

3.2. EEG for the study of pathological aging

Searching for signs of pathological aging, several studies tested
whether it was possible to find a trend linking different conditions
such as normal elderly subjects (Nold) and demented (AD) patients
passing through MCI, by applying graph theory methodology in
cortical sources of EEG data.

AD is considered a disease that initially affects synaptic trans-
mission with an overall disconnection, which could be investigated
using a network approach because the structural elements of the
brain form an intricate network at different spatial scales (ranging
from neurons to anatomical regions) from which functional
dynamics emerge. In this way, graph theory approach could pro-
vide a general language that enables to understand the association
of the various pathological processes interacting with each other in
AD, such as spatial patterns of cortical atrophy and functional dis-
ruptions, and why the disease propagates along specific routes.
(Tijms et al., 2013).

Stam and colleagues applied graph theory to functional connec-
tivity EEG data in beta band of patients with AD and control sub-
jects. Results showed that a loss of small-world network features
typifies AD. In fact, in patients with AD, the cluster coefficient C
did not significantly change, whereas the characteristic path length
L increased. These data suggest a loss of complexity and a less opti-
mal organization (Stam et al., 2007).

Furthermore, by applying graph theory on EEG data of patients
with AD and healthy controls, de Haan and colleagues demon-
strated in the first group a reduction in both the clustering coeffi-
cient, especially in the lower alpha and beta bands, and the
characteristic path length, especially in the lower alpha and
gamma bands. Because of the decrease in both local and global
connectivity parameters, the functional brain network organiza-
tion in AD deviates from the optimal small-world network struc-
ture toward a more random type. This is associated with less
efficient information exchange between brain areas, supporting
the disconnection hypothesis of AD (de Haan et al., 2009).

We analyzed (Vecchio et al., 2014b) a dataset of 378 EEGs (174
AD, 154 MCI, and 50 Nold). Significant differences between normal
cognition and dementia were identified in cortical sources’
connectivity. Normalized characteristic path length significantly
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increased for AD patients compared with those for MCI and Nold
subjects in the theta band alone. Instead, normalized clustering
coefficient significantly increased in the theta band of AD patients
compared with those of MCI and Nold groups and in the alpha 1
band of AD patients and MCI subjects compared with those of Nold
group. The slow EEG frequency increase in both global (clustering
coefficient) and local (characteristic path length) parameters could
be seen as the disease’s effect on network’s edges and as a sign of
functional disconnection (Vecchio et al., 2014a).

With regard to the outcome observed at low alpha rhythm (8–
10.5 Hz) – which is supposed to reflect the regulation of global cor-
tical arousal (Klimesch, 1999; Pfurtscheller and Lopes da Silva,
1999) – there is a general consensus that the high-frequency alpha
rhythms reflect the functional modes of thalamo-cortical and
cortico-cortical loops that facilitate/inhibit the impulse transmis-
sion and the retrieval of sensorimotor information processing
(Steriade and Llinas, 1988; Brunia, 1999; Klimesch, 1999;
Pfurtscheller and Lopes da Silva, 1999).

Because a decrease in path length implies a shift toward net-
work randomness (Bartolomei et al., 2006), it can be argued that
an increase in high-frequency normalized clustering coefficient
for both AD and MCI subjects could reflect compensatory neuro-
plastic mechanisms. The fact that AD patients are more impaired
than MCI subjects in theta but not in alpha band is in line with
the hypothesis of an intermediate status of MCI between normal
condition and overt dementia, in which the alpha bands are the
first to be affected by neurodegenerative mechanisms.

3.3. Comparison between physiological and pathological brain aging

On assessing both physiological and pathological brain aging, it
was observed (Miraglia et al., 2016) that eye opening causes vari-
ations in the processes of cerebral integration and segregation
and that small-world values had different patterns in pathological
aging in open/closed eye EEG reactivity, with different trends in
the various frequency bands.

Gaal and colleagues analyzed EEG resting-state data of a
group of young (18–35 years) and elderly (60–75 years) people.
Comparing elderly to young, they found that C decreased after
eye opening in almost all frequency bands; L decreased follow-
ing eye opening in theta, alpha 1, alpha 2, and beta 1 bands;
and SW parameter decreased following eye opening in beta 1
and beta 2 frequency bands. Eye opening causing a decrease in
both the path length and the clustering coefficient in most
frequency bands may indicate a more random topology of
Fig. 3. Left panel: Mean values and standard errors of ANOVA interaction of the small-w
and gamma) and group (Nold, aMCI, and AD) in eyes-closed condition. Right panel: Me
among the same factors in eyes-open condition.
functional brain networks, which is to be expected during desyn-
chronization, especially for path length. A decrease in SW index
was found as a result of eye opening in beta 1 and beta 2 bands
corresponding to a shift toward a random-like topological condi-
tion in these frequency bands (Gaal et al., 2010). Zou and col-
leagues indicated that the alpha rhythm had the largest
amplitude in relaxed EC or a waken state (Zou et al., 2009).
These results are in line with those of other studies that the
activity of the alpha would be restrained because of extrinsic
visual stimulus and information processing in EO state.

Tan and colleagues (Tan et al., 2013) found that the small-world
characteristics decreased in the theta band but slightly increased in
the alpha band from EC to EO states. The reduction in small-world
characteristics in the theta band may be due to the external visual
input, which induces a decrease in resting-state networks’ activity.
Moreover, the increase in small-world features in the alpha band
may be due to the alpha desynchronization after opening the eyes,
which facilitates effective information communication.

Knyazev and colleagues found that age-related differences in
eye opening resulted in a decrease in C and an increase in L
(Knyazev et al., 2015).

In a recent study (Miraglia et al., 2016) of ours, in order to
address differences in functional brain networks between eyes-
closed (EC) and eyes-open (EO) conditions in Nold people, amnes-
tic MCI (Petersen et al., 2001), and AD patients, the small-world
parameter, which is sensitive to the progression of aMCI or conver-
sion into AD (Toth et al., 2014) in the eye opening, has been inves-
tigated. Ninety subjects were analyzed: 30 AD, 30 aMCI, and 30
Nold. An intermediate trend of the aMCI group was found: in EC
condition, aMCI displayed more small-world compared with AD
and nearer to Nold’s network topology in line with other evidence,
whereas in the EO, aMCI showed less small-world with a pattern
superimposable to that of AD (Fig. 3).

The cognitive impairment of aMCI subjects probably reflects the
small-world architecture alteration, and the effect seen on the EO
reactivity could lead to the absence of the subject ability to react
as rapidly and efficiently as in normal conditions when the brain
is visually connected to the external environment. In fact, because
of the decrease in local and global connectivity parameters, the
functional brain network organization deviates from the small-
world network structure typical of the healthy toward a less
small-world organization, associated with less efficient informa-
tion exchange between brain areas, supporting the disconnection
hypothesis of AD. This trend also supports the idea that the disease
processes induce a functional impairment of cortical neural
orld parameter among the factors band (delta, theta, alpha 1, alpha 2, beta 1, beta 2,
an values and standard errors of ANOVA interaction of the small-world parameter
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synchronization and the hypothesis of a progressive impairment of
cortical reactivity across aMCI and AD subjects.

Furthermore, correlation analysis between structural damage of
callosal fractional anisotropy (FA), measured by MRI-DTI, and func-
tional abnormalities of brain integration, measured by the charac-
teristic path length (L) detected in resting-state EEG source
activity, was carried out in order to find possible correlations
between structural damage and functional abnormalities of brain
integration. It was verified that the callosal FA reduction could be
associated with a decrease in brain interconnection as reflected
by an increase in delta and a reduction in alpha path length. The
low-frequency increase in path length, which represents a measure
of global integration, could be interpreted as the consequence of
the decrease in connectivity, defined by the shortest length of links
in the network edges, which is a sign of functional disconnection.
The correlation observed at low-frequency alpha rhythm (8–10.5
Hz), which is supposed to reflect the regulation of global cortical
arousal (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999),
suggests a progressive (probably cholinergic) impairment of the
attentional systems rather than inter-hemispherical coordination
of the synchronization pattern.

Considering the decline of memory through physiological brain
aging and how memory deficits are considered as a primary symp-
tom of AD (Petersen et al., 2001), a further set of studies aimed to
determine whether small-world characteristics of the resting-state
brain networks, as reflected in the EEG rhythms, correlate with
memory measures in subjects with AD and those in a prodromic
stage of dementia as MCI. A significant correlation was found
between the small-world properties and short-term memory per-
formance. In particular, higher gamma band small-world charac-
teristic during resting state correlates with better performance to
short-term memory tasks as evaluated by the digit span tests.
These results are reflected on the EEG by the observation that a
more small-world brain network in gamma band is associated with
better memory performance.

Finally, remaining in this vein of dementia characterization, a
recent correlation analysis (Vecchio et al., 2016c) between hip-
pocampal volume measured by volumetric MRI and small-world
parameter, detected in resting-state EEG source activity, showed
that alpha band SW was negatively correlated, while slow- (delta)
and fast-frequency (beta, gamma) bands positively correlated with
hippocampal volume. In particular, larger hippocampal volume
was associated with lower alpha and higher delta, beta, and
gamma small-world characteristics of connectivity. Of note, it is
Fig. 4. Small-world parameter among the factors time (Baseline, T0, T1,
possible to speculate that the small-world connectivity pattern
could represent a functional counterpart of structural hippocampal
atrophying and related-network disconnection.
3.4. EEG for the study of epilepsy

Brain networks constantly change their dynamic state, switch-
ing between movement and rest, behavioral and cognitive tasks,
and wakefulness and sleep. The epileptic brain represents a further
network’s feature with the transient occurrence of paroxysmal fir-
ing within neuronal assemblies, which end up with a seizure as
time progresses.

Characterization of neural networks in epilepsy has gained rel-
evance through time because localized forms of epilepsy are
related to an abnormal functioning of specific brain networks with-
out structural damage. Seizures and EEG spiking are considered the
result of an imbalance between inhibitory and excitatory signals,
thus leading to a hyperexcitable state in which the abnormal
rhythms of neural firing cannot be sufficiently controlled by the
physiological inhibition mechanism, generating a paroxysmal
depolarization shift (Stafstrom and Carmant, 2015).

In a recent study (Vecchio et al., 2016a), we focused on the
exploration of the interictal network properties of EEG signals from
temporal lobe structures in the context of fronto-temporal lobe
epilepsy. Therefore, the graph characteristics of the EEG data of
17 patients suffering from focal epilepsy of the fronto-temporal
type, recorded during interictal periods, were examined and com-
pared in terms of affected versus unaffected hemispheres. In this
study, EEG connectivity analysis was performed using eLORETA
software in 15 fronto-temporal regions (Brodmann Areas BAs 8,
9, 10, 11, 20, 21, 22, 37, 38, 41, 42, 44, 45, 46, and 47) on both
affected and unaffected hemispheres.

Evaluation of the graph analysis parameters, such as character-
istic path length and clustering coefficient—indices of global and
local connectivity, respectively—showed a statistically significant
interaction among side (affected and unaffected hemispheres)
and band (delta, theta, alpha, beta, and gamma). Statistical testing
showed that local and global graph theory parameters increased in
the alpha band in the affected hemisphere. This could result from
the combination of overlapping mechanisms, including reactive
neuroplastic changes, seeking to maintain constant integration
and segregation properties and trying to contrast the progressive
loss of the natural complexity of EEG signals.
and T2) and band (delta, theta, alpha 1, alpha 2, beta 1, and beta 2).
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Furthermore, epilepsy is characterized by unpredictable and
sudden paroxysmal neuronal firing and/or synchronization occur-
rences eventually evolving into a seizure. To predict the seizure
event, small-world characteristics of a 9-min time epoch immedi-
ately preceding individual seizures, each epoch fragmented in
three 3-min periods (T0, T1, and T2), were investigated on stereo-
taxic EEG of drug-resistant epileptic patients explored with depth
electrodes before surgery (Vecchio et al., 2016a). In Vecchio
et al.’s (2016a) work, the importance of using a large number of
nodes was evidenced; in this case, the number of contacts was
about 100.

Seizures are caused by a progressive hypersynchronization of
the firing of a critical mass of neuronal assemblies. This implies
that a single neuron cannot cause a seizure; instead, a population
of cells or – better – a network of neuronal assemblies is needed
(Engel et al., 2013).

Effective connectivity and optimal network structure are
believed essential for proper information processing in the brain.
Indeed, an association exists between functional abnormalities of
the brain and pathological changes in connectivity and network
structures. Intracerebral recordings were obtained for 10 patients
with drug-resistant focal epilepsy examined by stereotactically
implanted electrodes; analysis was performed in a seizure-free
period of low spiking (Baseline) and during two seizures. Net-
works’ architecture is undirected and weighted. Electrodes’ con-
tacts close to epileptic focus are the vertices, and edges are
weighted by mscohere (=magnitude squared coherence).

Differences were observed (Fig. 4) between Baseline and T1 and
between Baseline and T2 in theta band; and between Baseline and
T1, between Baseline and T2, and near-significant difference
between T0 and T2 in alpha 2 band. Moreover, an intra-band index
was computed for small world as difference between theta and
alpha 2. An increasing trend of index was observed from Baseline
to T2. The more seizure onset was approaching, the less SW
characteristics were evident, with an overall progressive loss of
complexity of neural network architecture sustaining the EEG
signals.

According to the results of this study, cortical network features
significantly modify their configuration up to about 10 min before
seizure onset. Additionally, a proof-of-concept attempt suggests
that this type of analysis could predict the incoming epileptic sei-
zure with good performance, thus representing an interesting mar-
ker of epileptic risk factor.

4. Conclusions

Evidence from this review confirms the utility of an innovative
mathematical approach to investigate relevant neurological fea-
tures in real complex brain networks through EEG data. We chose
EEG in all our studies because it is a widely used, noninvasive, and
low-cost procedure and is an ideal candidate to functional connec-
tivity analysis with a time frame appropriate for brain function
(from seconds to tens of milliseconds). Network analysis in neuro-
science could help understand how human cognitive functions are
linked to neuronal network structure and how they deal with time-
varying networks’ dynamics, thus providing a window for an
online view on brain complexity and dynamics. As human brains
vary largely in size and surface shape, network analysis is appro-
priate for assessing this variability and can characterize brain net-
work organization. The characterization of brain networks using
connectivity matrices and graphs has the advantage of obtaining
a rich structural description that allows an efficient computation
and comparison of different connection topologies within a com-
mon theoretical framework (Bullmore and Sporns, 2009).

A complex topology of brain networks has been demonstrated
in structural and functional networks. The presence of a direct
anatomical connection between two brain areas is associated with
stronger functional interactions between these two areas. How-
ever, functional interactions have also been detected between
brain areas without direct anatomical connections. It can be spec-
ulated that functional analyses could follow in a better way the
dynamics of the cerebral modulations in physiological conditions,
including learning and training, and clinical conditions when the
brain networks are suddenly or progressively modified like in
stroke, AD, or epilepsy.

In this line, the importance of using connectome analysis on an
individual basis for classification for diagnostic and prognostic pur-
poses, at least for AD and seizure prediction in epilepsy, should be
considered at sensitivity and specificity levels. Few studies, for
example, used graph theory at individual level for the discrimina-
tion of MCI subjects who will rapidly progress to AD subjects. The
most promising result (Hojjati et al., 2017) presented until now is
that using graph theory and a learning machine, it is possible to
obtain accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic (ROC) curve of 91.4%, 83.24%,
90.1%, and 0.95, respectively. These results are very promising for
individual diagnosis.

In summary, graph analysis applications described in this
review represent an interesting probe to analyze the distinctive
features of real life by focusing on functional connectivity net-
works. The application of this technique to patient data might pro-
vide more insight into the pathophysiological processes underlying
brain disconnection and might aid in monitoring the impact of
eventual pharmacological and rehabilitative treatments.

Conflict of interest

All authors report no conflict of interest.
References

Aoki, Y., Ishii, R., Pascual-Marqui, R.D., Canuet, L., Ikeda, S., Hata, M., et al., 2015.
Detection of EEG-resting state independent networks by eLORETA-ICA method.
Front. Hum. Neurosci. 9, 31.

Barry, R.J., De, Blasio FM, Borchard, J.P., 2014. Sequential processing in the
equiprobable auditory Go/NoGo task: children vs. adults. Clin. Neurophysiol.
125, 1995–2006.

Bartolomei, F., Bosma, I., Klein, M., Baayen, J.C., Reijneveld, J.C., Postma, T.J., et al.,
2006. Disturbed functional connectivity in brain tumour patients: evaluation by
graph analysis of synchronization matrices. Clin. Neurophysiol. 117, 2039–
2049.

Bassett, D.S., Bullmore, E., 2006. Small-world brain networks. Neuroscientist 12,
512–523.

Bell, A.J., Sejnowski, T.J., 1995. An information-maximization approach to blind
separation and blind deconvolution. Neural. Comput. 7, 1129–1159.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in
the motor cortex of resting human brain using echo-planar MRI. Magn. Reson.
Med. 34, 537–541.

Boersma, M., Smit, D.J., de Bie, H.M., Van Baal, G.C., Boomsma, D.I., de Geus, E.J.,
et al., 2011. Network analysis of resting state EEG in the developing young
brain: structure comes with maturation. Hum. Brain Mapp. 32, 413–425.

Brunia, C.H., 1999. Neural aspects of anticipatory behavior. Acta Psychol. (Amst)
101, 213–242.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

Canuet, L., Ishii, R., Pascual-Marqui, R.D., Iwase, M., Kurimoto, R., Aoki, Y., et al.,
2011. Resting-state EEG source localization and functional connectivity in
schizophrenia-like psychosis of epilepsy. PLoS One 6, e27863.

de Haan, W., Pijnenburg, Y.A., Strijers, R.L., van der Made, Y., van der Flier, W.M.,
Scheltens, P., et al., 2009a. Functional neural network analysis in frontotemporal
dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci.
10, 101.

De Vico, F.F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Salinari, S., et al., 2007.
Cortical functional connectivity networks in normal and spinal cord injured
patients: evaluation by graph analysis. Hum. Brain Mapp. 28, 1334–1346.

Delbeuck, X., Van der Linden, M., Collette, F., 2003. Alzheimer’s disease as a
disconnection syndrome? Neuropsychol. Rev. 13, 79–92.

Engel Jr., J., Thompson, P.M., Stern, J.M., Staba, R.J., Bragin, A., Mody, I., 2013.
Connectomics and epilepsy. Curr. Opin. Neurol. 26, 186–194.

http://refhub.elsevier.com/S2467-981X(17)30027-6/h0005
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0005
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0005
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0010
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0010
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0010
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0015
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0015
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0015
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0015
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0020
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0020
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0025
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0025
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0030
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0030
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0030
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0035
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0035
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0035
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0040
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0040
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0045
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0045
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0050
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0050
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0050
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0055
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0055
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0055
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0055
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0060
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0060
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0060
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0065
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0065
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0070
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0070


F. Vecchio et al. / Clinical Neurophysiology Practice 2 (2017) 206–213 213
Friston, K.J., 1994. Functional and effective connectivity in neuroimaging: a
synthesis. Hum. Brain Mapp. 2, 56–78.

Gaal, Z.A., Boha, R., Stam, C.J., Molnar, M., 2010. Age-dependent features of EEG-
reactivity–spectral, complexity, and network characteristics. Neurosci. Lett.
479, 79–84.

Griffa, A., Baumann, P.S., Thiran, J.P., Hagmann, P., 2013. Structural connectomics in
brain diseases. Neuroimage 80, 515–526.

He, Y., Chen, Z.J., Evans, A.C., 2007. Small-world anatomical networks in the human
brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419.

Hojjati, S.H., Ebrahimzadeh, A., Khazaee, A., Babajani-Feremi, A., 2017. Predicting
conversion fromMCI to AD using resting-state fMRI, graph theoretical approach
and SVM. J. Neurosci. Methods 282, 69–80.

Ikeda, S., Mizuno-Matsumoto, Y., Canuet, L., Ishii, R., Aoki, Y., Hata, M., et al., 2015.
Emotion regulation of neuroticism: emotional information processing related to
psychosomatic state evaluated by electroencephalography and exact low-
resolution brain electromagnetic tomography. Neuropsychobiology 71, 34–41.

Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis. Brain Res. Brain Res. Rev. 29, 169–195.

Knyazev, G.G., Volf, N.V., Belousova, L.V., 2015. Age-related differences in
electroencephalogram connectivity and network topology. Neurobiol. Aging
36, 1849–1859.

Kubicki, S., Herrmann, W.M., Fichte, K., Freund, G., 1979. Reflections on the topics:
EEG frequency bands and regulation of vigilance. Pharmakopsychiatr.
Neuropsychopharmakol. 12, 237–245.

Micheloyannis, S., Vourkas, M., Tsirka, V., Karakonstantaki, E., Kanatsouli, K., Stam,
C.J., 2009. The influence of ageing on complex brain networks: a graph
theoretical analysis. Hum. Brain Mapp. 30, 200–208.

Miraglia, F., Vecchio, F., Bramanti, P., Rossini, P.M., 2015. Small-worldness
characteristics and its gender relation in specific hemispheric networks.
Neuroscience 310, 1–11.

Miraglia, F., Vecchio, F., Bramanti, P., Rossini, P.M., 2016. EEG characteristics in
‘‘eyes-open” versus ‘‘eyes-closed” conditions: small-world network architecture
in healthy aging and age-related brain degeneration. Clin. Neurophysiol. 127,
1261–1268.

Miraglia, F., Vecchio, F., Rossini, P.M., 2017. Searching for signs of aging and
dementia in EEG through network analysis. Behav. Brain Res. 317, 292–300.

Niedermeyer, E., da Silva, F.L., 2005. Electroencephalography: Basic Principles,
Clinical Applications, and Related Fields. Lippincott Williams & Wilkins.

Onnela, J.P., Saramaki, J., Kertesz, J., Kaski, K., 2005. Intensity and coherence of
motifs in weighted complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 71, 065103.

Pascual-Marqui, R.D. 2007. Instantaneous and lagged measurements of linear and
nonlinear dependence between groups of multivariate time series: frequency
decomposition. arXiv preprint arXiv:0711 1455.

Pascual-Marqui, R.D., 2002. Standardized low-resolution brain electromagnetic
tomography (sLORETA): technical details. Methods Find Exp. Clin. Pharmacol.
24 (Suppl D), 5–12.

Pascual-Marqui, R.D., 2007. Discrete, 3D distributed, linear imaging methods of
electric neuronal activity. Part 1: exact, zero error localization. arXiv preprint
arXiv:0710.3341.

Pascual-Marqui, R.D., 2009. Theory of the EEG Inverse Problem. Quantitative EEG
Analysis: Methods and Clinical Applications. Artech House, pp. 121–140.

Pascual-Marqui, R.D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu, B.,
et al., 2011. Assessing interactions in the brain with exact low-resolution
electromagnetic tomography. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3768–
3784.

Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., et al., 2001.
Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992.

Pfurtscheller, G., Lopes da Silva, F.H., 1999. Event-related EEG/MEG synchronization
and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857.

Ramyead, A., Kometer, M., Studerus, E., Koranyi, S., Ittig, S., Gschwandtner, U., et al.,
2015. Aberrant current source-density and lagged phase synchronization of
neural oscillations as markers for emerging psychosis. Schizophr. Bull. 41, 919–
929.
Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52, 1059–1069.

Smit, D.J., Boersma, M., van Beijsterveldt, C.E., Posthuma, D., Boomsma, D.I., Stam, C.
J., et al., 2010. Endophenotypes in a dynamically connected brain. Behav. Genet.
40, 167–177.

Sporns, O., Zwi, J.D., 2004. The small world of the cerebral cortex. Neuroinformatics
2, 145–162.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization, development
and function of complex brain networks. Trends Cogn. Sci. 8, 418–425.

Sporns, O., Tononi, G., Kotter, R., 2005. The human connectome: a structural
description of the human brain. PLoS Comput. Biol. 1, e42.

Sporns, O., 2013. Structure and function of complex brain networks. Dialogues Clin.
Neurosci. 15, 247–262.

Stafstrom, C.E., Carmant, L., 2015. Seizures and epilepsy: an overview for
neuroscientists. Cold Spring Harb. Perspect. Med. 5. https://doi.org/10.1101/
cshperspect.a022426.

Stam, C.J., Reijneveld, J.C., 2007. Graph theoretical analysis of complex networks in
the brain. Nonlinear Biomed. Phys. 1, 3.

Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M., Scheltens, P., 2007. Small-world
networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17,
92–99.

Steriade, M., Llinas, R.R., 1988. The functional states of the thalamus and the
associated neuronal interplay. Physiol. Rev. 68, 649–742.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain.
Thieme Medical, New York.

Tan, B., Kong, X., Yang, P., Jin, Z., Li, L., 2013. The difference of brain functional
connectivity between eyes-closed and eyes-open using graph theoretical
analysis. Comput. Math. Methods Med. 2013, 976365.

Telesford, Q.K., Simpson, S.L., Burdette, J.H., Hayasaka, S., Laurienti, P.J., 2011. The
brain as a complex system: using network science as a tool for understanding
the brain. Brain Connect. 1, 295–308.

Tijms, B.M., Wink, A.M., de Haan, W., van der Flier, W.M., Stam, C.J., Scheltens, P.,
et al., 2013. Alzheimer’s disease: connecting findings from graph theoretical
studies of brain networks. Neurobiol. Aging 34, 2023–2036.

Toth, B., File, B., Boha, R., Kardos, Z., Hidasi, Z., Gaal, Z.A., et al., 2014. EEG network
connectivity changes in mild cognitive impairment - preliminary results. Int. J.
Psychophysiol. 92, 1–7.

Vecchio, F., Miraglia, F., Bramanti, P., Rossini, P.M., 2014a. Human brain networks in
physiological aging: a graph theoretical analysis of cortical connectivity from
EEG data. J. Alzheimers Dis. 41, 1239–1249.

Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M.G., Bramanti, P., et al., 2014b.
Human brain networks in cognitive decline: a graph theoretical analysis of
cortical connectivity from EEG data. J. Alzheimers Dis. 41, 113–127.

Vecchio, F., Miraglia, F., Valeriani, L., Scarpellini, M.G., Bramanti, P., Mecarelli, O.,
et al., 2015a. Cortical brain connectivity and B-type natriuretic peptide in
patients with congestive heart failure. Clin. EEG Neurosci. 46, 224–229.

Vecchio, F., Miraglia, F., Curcio, G., Della, M.G., Vollono, C., Mazzucchi, E., et al.,
2015b. Cortical connectivity in fronto-temporal focal epilepsy from EEG
analysis: A study via graph theory. Clin. Neurophysiol. 126, 1108–1116.

Vecchio, F., Miraglia, F., Vollono, C., Fuggetta, F., Bramanti, P., Cioni, B., et al., 2016a.
Pre-seizure architecture of the local connections of the epileptic focus examined
via graph-theory. Clin. Neurophysiol. 127, 3252–3258.

Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., et al.,
2016b. Cortical connectivity and memory performance in cognitive decline: a
study via graph theory from EEG data. Neuroscience 316, 143–150.

Vecchio, F., Miraglia, F., Piludu, F., Granata, G., Romanello, R., Caulo, M., et al., 2016c.
‘‘Small World” architecture in brain connectivity and hippocampal volume in
Alzheimer’s disease: a study via graph theory from EEG data. Brain Imaging
Behav. https://doi.org/10.1007/s11682-016-9528-3.

Zou, Q., Long, X., Zuo, X., Yan, C., Zhu, C., Yang, Y., et al., 2009. Functional
connectivity between the thalamus and visual cortex under eyes closed and
eyes open conditions: a resting-state fMRI study. Hum. Brain Mapp. 30, 3066–
3078.

http://refhub.elsevier.com/S2467-981X(17)30027-6/h0075
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0075
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0080
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0080
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0080
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0085
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0085
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0090
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0090
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0095
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0095
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0095
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0100
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0100
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0100
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0100
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0105
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0105
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0110
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0110
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0110
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0115
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0115
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0115
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0120
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0120
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0120
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0125
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0125
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0125
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0130
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0135
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0135
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0140
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0140
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0145
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0145
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0145
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0155
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0155
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0155
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0165
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0165
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0170
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0170
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0170
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0170
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0175
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0175
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0180
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0180
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0185
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0185
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0185
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0185
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0190
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0190
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0195
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0195
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0195
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0200
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0200
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0205
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0205
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0210
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0210
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0215
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0215
https://doi.org/10.1101/cshperspect.a022426
https://doi.org/10.1101/cshperspect.a022426
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0225
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0225
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0230
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0230
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0230
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0235
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0235
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0240
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0240
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0245
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0245
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0245
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0250
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0250
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0250
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0255
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0255
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0255
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0260
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0260
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0260
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0265
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0265
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0265
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0270
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0270
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0270
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0275
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0275
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0275
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0280
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0280
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0280
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0285
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0285
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0285
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0290
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0290
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0290
https://doi.org/10.1007/s11682-016-9528-3
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0300
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0300
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0300
http://refhub.elsevier.com/S2467-981X(17)30027-6/h0300

	Connectome: Graph theory application in functional brain network architecture
	1 Introduction
	2 Graph theory approach
	2.1 Data recording and analysis
	2.2 Preprocessing of EEG data
	2.3 Functional connectivity analysis
	2.4 Parameters derived by graph theory

	3 Graph theory applications to EEG data
	3.1 EEG for the study of physiological aging
	3.2 EEG for the study of pathological aging
	3.3 Comparison between physiological and pathological brain aging
	3.4 EEG for the study of epilepsy

	4 Conclusions
	Conflict of interest
	References


