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Purpose: To compare the efficacy and efficiency of training neural networks for medical image classification
using comparison labels indicating relative disease severity versus diagnostic class labels from a retinopathy of
prematurity (ROP) image dataset.

Design: Evaluation of diagnostic test or technology.
Participants: Deep learning neural networks trained on expert-labeled wide-angle retinal images obtained

from patients undergoing diagnostic ROP examinations obtained as part of the Imaging and Informatics in ROP
(i-ROP) cohort study.

Methods: Neural networks were trained with either class or comparison labels indicating plus disease
severity in ROP retinal fundus images from 2 datasets. After training and validation, all networks underwent
evaluation using a separate test dataset in 1 of 2 binary classification tasks: normal versus abnormal or plus
versus nonplus.

Main Outcome Measures: Area under the receiver operating characteristic curve (AUC) values were
measured to assess network performance.

Results: Given the same number of labels, neural networks learned more efficiently by comparison,
generating significantly higher AUCs in both classification tasks across both datasets. Similarly, given the same
number of images, comparison learning developed networks with significantly higher AUCs across both classi-
fication tasks in 1 of 2 datasets. The difference in efficiency and accuracy between models trained on either label
type decreased as the size of the training set increased.

Conclusions: Comparison labels individually are more informative and more abundant per sample than
class labels. These findings indicate a potential means of overcoming the common obstacle of data variability
and scarcity when training neural networks for medical image classification tasks. Ophthalmology
Science 2022;2:100122 ª 2022 by the American Academy of Ophthalmology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
A deep learning model’s performance is associated strongly
with the volume and quality of data on which it has been
trained.1e5 In use cases involving medical image classifi-
cation, datasets traditionally comprise images with human-
assigned class labels indicating the represented diagnosis
or finding. However, large, well-composed datasets con-
taining high-quality images for these purposes are not
always feasible to obtain.1 Furthermore, the process of
acquiring such images and enlisting the help of expert
graders to assign labels is both labor intensive and prone
to high interlabeler variance. An alternative method for
training deep learning models has been described using
comparison labels obtained from human-drawn compari-
sons of 2 data inputs in the set.6,7 In the context of medical
diagnosis, this may involve experts grading the relative
severity of disease in multiple pairwise comparisons of
cases within a dataset and assigning labels to indicate the
ranking. This approach has the added advantage of
assessing disease severity along a continuum, rather than
ª 2022 by the American Academy of Ophthalmology
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in categories, which may reflect the natural distribution of
disease phenotypes more accurately.

Incorporation of comparison labels offers 2 theoretical
advantages in the training process. First, training with labels
representing all possible relative comparisons between each
input in the dataset increases the number of labels for use in
training quadratically, potentially improving the perfor-
mance of models trained on smaller datasets. Second,
grading of disease through comparison of severity has
demonstrated less intergrader variability than classification
alone, suggesting that the creation of a training set with less
noise than other labeling methods.8e10 Although potentially
more labor intensive to obtain, the method may lead to more
accurate and efficient neural network training with limited
amounts of data. In this project, we applied this concept to
explore the relative efficiency of neural networks trained to
predict disease severity using comparison labels versus the
traditional method of using diagnostic class labels on a
retinopathy of prematurity (ROP) image dataset.
1https://doi.org/10.1016/j.xops.2022.100122
ISSN 2666-9145/22
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Table 1. Distribution of Plus Disease Severity Classes within
Datasets

Dataset Normal Preplus Plus Total

i-ROP 54 31 15 100
ICROP 6 10 14 30
Test dataset 4577 812 172 5561

ICROP ¼ International Classification of Retinopathy of Prematurity;
i-ROP ¼ Imaging and Informatics in ROP.
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Methods

Neural Network

A neural network architecture inspired by Siamese networks was
constructed using Bradley-Terry and Thurstone models as loss
functions and designed to learn from class and comparison labels as
described previously.11,12 This network expands on the conventional
application of Siamese networks not only by predicting the similarity
between inputs of 2 identical base networks, but also by regressing
comparison labels simultaneously.13 When training with comparison
labels, the network learns by maximizing the likelihood of
comparison labels under the Bradley-Terry model.11,12 When
learning from class labels, the network uses the same architecture
as a base Siamese network, predicting the class label pertaining to
the single input image.

Formally, a base neural network exists representing the
coupling between class and comparison labels. The base neural
network receives an image and produces latent features that are
predictive of both class and comparison labels. The classification
network contains the base network, followed by a fully connected
neural network that predicts the class label from latent features
extracted by the base network. The comparison network receives a
pair of images and extracts the corresponding pair of latent features
using the same base network. The base network is followed by
another fully connected neural network that predicts the severity
score from the latent features of each image. Finally, the pair of
severity scores are used collectively to predict the comparison label
outcome between the pair of images.

Datasets

Three pre-existing datasets were used in the study comprising
wide-angle retinal images obtained from patients undergoing
diagnostic ROP examinations with digital fundus imaging using
the RetCam (Natus Medical, Inc). All images exhibited the pos-
terior retina and were obtained as part of the Imaging and Infor-
matics in ROP (i-ROP) cohort study. Two labeled datasets were
used to train the network using class and comparison labels. The
first dataset included 100 retinal images labeled by members of the
i-ROP consortium (the i-ROP dataset). The second dataset included
30 images labeled by the 34 members of the Third International
Classification of Retinopathy of Prematurity (ICROP) committee
(the ICROP dataset). A test dataset comprising 5561 separate
retinal images was used for evaluation of the classification and
comparison neural networks (Table 1). All images in the i-ROP
and test datasets were assigned a reference standard diagnosis
based on the consensus diagnosis among 3 masked image
graders and the ophthalmoscopic diagnosis, as described
previously.14 This study was approved by the institutional review
board at Oregon Health & Science University and all
participating institutions (Beaumont Health, Cedars Sinai
Medical Center, Children’s Hospital of Los Angeles, Columbia
University Medical Center, Weill Cornell Medical Center,
University of Miami Health System) in the i-ROP cohort study.
The research adhered to the tenets of the Declaration of Helsinki,
and written informed consent was obtained from all parents of
infants whose images were included in the datasets.

Labeling

The i-ROP and ICROP datasets were labeled in 2 ways: with a
class label for each image and with a comparison label for each pair
of images. For both datasets used in training and validation, clas-
sification and comparison were performed using an open-source,
web-based, image severity assessment platform as described
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previously.10 For class labels, each grader first was presented 1
image at a time and was asked to assign each image a label of
no plus, preplus, and plus (Fig 1). Next, for comparison labels,
graders were presented a pair of images from within the dataset
and prompted to click on the image that represents more severe
disease. In instances where images of similar severity were
presented, reviewers were expected to choose which was of
marginally greater severity based on their best clinical intuition
and experience. The Elo algorithm was used to convert pairwise
comparisons from this task into rankings.15 One “class label”
indicating severity of disease was assigned per image per grader.
For the i-ROP dataset, 13 expert graders were recruited to
provide class labels, and 5 experts completed the comparison
task (consisting of more than 4000 pairwise comparisons among
the 100 images). The 30 images in the ICROP dataset were
labeled both at the image level (class) and by pairwise
comparisons by the 34 members of the Third ICROP committee.

Experimental Design

Both the i-ROP and ICROP datasets were used separately for
training of neural networks in 2 primary experiments. Twenty
images with reference standard diagnosis labels from the i-ROP
dataset (that were not used in training or testing) were used to
optimize each trained model for the classification task in a vali-
dation step. The test dataset then was used to measure the per-
formance of the best class and comparison models from each
dataset. This training, validation, and testing scheme (Fig 2) was
performed with incrementally smaller training sets comprising
either class or comparison labels corresponding to a fixed
number of randomly selected images within the dataset
(experiment A) or a fixed number of randomly selected labels
(experiment B). Each experiment was performed 3 times, each
generating an area under the receiver operating characteristic
curve (AUC) per training set size in 1 of 2 binary classification
tasks: normal versus abnormal (preplus and plus) and plus versus
nonplus (normal and preplus). For each of the 3 repetitions at
each size of training set, a different group of randomly selected
images from within the corresponding image dataset was used.

From each dataset, 60% of the available images and their cor-
responding labels given by the number of experts, E, were selected
randomly for use in a training subset (Fig 3). This subset then was
refined to compose a balanced distribution of the 3 possible
severity classes. First, 1 expert whose gradings within the subset
were distributed across these classes most evenly compared with
other graders was identified. The number of labels for the
severity class assigned least frequently by this grader then was
determined and was used as the number of images to sample
randomly from each class type. The resulting sum, N, of these
selected images and their corresponding class and comparison
labels, M, collected from all experts constituted the final
balanced training set, comprising equal numbers of images of
each severity class. This allowed the use of the largest samples



Figure 1. Diagram showing the labeling process. Graders were asked to
perform 2 tasks.A, They were given a single image at a time and asked to label
the image as plus, preplus, or no plus.B, They were shown a pair of images and
asked to choose the image that represented more severe disease.
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possible, because the limiting batch size was the minority class of
the labeler with the largest number in the minority class.

In experiment A, neural networks were trained on either N � E
class labels corresponding to the images within the final balanced
training set, or all comparison labels corresponding to the same set
of images. In experiment B, neural networks were trained on either
M / E images with M class labels within the final balanced training
set, or M / E randomly selected image pairs with M comparison
labels associated with the same set of images. In later iterations of
both experiments, the number of images (N) or labels (M) used in
training was reduced incrementally.

In experiment A, neural networks were trained on either N (total
selected images) � E (number of graders who assigned class labels
to the images in N) class labels corresponding to the images within
the final balanced training set, or all comparison labels corre-
sponding to the same set of images. In experiment B, neural net-
works were trained on either M / E images with M class labels
within the final balanced training set, or M / E randomly selected
image pairs with M comparison labels associated with the same set
of images. In later iterations of both experiments, the number of
images (N) or labels (M) used in training was reduced
incrementally.

Neural Network Implementation

The training procedure follows closely from Yıldız et al6 and
Brown et al.16 Retinal images are prepared first with a
pretrained U-Net architecture to convert the colored images into
black-and-white masks for retinal vessels.17 The GoogleNet
Figure 2. Schematic diagram illustrating the training, validation, and
testing process involved in developing the neural networks applied to 1 of 2
binary classification tasks: normal versus abnormal and plus versus nonplus.
RSD ¼ reference standard diagnosis.
convolutional neural network architecture,18 without the fully
connected layers, is used as the base neural network to extract
latent features from each image. As required by the GoogleNet
architecture design, each image is resized to 224 � 224. To
leverage the well-known transfer learning properties of neural
networks trained on images, GoogleNet layers are initialized with
weights pretrained on the ImageNet dataset.19 Both fully
connected networks following the base network in classification
and comparison networks are designed as single fully
connected layers with sigmoid activations. Classification and
comparison networks are trained separately end to end via
stochastic gradient descent, in which the learning rate is varied
in the range 0.01 to 0.0001. To avoid overfitting when learning
from a small number of training images, weight decay is used
with regularization parameter varying in the range 0.02 to
0.0002. Both learning rate and regularization hyperparameters
are selected with respect to the prediction performance on the
validation set.

Having learned from comparison labels via the comparison
network, the severity score predicted for each image can be used
for both class and comparison predictions. Comparison label
prediction follows the same procedure as training, in which a pair
of severity scores extracted from a pair of images are used
collectively to predict the comparison label. To classify a single
image, the neural network that predicts the corresponding severity
score is applied once, and the resulting severity score is thresh-
olded to determine the class label. Because the severity score is
predicted by sigmoid activation, its range is in 0 to 1. Thus, we
threshold the severity score at 0.5 to perform each binary clas-
sification task.
Statistical Analysis

Descriptive statistics, Welch’s t test, and 2-way repeated-measures
analyses of variance (ANOVAs) were performed with Microsoft
Excel (Microsoft Corporation). Significance was set at a ¼ 0.05 for
all tests. All values are presented as mean � standard error of the
mean. Where applicable, statistically significant differences be-
tween values are indicated on figures with asterisks.
Results

Experiment A

A neural network was trained with either comparison or
class labels corresponding to 8, 16, and 24 images from the
i-ROP dataset (Fig 4A, B). In both the normal versus
abnormal and plus versus nonplus classification tasks, no
statistically significant difference was calculated between
models trained on either label type. Separately, a neural
network was trained with either comparison or class labels
corresponding to 3 and 6 images from the ICROP dataset
(Fig 4C, D). In the normal versus abnormal task, the
average AUC from training with comparison labels
associated with 3 images was significantly higher than
from training with class labels associated with the same
number of images (P ¼ 0.008, Welch’s t test). For both
classification tasks, training on comparison labels yielded
significantly higher AUCs than training on class labels
(2-way ANOVA: normal vs. abnormal, F ¼ 30.41; main
effect, P ¼ 0.0006; plus vs. nonplus, F ¼ 5.83; main effect,
P ¼ 0.04).
3



Figure 3. Flow diagram showing a simplified depiction of neural network training between class and comparison labels in experiments A and B. Sixty
percent of images from either the Imaging and Informatics in ROP (i-ROP) or International Classification of Retinopathy of Prematurity (ICROP) datasets
were selected randomly. This selection then was balanced so as to achieve a near-even distribution of images represented by each of the 3 severity classes. In
experiment A, the total number of class labels assigned to these images by expert graders then was used to train a neural network. Similarly, all comparison
labels associated with the same images in this balanced training set were used to train a neural network for performance comparison. In experiment B, a set of
class labels each corresponding to a single image in the balanced test set was used for training a neural network and was compared with a neural network
trained on an equivalent number of comparison labels. E ¼ total number of expert graders. ROP ¼ retinopathy of prematurity.
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Experiment B

A neural network was trained with 78, 156, 234, and 312
comparison or class labels from the i-ROP dataset (Fig 5A,
B). In both classification tasks, the average AUC from
training with 156 comparison labels was significantly
higher than that measured from training with class labels
(Welch’s t test: normal vs. abnormal, P ¼ 0.002; plus vs.
nonplus, P ¼ 0.02). Additionally, training on comparison
labels in both classification tasks yielded significantly
higher AUCs than training on class labels (2-way ANOVA:
normal vs. abnormal, F¼ 12.16; main effect, P¼ 0.003; plus
vs. nonplus, F¼ 8.77; main effect, P¼ 0.009). Separately, a
neural network was trained with 70, 140, and 204 comparison
or class labels from the ICROP dataset. In the normal versus
abnormal task, the average AUC from training with 204
comparison labels was significantly higher than that
measured from training with class labels (P¼ 0.002, Welch’s
t test; Fig 5C, D). Training on comparison labels yielded
significantly higher AUCs than training on class labels in
both classification tasks (2-way ANOVA: normal vs.
abnormal: F ¼ 13.93; main effect, P ¼ 0.003; plus vs.
nonplus, F ¼ 7.14; main effect, P ¼ 0.02).
Discussion

This study evaluated the relative performance of neural
networks trained on either class or comparison labels for
4

classification of disease severity in ROP fundus images.
Given the same number of represented images, as in
experiment A, learning from comparison labels generated
more accurate neural networks, achieving statistical signif-
icance in both classification tasks for training sets derived
from the ICROP dataset. This observation may be explained
in part by the fact that pairwise comparisons allow for
multiple comparison labels to be associated with a single
image, as opposed to a single diagnostic class label. With
more labels available for training per image, a neural
network therefore may have a deeper pool of samples from
which it may be trained and validated. The use of compar-
ison labels in this way offers a potential solution for training
image classification models with small datasets.

Because the number of labels available for training per
image was greater using comparisons in experiment A, we
additionally investigated whether network performance may
differ when training on equal numbers of label type. Given the
same number of labels, as in experiment B, neural networks
using comparison labels achieved higher AUC, exhibiting
statistically significant main effects in both classification tasks
with both datasets. This may be explained by prior observa-
tions that comparison labels elicit less intergrader variability, or
noise, compared with that of class labels.10,20,21

Although 2-way ANOVAs were useful in projecting a
main effect of treatment, or training label type, statistically
significant differences per Welch’s t test were not calculated
consistently between models trained on the same number of
images or labels. However, significant differences were



Figure 4. Line graphs showing experiment A neural network performance. A, B, Normal versus abnormal (A) and plus versus nonplus (B) classification tasks from models trained on class or comparison
labels corresponding to images within the Imaging and Informatics in ROP (i-ROP) dataset. No statistically significant difference was calculated between models trained on either label type. C, D,
Classification performances from models trained on class or comparison labels corresponding to images within the Classification of Retinopathy of Prematurity (ICROP) dataset. Training on comparison
labels yielded significantly higher area under the receiver operating characteristic curves (AUCs) than training on class labels (2-way analysis of variance: normal vs. abnormal: F ¼ 30.41; main effect, P ¼
0.0006; plus vs. nonplus: F ¼ 5.83; main effect, P ¼ 0.04). In the normal versus abnormal task (C), the average AUC from training with comparison labels associated with 3 images was significantly higher
than from training with class labels associated with the same number of images (P ¼ 0.008, Welch’s t test).
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Figure 5. Line graphs showing experiment B neural network performance. A, B, Normal versus abnormal (A) and plus versus nonplus (B) classification tasks from models trained on class or comparison
labels within the Imaging and Informatics in ROP (i-ROP) dataset. A, B, Average area under the receiver operating characteristic curve (AUC) from training with 156 comparison labels was significantly
higher than that measured from training with class labels (Welch’s t test: normal vs. abnormal, P ¼ 0.002; plus vs. nonplus, P ¼ 0.02). Training on comparison labels yielded significantly higher AUCs than
training on class labels (2-way analysis of variance [ANOVA]: normal vs. abnormal: F ¼ 12.16; main effect, P ¼ 0.003; plus vs. nonplus: F ¼ 8.77; main effect, P ¼ 0.009). C, D, Classification performances
from models trained on class or comparison labels corresponding to images within the International Classification of Retinopathy of Prematurity (ICROP) dataset. Training on comparison labels yielded
significantly higher AUCs than training on class labels in both classification tasks (normal vs. abnormal: 2-way ANOVA: F ¼ 13.93; main effect, P ¼ 0.003; plus vs. nonplus: F ¼ 7.14; main effect, P ¼
0.02). In the normal versus abnormal task (C), the average AUC from training with 204 comparison labels was significantly higher than that measured from training with class labels (P ¼ 0.002, Welch’s t
test).
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observed most frequently between models trained with fewer
samples. This not only supports the presumed greater effi-
ciency of training with comparison labels, but also a dimin-
ishing difference in performance between networks trained
on either label type as the size of the training set increases. At
the greatest sizes of training set used, learning by both label
types achieved AUC values comparable with those achieved
by other deep learning models applied for medical imaging
classification.22,23 However, networks trained on comparison
labels approached these performance levels earlier, as the size
of training set became incrementally greater. The usefulness
of this approach when high-quality models are required in
the setting of limited data therefore may be circumstantial,
because the performance of networks trained on either label
type may achieve similar levels of performance when trained
in data-replete settings.

Although the use of comparison labels offers an alter-
native solution to training with noisy, small datasets, they
are more labor intensive, or expensive, to obtain. Whereas a
single diagnostic class label may be assigned per image per
grader, comparison labels require graders to label all pair-
wise comparisons of the images in the set independently. To
facilitate this process, we used an internally developed im-
age severity assessment platform that presented graders with
2 images to compare and incorporated responses into an Elo
algorithm to generate rankings.

Ordinal classifications long have been used in medicine to
indicate severity in continuous disease processes. In the
context of ROP, International Classification of ROP (ICROP)
criteria are used conventionally to derive subclassifications of
zone (IeIII), stage (0e5), and plus disease status (present or
not) from subjective and qualitative assessment of disease
features that direct treatment and guide clinical trials.24

However, recognition of ROP classifications as checkpoints
on a disease continuum is increasing, most recently
exemplified in 2021 by the update on ICROP, third edition,
which formally recognizes preplus and plus disease as part
of a continuous spectrum of disease.25 As the frameworks
for ROP disease classification increasingly reflect its
underlying mechanisms, so must the appropriate models be
applied to the classification tasks at hand. The use of
comparison labels in training may be a more fitting way to
train image classifiers tasked with assigning ordinal terms
that individually represent a range of severity on the ROP
spectrum. As neural networks are implemented for
classification in other continuous disease models, this
approach to training should be considered.

Limitations

The findings and interpretation of this study are limited by the
time and computing power required both to acquire more
expert labels per image and to perform multiple repetitions of
experiments. Access to datasets of labels that are both more
numerous per image and distributed more evenly between
severity class per grader would permit a wider range of
training set sizes after the balancing process and would
characterize AUC curve profiles more accurately. Our anal-
ysis of the ICROP dataset in experiment A was limited in this
way, with a maximum training set size of 6 images and only 2
average AUCs because of the minimal difference between
possible iterations of training set size. Furthermore, the ability
to perform more experiment repetitions presumably would
reduce variability between multiple trials of testing at a given
set size and would draw subjectively observable differences
between groups toward statistical significance. This also may
enable more informed choices of methods for statistical
analysis. Performing only 3 repetitions of each experiment
per size of training set precluded the assessment of normality
in our data. Although more fitting methods for comparison of
a continuous, skewed variable interest between 2 independent
samples were considered, such tests as theManneWhitneyU
test generally require larger sample sizes.26 TheWelch’s t test
for comparison of 2 independent samples of unequal variance
thus was chosen, conceding the assumption of a normal
distribution. We additionally used 2-way repeated-measures
ANOVAs to estimate a main effect of treatment (i.e.,
training label type) on the dependent variable AUC across the
independent variable of training set size. To justify this
approach, we again had to permit the assumption of
normality, as well as repeated measures design. In this case,
we interpreted repeated measures to involve the multiple
measurements of the dependent variable AUC taken on the
same subjects (i.e., neural network architectures) under
different conditions (i.e., training set size).27

In conclusion, the potential of neural networks to
generate predictions in the context of medical image
classification often is limited by datasets of modest size
and quality. We propose an alternative approach to
training models with labels generated from pairwise
comparisons of disease severity between images within the
dataset. Our data indicate that grading images by com-
parison generates labels that are more abundant and
informative per image than diagnostic class labels. This
method may offer a solution for improving the efficiency
of training models and training highly accurate models in
data-scarce settings.
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