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Abstract

High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized
according to peak frequency as either ripples (100—-250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast
ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which
HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of
hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and
fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new
predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose charac-
teristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both
normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to
distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes
network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and
sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal
conditions do not require any specific network structure to produce coherent HFOs, as even completely
asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results
provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a
unifying description for the entire spectrum from normal ripples to pathological fast ripples.
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Approximately 0.25% of people throughout the world suffer from uncontrolled epilepsy, largely due to our
incomplete understanding of how seizures are generated. This motivates the search for new epilepsy
biomarkers, one of the most promising of which are high-frequency oscillations (HFOs): focal, brief field
potential signals of 80 Hz or more. Not all HFOs are pathological, however, and despite 20 years of research,
it is still unclear how to distinguish normal from pathological HFOs. We use a computational model to
investigate the network properties capable of generating two types of HFOs, ripples and fast ripples. Our
model indicates that a range of physiological conditions are capable of producing the full spectrum of HFOs,
Kfrom normal ripples to “epileptic” fast ripples. /
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Introduction

High-frequency oscillations (HFOs) have attracted
much attention over the past several years as a potential
biomarker of epileptic tissue. HFOs are brief oscillations
of the local field potential (usually <100 ms) over 80 Hz
that stand out from background. They were originally
discovered in the CA1 region of normal hippocampus
(Buzsaki, 1986; Buzsaki et al., 1992) and called “ripples”
(<250 Hz). Bragin et al. (1999) subsequently found that
HFOs were increased in epileptic hippocampus in hu-
mans. They also identified a new class of faster oscilla-
tions (>250 Hz), termed “fast ripples.” Since that time,
much effort has focused on characterizing the role of
HFOs in epilepsy (Jacobs et al., 2012).

Although these studies suggest the potential of HFOs
as a novel epilepsy biomarker, subsequent human studies
have demonstrated the difficulty in determining whether a
given HFO stems from normal or epileptic processes
(Engel et al., 2009; Kerber et al., 2014). Most clinical
studies have recorded HFOs using macroelectrodes
(Jirsch et al., 2006; Urrestarazu et al., 2007), and some
studies using microelectrodes have found that some
HFOs are detected more accurately using higher resolu-
tion (Bragin et al., 2002b; Le Van Quyen et al., 2008;
Worrell et al., 2008). Both ripples and fast ripples are
increased in epileptic tissue (Jirsch et al., 2006; Urre-
starazu et al., 2007), though the ratio between them is
altered in epilepsy (Staba et al., 2007). Fast ripples are
seen in normal neocortex (Jones et al., 2000; Coppola
et al.,, 2005) and have recently been recorded in hip-
pocampal tissue that does not participate in seizures
(Kucewicz et al., 2014), thus illustrating the need to better
understand the mechanisms underpinning different vari-
eties of HFOs (Jefferys et al., 2012).

Initial studies indicated that normal and epileptic HFOs
are produced by different mechanisms. Ripples are
formed in normal tissue by IPSPs when interneurons fire
in-phase with the oscillation and pyramidal cells fire very
sparsely (Ylinen et al., 1995; Csicsvari et al., 1999). Sub-
sequent computational studies have further bolstered this
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finding (Taxidis et al., 2012; Brunel and Wang, 2003). In
contrast, large numbers of pyramidal cells become active
during pathological HFOs (Bragin et al., 2011). It is cur-
rently unclear exactly how networks produce fast ripples.
Proposed mechanisms include networks of axo-axonal
gap junctions (Traub et al., 2005; Roopun et al., 2010),
recurrent synapses between pyramidal cells (Dzhala and
Staley, 2004), asynchronous input from CAS3 to CA1 re-
gions in the hippocampus (Demont-Guignard et al., 2012),
and reduced spike-time precision resulting in the emer-
gence of two out-of-phase clusters (Foffani et al., 2007;
Ibarz et al., 2010). Although each of these hypotheses has
merit, they have been difficult to reconcile and test exper-
imentally due to limitations in available recording technol-
ogy. In addition, each of the above theories is subject to
important constraints upon the network—in each case,
the fast ripples arise only under specific conditions.

In this paper, we develop a computational model of
hippocampus with the goal of determining which net-
work phenomena are necessary and/or sufficient to
produce normal ripples, pathological ripples, and fast
ripples, as well as to explore mechanistic links between
these rhythms. We use a physiologically realistic model
of hippocampus (the “biophysical model”) in which we
vary two generic network properties: the number of
inhibitory connections and the intensity of excitatory
input to all cells. This model allowed exploration of
generic network effects on HFOs. However, given the
remarkable capacity for distinct mechanisms to gener-
ate similar HFOs, we also explored how HFOs may arise
generally, independent of any specific network struc-
ture. In essence, an HFO is produced by the summation
of IPSPs or action potentials (APs) recorded at the
electrode. Therefore, we also develop a constructed
local field potential (“constructed LFP”) model that ex-
plicitly controls when IPSP and AP waveforms occur,
without any specific network structure. This con-
structed LFP model enables exploration of generic net-
work properties necessary to generate HFOs, such as
synchronous versus asynchronous firing.

We show that HFOs are an emergent phenomenon
produced over a broad range of connectivity structures
and levels of synaptic input. Although similar results
have been demonstrated in models of normal HFOs,
our model produces the full spectrum from gamma
frequencies to fast ripples, and uncovers several novel
characteristics of epileptic HFOs. First, the model pre-
dicts that HFOs in the ripple range can be produced by
either epileptic (i.e., APs; Bragin et al., 2011) or normal
(i.e., IPSPs; Ylinen et al., 1995) mechanisms, and that
peak frequency is unable to distinguish between the
two. Second, we show that fast ripples are generic
phenomena that are generated by APs and arise when
synaptic input overcomes network inhibition enough to
allow out of phase firing. Third, ripples produced by
APs are prone to transient shifts into fast ripples, which
may explain why fast ripples are often inconsistent in
experimental recordings. Finally, we show that HFOs
are a generic property of active neural populations and
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Figure 1 Schematic of the computational model of hippocampus. A, The model consisted of 3080 pyramidal cells and 20 basket cells.
Eighty of the pyramidal cells received noisy synaptic input that excited the cells and could produce action potentials. Each basket cell
was coupled with gap junctions to the nearest neighboring basket cells, and each sent GABAergic connections to all pyramidal cells.
Basket cells received feedback AMPAergic connections from activated pyramidal cells, and they also received noisy synaptic input.
All noisy input was independent from cell to cell throughout the network. B, All cells were distributed uniformly along two
perpendicular axes in a plane 50 um from the simulated recording electrode. The furthest cells were located 215 um from the
recording electrode. The voltage recorded by the electrode was generated by summing the voltage produced by the transmembrane

current from every compartment of every neuron and interneuron.

can be generated without any specific network struc-
ture, even with completely asynchronous activity.

Models

Biophysical Model

Our biophysical model of hippocampus was simulated
using NEURON 7.3 (Hines and Carnevale, 1997) and is
based upon two previously published models of hip-
pocampal oscillations. The first described the interplay
between gamma and theta oscillations in normal hip-
pocampus due to feedback inhibition from basket and
oriens lacunosum moleculare (OLM) cells (Tort et al.,
2007). The second adapted the same network structure to
demonstrate how ripples (<250 Hz) arise when epileptic
pathologies are present in the network, based upon the
relationship between inhibitory interneurons, network
connectivity, and synaptic drive to the pyramidal cells
(Stacey et al., 2009). This latter study did not include the
OLM cells, because they only affected the much slower
theta (<10 Hz) frequencies in the first model.

Both of those models used blocks of 80 pyramidal cells
with 20 basket cells, and the output generated from the
membrane voltages of each cell. In the current model, all
cellular and synaptic parameters are identical to the pre-
vious work (Tort et al., 2007; Stacey et al., 2009). Each
pyramidal cell has five compartments (basal dendrite,
soma, and a three-compartment apical dendrite) and the
basket cells have a three-compartment soma. We made
two alterations to the model. All cells are given three-
dimensional coordinates as a two-layer planar disk placed
50 um from a recording electrode (see below), and the
number of pyramidal cells is increased to 3080.

In this simulation, 80 of the pyramidal cells are actively
being driven by excitatory afferent synapses, representing
a small cluster of “activated” cells within a larger network;
the remaining 3000 cells receive no excitatory input. As
shown in Figure 1, all pyramidal cells receive GABAergic
synapses from all 20 basket cells. Each of the activated
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pyramidal cells has efferent AMPAergic synapses with on
average two or three basket cells. The other 3000 cells
never fire APs because their only input is inhibitory, so
efferent synapses are unnecessary; their role in the sim-
ulation is to demonstrate the effect of the divergent IPSPs
from the basket cells. Basket cells send efferent GABAe-
rgic synapses to all 3080 pyramidal cells (7,ee = 1.5 ms,
Tgecay = 8:0 MS, oy = 5.5 1S, E,,, = —80 mV), receive
AMPAergic synapses from 10 activated pyramidal cells
(Tise = 0.2 MS, Tyeeay = 1.0 MS, G = 0.5 MS/cm?, E,
= 0 mV; Tort et al., 2007; Stacey et al., 2009), and are
coupled to each other with somatic gap junctions, as seen
experimentally wherein they form a synchronous syncy-
tium (Amitai et al., 2002). Thus, the basic connectivity of
this model consists only of the inhibitory feedback be-
tween pyramidal and basket cells. This reduced structure
assures the model is restricted to phenomena present
within this generic connectivity.

The only driving input to the model simulates the primary
excitation present in vivo: afferent synaptic activity. From
the point of view of each cell, synaptic inputs arriving from
different brain regions can be modeled as random events,
or “synaptic noise.” Synaptic noise was previously shown
to be capable of producing HFOs (Stacey et al., 2009),
and was recently shown to provoke seizures in vitro (Jirsa
et al., 2014). Thus, the afferent activity on both basket and
pyramidal cells was modulated by varying the intensity of
AMPA “noise” synapses. Only 80 of the pyramidal cells
were activated by this noise. For each noise synapse, the
time between subsequent synaptic events followed an
exponential distribution, so that the arrival of synaptic
noise events was a Poisson process, independent from
cell to cell. The mean of this distribution determined the
overall noise intensity, with smaller mean interevent inter-
val implying greater intensity. For low intensities it has
already been shown that the model generates gamma
oscillations (Tort et al., 2007), typical of the PING phe-
nomenon (Traub et al., 1997). In this work, we describe
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how the peak frequency of the network LFP output in-
creases accordingly as synaptic drive increases, so that
the model produces the full spectrum of fast oscillations:
gamma, fast gamma, ripples, and fast ripples.

This model enabled the simulation of sharp wave rip-
ples by increasing the intensity of synaptic noise received
by either pyramidal cells or basket cells, in a manner
similar to the mean-field model of Demont-Guignard et al.
(2012). Simulated sharp waves lasted for 35 ms in our
model, with onset and offset following a Gaussian distri-
bution (0 = 7 ms) across the neuronal population (to
reproduce the physiological appearance of sharp waves
and avoid nonphysiological, hypersynchronous onset).

The LFP recorded from neural activity was simulated by
determining the voltage seen by an ideal microelectrode
due to the transmembrane current from every compart-
ment of every cell. This was done by recording the trans-
membrane current in all N compartments (Malmivuo and
Plonsey, 1995) and calculating the following:

& 1)
=1

where V(7,, t) is the net electric potential at the recording
electrode at time t, p is the extracellular resistivity, /; is the
transmembrane current in compartment j, and | 7, — ?jl is
the distance between compartment j and the recording
electrode (these distances ranged from 50 to 215 um).
The quantity p was set to 351 () - cm (Latikka et al., 2001),
and all neurons were located in a plane whose closest
point was 50 um from the simulated recording electrode
(see Fig. 1B for a schematic of the spatial arrangement of
the network and recording electrode). NEURON code for
the model is available in ModelDB (Hines et al., 2004),
accession number 182134.

V(P 1) = £

4 ()

/

o
=

Constructed LFP Model

One major goal of this work is to determine the generic
mechanisms that produce epileptic and normal HFOs. We
sought to answer, independent of any network structure,
what type of activity is necessary and sufficient to pro-
duce each type of HFO. As it is impossible to simulate all
potential network configurations, we developed a more
basic method of producing neural signals. We explicitly
defined the onset times for a large number of either IPSP
or AP waveforms (results shown in ). This model did not
include any neuronal structure; it was simply a mathemat-
ical reconstruction of a number of IPSP or AP waveforms,
using the same waveforms generated by the biophysical
model. The goal of this model was to show, under com-
pletely controlled conditions, how the LFP would appear if
it were generated purely by either type of waveform. The
model allowed an explicit demonstration of the differ-
ences between these two cases, and also enabled explo-
ration of the relationship between variability in cell firing
and network output. To generate this output, we recorded
from 200 um away the LFP voltage produced by an AP in
a single pyramidal cell in our biophysical model, as well as
that produced by a basket cell IPSP onto a pyramidal cell.
These two waveforms, which we denote hp(t) and hpgp(l),
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were used as templates for the output of each AP or IPSP.
We then simulated a population of cells producing these
waveforms at specific times using the process described
below. The AP waveform had an amplitude of 0.383 uV
and a full-width at half-max duration of 0.65 ms, whereas
the PSP waveform had corresponding values of 0.0237
nV and 15.3 ms. These parameters are consistent with
those reported in previous studies (Gold et al., 2006;
Bazelot et al., 2010).

Two different statistical procedures (described shortly) were
used to generate a sequence of event times (modeled as Dirac
delta functions) for each of N neurons, with each event repre-
senting the trigger time of either an AP or IPSP:

nj

sty = D5t - t), @)

=1

where s(({) is the event sequence of the ith neuron, n; is the
total number of events of the ith neuron, and i is the time
of the jth event for the ith neuron. Assuming a linear and
time-invariant impulse response, the contribution to the
net LFP by the ith neuron, V((t), is simply the convolution
of s; with either an AP or PSP waveform, hap/psp(f):

vit) = f ' S{MNappsplt — T)AT. @)

The net recorded LFP, V,(f), is then the sum of the
contributions from all neurons:

Vi) = 2 Vi, @

Note that this simple model does not consider the effect
of neuron location or complex electrode filtering on the
recorded LFP waveform.

Synchronous constructed LFP model

We used the constructed model to determine the output
of a network that is driven by a defined periodic input. This
simulates a situation in which there is some physiological
process driving all cells nearly synchronously at a certain
frequency. This is similar to the pyramidal-interneuron
gamma feedback loop in our biophysical model and oth-
ers (Traub et al., 1997), but there are many physiological
situations similar to this (e.g. theta rhythm, thalamocorti-
cal loops, etc). In effect, a large number of cells receive a
similar input that influences their firing, similar to having a
“master clock” in the system with some random variation
in each cell’s firing. We use these conditions to compare
the ability of synchronous APs versus synchronous PSPs
to generate HFOs. The input was set to a specific fre-
quency, and each cell responded to that input with some
“jitter” to represent intercellular variability. The jitter was
Gaussian distributed (N) for each cell, as defined by the
SD ojiner. The time of the jth event of neuron i was there-
fore given by the following:

tjl = /T + N(O, 0-j2itter)1 (5)
where T determines the period of network oscillation.
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Population events remain periodic indefinitely, and the
parameter ojye, determines the degree of event syn-
chrony, with smaller values of oy, implying greater syn-
chrony (see Fig. 9A for a depiction of the effect of this
parameter).

Asynchronous constructed LFP model

However, under physiological conditions there is not
always a “master clock” driving the network at a given
frequency. One might expect that, in the absence of any
communication between cells, the population output
would be purely random. However, several results from
our biophysical model suggested that even uncoupled
networks sometimes produce coherent oscillations
when the pyramidal cells are firing at similar frequen-
cies. To explore this unexpected result, we created
another implementation of this LFP model to generate
asynchronous network events. The goal of this model
was to explore the emergence of HFOs from asynchro-
nously spiking cells.

The underlying statistical procedure for generating
event sequences assumed that: (1) the entire population
of neurons had a mean event rate, but that there was
variability in each cell’s specific rate (as well as in each
cell’s initial phase), and b) each cell also exhibited vari-
ability, or “jitter”, from event to event. These sources of
variability, as well as the independence of all event se-
quences, were important to investigate the possibility that
asynchronous neuronal spiking might generate ripples
and fast ripples. Formally, interevent jitter was modeled
by assuming that given the jth event of neuron i occurs at
time t, the next event t*" will occur at some later time
Gaussian-distributed about neuron /’s intrinsic interevent
interval, w;:

p*" = t|lasteventtime = t) = N(t + p,;, o). (6)

To account for population heterogeneity in intrinsic
frequency, each w; was drawn from N(p,ep 02). The
parameter o, therefore quantifies how similar the intrin-
sic firing rates are among different cells, whereas o,
quantifies how consistent an individual cell’s firing rate
is. Note that without the presence of any form of cou-
pling between the different “neurons” (i.e. event se-
quences) in the population, all neurons undergo events
independently, resulting in completely asynchronous
network dynamics. (Neuronal events were initialized
with uniformly random values, so that the network be-
gan in an asynchronous state.) We studied the gener-
ation of ripples and fast ripples in this model while fixing
the population mean u,, to be 5 ms (corresponding to
a mean population frequency of 200 Hz). Simulations
using AP waveforms featured 100 different cells,
whereas those using IPSP waveforms featured 1500
different cells (reflecting the much larger number of
synapses—in comparison with spiking compart-
ments—that contribute to the LFP).

Data Processing
All spectrograms were obtained using a sliding Gaussian
window with a SD of 10 ms and a frequency resolution of
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4 Hz. Fast ripples were defined to occur when the peak
normalized power in the fast ripple band (>250 Hz) ex-
ceeded the peak normalized power in the ripple band
(100-250 Hz).

The normalized power values depicted in Figures 9 and
10 were computed by first applying Thomson’s (1982)
multitaper power spectral density estimate to a given
waveform, and then determining the total power con-
tained within 5 Hz of the nominal frequency f. Each square
represents an average over 100 different realizations of
the “synchronous constructed LFP model” described
above.

Results

HFOs Generated by Input to either Basket Cells or
Pyramidal Cells

We first used the biophysical model to determine the
parameters necessary to produce the full range of HFOs.
We found that HFOs could be elicited through two distinct
mechanisms: coherent firing of the 20 basket cells (which
sent GABAergic connections to all 3080 pyramidal cells)
or the 80 activated pyramidal cells (Fig. 1). In both cases,
coherent LFP oscillations were generated by uncorre-
lated, noisy synaptic input to basket and/or pyramidal
cells. Figure 2 shows the results of elevated input to the
basket cell population. As depicted in Figure 2A, power
spectral density (PSD) plots from the LFP were generally
unimodal, and peak network frequency increased mono-
tonically with increasing intensity of noisy synaptic input,
spanning a range from gamma oscillations to fast ripples.
A fast ripple was defined as a waveform in which the peak
power >250 Hz exceeded peak power in the 100-250 Hz
band. Peak network frequency (Fig. 2A) closely matched
mean basket cell firing rate (Fig. 2B), indicating that the
LFP resulted from IPSPs induced in pyramidal cells due to
basket cell firing. Basket cell AP waveforms were present
but contributed very little to the LFP, due to basket cells’
small size. Although the peak frequency did reach the fast
ripple range, it is crucial to point out that the amplitude of
network oscillations decreased substantially as peak net-
work frequency increased (Fig. 2C). The total power was
much higher in gamma (<100 Hz) frequencies, and
reached very small levels >200 Hz (Fig. 2C). Such small-
amplitude oscillations would be unlikely to resolve above
background noise levels in a live recording.

Network activity was distinctly different when noisy
input was delivered to pyramidal cells rather than basket
cells (Fig. 3A). The spectral content was bimodal due to
the different firing rates of these two classes of cells. The
lower frequency peak was due to pyramidal cell firing (Fig.
3A,B, compare the lower lines), which dominated the LFP
at low noise intensity (Fig. 3C), and the higher-frequency
peak was due to basket cell firing (Fig. 3A,B, compare the
upper lines), which dominated the output for high noise
intensities. Thus, when the pyramidal cells were driven by
varying levels of synaptic activity, they produced a range
of strong oscillations from 60-250 Hz. It is important to
note that no level of noise intensity was capable of elicit-
ing a network rhythm faster than about 250 Hz. The
pyramidal cells reached firing rates of over 100 Hz, a level
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Peak Frequency Insufficient to Disambiguate Ripple
Mechanisms

HFOs have traditionally been categorized based upon
peak frequency into fast gamma, ripples, and fast ripples.
However, as shown in Figures 2 and 3, our biophysical
model was capable of generating ripples through both
normal and epileptic conditions, similar to recent experi-
mental work (Aivar et al., 2014). This leads to the question
of whether ripples produced by these disparate mecha-
nisms can be distinguished. To demonstrate the similari-
ties, we depict example waveforms, spectrograms, and
raster plots for simulated sharp-wave ripples elicited by
these two different mechanisms (Fig. 4). In Figure 4A-D,
we show examples of approximately 200 Hz rhythms
elicited by elevated basket cell activation (noise intensity
= 0.25 X 107*nA2?). These LFP rhythms reflect synchro-
nous IPSPs induced in pyramidal cells, consistent with
previous experimental studies (Buzsaki et al., 1992; Ylinen
et al., 1995; Schlingloff et al., 2014). The sparse firing of
pyramidal cells in these examples contrasts sharply with
the alternative scenario (Fig. 4F-/) in which pyramidal
cells, rather than basket cells, were directly activated
(noise intensity = 0.77 nA?).

Figure 4F-I shows that the peak frequency was again
around 200 Hz, but network activity was dramatically
different: the elevated activity of pyramidal cells induced
increased basket cell firing, so that pyramidal cell spiking
and basket cell-induced IPSPs contributed fairly equally
to the LFP oscillations. Although peak frequency is similar
in both situations, the spectrograms show that there are
other differences between the two cases: there was more
high-frequency activity with AP-generated ripples (see
increased 300-400 Hz power in spectrograms Fig. 4F-/),
whereas the IPSP signals (A-D) were smoother, without
high-frequency content. These examples illustrate the im-
portance of evaluating more than simply the peak fre-
quency when attempting to discern the underlying cause
or pathogenicity of HFOs.

Effects of Compromised Inhibition

Because the model network was unable to generate fast
ripples for any level of input when network inhibition was
intact (Fig. 3), we investigated the effects of compromis-
ing network inhibition on fast ripple generation. Starting
from the model shown in Figure 3 with a noise intensity of
0.77 nAZ, we randomly disabled a specified percentage of
basket-to-pyramidal cell GABAergic connections, then
generated 50 consecutive sharp waves by transiently in-
creasing the random synaptic input to pyramidal cells.
This enabled determination of the proportion of sharp
waves that included fast ripple events. (The peak fre-
quency in the fast ripple band had to have higher spectral
power than the peak frequency in the ripple band for at
least 25% of the duration of the sharp wave in order to
count as a fast ripple event.) From the results shown in
Figure 5, disruption of inhibitory connections had a pro-
found impact on the emergence of fast ripples: as more
basket cell connections were lost, the same input that had
previously generated only sharp wave-ripple events be-
gan to produce fast ripples as well. This result is similar to
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previous findings that decreased GABAergic transmission
facilitates the emergence of fast ripples (Bragin et al.,
2002a; Demont-Guignard et al., 2012).

Loss of network inhibition has two important conse-
quences in our model. First, fewer inhibitory connections
imply a relatively greater contribution to the LFP from
pyramidal cell APs compared with IPSPs. Second, as
more feedback inhibition is lost the network progressively
loses its ability to synchronize, until at extreme levels, it is
completely uncoupled and all pyramidal cells are inde-
pendent and asynchronous. Yet, as shown in Figure 5D
(90% of inhibitory connections removed), coherent HFOs
arise even with most inhibition is removed, allowing most
cells to fire asynchronously. Similar results were found
with 100% of feedback inhibition removed (Fig. 6A).
These observations raise two questions: (1) how does
asynchronous neuronal spiking generate ripples and fast
ripples, and (2) to what degree are AP-dominated versus
PSP-dominated LFPs capable of producing fast ripples?

Generation of Ripples and Fast Ripples from
Asynchronous Network Activity

To address the first question, we analyzed the same
network from Figure 3 (activation of pyramidal cells), but
removed all inhibitory basket cell connections. There was
no coupling of any sort between any pyramidal cells in the
network, which allowed them to fire completely indepen-
dently. Figure 6A shows that this completely asynchro-
nous network generated coherent network oscillations
characterized by a pronounced fundamental frequency
and a lower-power first harmonic. This is somewhat sim-
ilar to the bimodal PSDs observed when pyramidal cells
received input when feedback inhibition was intact (Fig.
3A), except that the frequencies are higher, and impor-
tantly, there were no individual cells that fired at the
frequency of the second harmonic (Fig. 6B). Note that the
second harmonic constitutes a fast ripple frequency and
that unlike the situation in which basket cells were directly
activated (Fig. 2C); in this case, the oscillation amplitude
does not appreciably diminish with increasing noise in-
tensity. Instead, total power remained roughly constant as
noise intensity increased (Fig. 6D), until the entire network
went into depolarization block and all oscillations ceased
(Fig. 6B).

Figure 6A shows that the ripple (<250 Hz) frequencies
dominated despite the presence of the fast ripple har-
monics. However, our observations of the raw data re-
vealed that there were many instances in which fast
ripples dominated, just as in Figure 5C,D. To investigate
how such fast ripple activity emerges in this asynchro-
nous network, we ran a long simulation (20,000 ms; Fig. 7)
using the same uncoupled pyramidal cell network as used
in Figure 6, with the noise intensity set to the highest level
that sustained network oscillations without going into de-
polarization block (0.77 nA?). As shown in Figure 7A, we
observed that strong ripple oscillations at ~200 Hz (which
matched the mean firing rate of individual neurons) dom-
inated the LFP the majority of the time, but that fast ripple
episodes emerged spontaneously, typically lasting 20-50
ms. Spike-time histograms relative to ripple phase indi-
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Figure 4 Ripple generation by noisy stimulation of either basket cells or pyramidal cells. A-D, Examples of sharp-wave ripples induced

by activation of the basket cell population (ID numbers 81-100 in

the raster plot) with a noise intensity of 2.5 X 10~ nA2, Note the

sparsity of spiking of pyramidal cells (ID numbers 1-80 in the raster plot). LFP ripple oscillations were produced primarily by IPSPs
in all 3080 pyramidal cells. (3000 of the pyramidal cells never fired and are not included in the raster plots.) E, Example intracellular

voltage traces of an activated pyramidal cell (left) and an unactivat
population. Inset, IPSP-induced membrane oscillations in the u
induced by noisy synaptic stimulation of the activated pyramidal

ed pyramidal cell (right) resulting from activation of the basket cell
nactivated pyramidal cell. F-I, Examples of sharp-wave ripples
cell population (with a noise intensity of 0.77 nA?). The increased

pyramidal cell spiking induced increased activity of basket cells, whose inhibitory influence restricted the dominant frequency

component to =200 Hz. J, Example intracellular voltage traces of

an activated pyramidal cell (left) and an unactivated pyramidal cell

(right) resulting from noisy synaptic stimulation of the activated pyramidal cell population. Inset, IPSP-induced membrane oscillations

in the unactivated pyramidal cell.

May/June 2015, 2(3) e0024-15.2015

eNeuro.sfn.org



eMeuro

>

o o
() w
. :

Fast ripple occurrence ratio
o

60 80 100

C 0 50% inhibitory connections removed

z

N
o
<)

w
o
(=]

Frequency (H

0 20 40 _
Percent inhibitory connections removed

Theory/New Concepts 9 of 19

20% inhibitory connections removed

z
ay
o
o

Frequency (H
N
3

° .

0 200 600

400
Time (ms)

500 90% inhibitori connections removed

D

Z
w P
o o
o o

Frequency (H
N
S

100

0.04

Normalized power

Figure 5 Effect of diminished inhibition on fast ripple incidence. Simulations were conducted in which 50 separate sharp waves were
induced by intermittently activating pyramidal cells with noisy input (using a noise intensity of 0.77 nA>2). Inhibitory connections from
basket cells to all pyramidal cells were progressively removed. A fast ripple was defined to occur when the peak energy in the fast
ripple band (>250 Hz) exceeded the peak energy in the ripple band (100-250 Hz). A, Proportion of sharp waves which exhibited fast
ripples, as a function of percent inhibitory connections removed. Fast ripple incidence increased dramatically as inhibitory connec-
tions were lost. (Error bars represent SEM over 10 simulations, each with 50 induced sharp waves.) B-D, Example LFP’s and
spectrograms for three levels of intact inhibition, each with three example sharp waves. FR, Fast ripple episode; R, ripple episode.

cated that the ripple episodes had a single cluster (Fig.
7B), whereas fast ripple episodes occurred due to two
out-of-phase spiking clusters (Fig. 7C). This is similar to
what has been proposed previously by Menendez de la
Prida’s group (Foffani et al., 2007; Ibarz et al., 2010). Most
striking, however, is that in our results there is no orga-
nizing mechanism for such bicluster dynamical states;
they emerge briefly and spontaneously from asynchro-
nous activity in a completely uncoupled network. Such
fast ripples are therefore not a result of decreased spike
timing reliability, but emerge by chance when the ran-
domly evolving spike-time structure happens to assume a
bimodal form.

Constructed LFP

It is somewhat counterintuitive that an uncoupled network
could produce coherent oscillations, and given the com-
plexity of the biophysical model, we wanted to exclude
the possibility that such coherence was an artifact of the
simulation itself. We therefore developed a simplified
model stripped of all biophysical details, in which LFP
signals were “constructed” by convolving action potential

May/June 2015, 2(3) e0024-15.2015

waveforms with a number of randomly generated spike
trains, each representing the firing times of a single cell.
This model assumed the existence of a network drive for
cells to fire near a given frequency, but with two primary
sources of variability in the spiking of each cell. This
model contained no physiological mechanisms that dic-
tated how and when APs or PSPs appeared, and instead
simply showed how the LFP would appear if such activity
occurred at a given time.

The constructed LFP model assumed that there were
many cells firing near a given frequency due to conditions
in the network. This is similar to the exploration of the
dependence of network-preferred HFO frequency on in-
trinsic firing rates of individual cells, as explored in Ibarz
et al. (2010). Although each cell was driven in similar
fashion, there were two primary sources of variability in
spike times. The first was motivated by the fact that in the
brain, each cell generally has different parameters and
inputs, and thus each will have slightly different mean
firing rates for a given brain state. We modeled each cell’s
mean interspike interval (ISl) w;, as being drawn from a
normal distribution with standard deviation o,. The sec-
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Figure 6 HFOs resulting from noisy input to 80 uncoupled pyramidal cells. A, Two highest-power frequency peaks in the PSD as a
function of noise intensity. PSDs were generally bimodal, and grew more coherent as noise intensity increased. Note how the
high-frequency peaks reached fast ripple frequencies and represent a harmonic of the low-frequency peaks. B, The low-frequency
peak in the PSDs from A corresponded to the average cellular firing frequency. Insets, Representative voltage traces of individual
neurons for three different levels of noise intensity. The right column shows how the entire network went into depolarization block
when stimulated with high enough noise intensity. C, Ratio of peak power of the high-frequency peak-to-peak power of the
lower-frequency peak. D, Total LFP power >30 Hz as a function of noise intensity. As in Figure 3, there were coherent oscillations
even at high noise intensities. All error bars represent SEM over 10 simulations.

ond source of variability modeled “jitter” in ISl times, since
each cell’s ISI typically fluctuates from spike to spike due
to noise in the network, even when the mean firing rate is
relatively constant over time. The degree of ISI jitter was
determined by the parameter oy, The difference in the
effects of these two parameters is depicted in Figure 8A.
(See Models, Asynchronous Constructed LFP Model for
further details.)

Coherent ripples and fast ripples from an asynchro-
nously spiking network

We first used this model to explore the potential for
asynchronous AP-dominated HFOs, as suggested in the
biophysical model (Fig. 7A). Figure 8B-E demonstrate that
in a generic model of network activity stripped of all
biophysical details, asynchronous neuronal activity can
produce strong LFP oscillations. As in the biophysical
model, this constructed model displayed a prominent
oscillation at the overall mean cellular firing frequency
(200 Hz, corresponding to u = 5 mes), intermixed with
transient fast ripple episodes. As heterogeneity in mean
ISI or ISI jitter increased, the LFP became noisier, LFP
oscillations less coherent, and fast ripple episodes less
frequent. Figure 8F shows the fast ripple occurrence ratio
as a function of both sources of dynamical heterogeneity,
which had very similar overall effect. In both cases, fast
ripple occurrence decreased as heterogeneity increased,
with heterogeneity of ~10% of mean ISI effectively elim-
inating fast ripple episodes.

Generation of fast ripples by APs versus PSPs in a syn-
chronous network

We then used this construct to test another important
aspect of HFOs: the differing features of HFOs caused by
APs versus IPSPs. Experimentally, both IPSPs (Ylinen

May/June 2015, 2(3) e0024-15.2015

et al., 1995; Klausberger et al., 2003b; Spampanato and
Mody, 2007; Schevon et al., 2009) and APs (Csicsvari
et al.,, 2000; Grenier et al., 2003; Jiruska et al., 2010;
Bragin et al., 2011) have been shown to contribute to
ripples, a phenomenon that was replicated by our bio-
physical model (Fig. 4A-D shows IPSP-dominated rip-
ples, whereas E-H show AP-dominated ripples). Less is
known, however, about these two waveforms’ respective
abilities to generate fast ripples. Our constructed LFP
model is an ideal method for investigating this question.
We generated event times in a similar manner to that
depicted in Figure 8A, except that events were clustered
in synchronous network bursts, with the parameter oje,
determining the degree of synchronization within each
burst (Fig. 9A). Event times were then convolved with
either IPSP or AP waveforms to yield the LFP (see Models,
Synchronous Constructed LFP Model), so overall this
approach modeled the rhythm resulting from a periodic
drive to the network. By increasing the nominal frequency
of the periodic drive, we were able to investigate the
degree to which IPSP versus AP waveforms could gen-
erate robust rhythms at various frequencies, from ripples
to fast ripples.

As shown in Figure 9D-O, both AP-dominated and
IPSP-dominated LFPs exhibited coherent oscillations
whose dominant frequency matched the nominal network
burst frequency (though AP-dominated LFPs grew less
“clean” as coherence decreased, as shown in Fig. 9D,G).
We explored the ability of both classes of waveforms to
generate fast ripples by observing how LFP oscillation
amplitude was affected by increased frequency of net-
work bursts. The color plots in Figure 98,C show that
AP-dominated and IPSP-dominated LFPs exhibited very
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Figure 7 Emergence of fast ripples in an uncoupled, asynchronously spiking network. Using the same parameters as the highest-
frequency data in Figure 6, a 20,000 ms simulation was performed to identify the emergence of HFOs in a network of 80 uncoupled
pyramidal cells driven by high levels of uncorrelated noisy input. A, LFP spectrogram of a 1000 ms interval demonstrates that both
ripple (R) and fast ripple (FR) episodes emerged sporadically. B, Spike-timing histogram relative to ripple phase, averaged over all 78
observed ripple episodes. C, Spike-timing histogram relative to ripple phase, averaged over all 26 observed fast ripple episodes.
Ripples occurred when the 80 cells achieved brief unimodal spike time distribution, and fast ripples occurred when the distribution
was transiently bimodal. Error bars represent SEM over all observed ripple/fast ripple episodes.

different trends: the amplitude of AP-dominated LFPs
remained constant as frequency increased, whereas the
amplitude of IPSP-dominated LFPs decreased dramati-
cally with increasing frequency. These trends are even
more starkly depicted in the plots of LFP waveforms
shown in Figure 9D-O. Furthermore, decoherence of net-
work bursts (resulting from increased oy had essentially
the same impact upon AP-dominated LFP amplitude
across all frequencies (Fig. 9B). The impact of decoher-
ence upon IPSP-dominated LFPs, on the other hand,
grew more severe as frequency increased (Fig. 9C).
These results show that, independent of the underlying
network structure, the actual waveforms that arise when a
population of cells produces either APs or IPSPs have
extremely different capacities to produce fast ripples. The
short duration of APs allows a wide range of frequencies
that are resistant to significant jitter among the cells. In
contrast, although IPSPs are theoretically able to gener-
ate fast ripple signals, the amplitude is extremely low and

May/June 2015, 2(3) e0024-15.2015

even small amounts of jitter abolish the signal. We con-
clude that, under physiological conditions, it is likely that
all fast ripples are generated purely by APs, regardless of
underlying network structure.

Effect of synaptic parameters on fast ripple generation
by PSPs

Previous work has shown that network rhythms are dra-
matically affected by changes in synaptic parameters,
with faster time constants (such as synaptic rise time)
having a much greater impact than slower time constants
(such as synaptic decay time; Brunel and Wang, 2003).
We investigated the effects of varying these synaptic
parameters in our constructed LFP model, with the results
shown in Figure 10. For all modifications (increasing and
decreasing T and Tyecqy), the amplitude of PSP-
dominated LFPs decreased with increasing frequency, as
with the standard synaptic parameters. Modifying Tyecay
had very little effect on network rhythms (compare Figs.
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Figure 10 Effects of synaptic parameters on HFOs. LFPs were constructed as in Figure 9C, except that GABAergic synaptic rise and
decay times were modified from their standard values (7se = 1.5 MS; T4ecq, = 8.0 Ms). A, B, Changing 744y had little effect on the

HFO output. C, D, Very fast 7,

10A,B with 9C), whereas decreasing ts, did result in
more robust network rhythms at high frequency (Fig.
10C). With supraphysiologically fast rise time (0.5 ms), the
output approached the results of APs (Fig. 9B), but was
still less robust at higher frequencies. Both of these re-
sults are consistent with the findings of Brunel and Wang
(20083). It should be emphasized, however, that in all cases
increasing frequency resulted in greater sensitivity to de-
coherence (i.e., increased relative jitter), an effect that was
not observed in AP-dominated LFPs (Fig. 9B). These
results show that due to their slower dynamics, PSPs are
unlikely to produce fast ripples even with different synap-
tic parameters.

In this simplified model, therefore, PSP-dominated
LFPs were in principle capable of producing fast ripples,
but these rhythms were much less robust than the fast
ripples generated by APs. They required extreme network

May/June 2015, 2(3) e0024-15.2015

ise Time (0.5 ms) enabled IPSPs to produce HFOs more robustly.

coherence and produced very small amplitude signals,
and would therefore be unlikely to be observed in net-
works with physiological levels of noise.

Discussion

This work explores the unifying, generic phenomena nec-
essary to produce HFOs, independent of any specific
network structure. Within this framework, we find that
normal ripples, pathological ripples, and fast ripples can
be formed on a single continuum within the same model
while a wide range of synaptic activity is presented to the
cells. Our model leads to several important predictions.
First, peak frequency is insufficient to determine when
ripple HFOs (100-250 Hz) are pathological, as both AP-
based and IPSP-based mechanisms can produce similar
activity. Second, fast ripples (>250 Hz) can be produced
by a wide range of different parameters. Third, identical
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parameters can produce either pathological ripples or fast
ripples at different times, similar to experimental data.
Fourth, AP-based HFOs can arise from completely asyn-
chronous networks, requiring no specific connectivity or
organization at all. These findings suggest that HFOs are
an inherent behavior of networks of similar pyramidal
cells: any situation that permits cells to fire at high fre-
quency and with similar rates will produce “pathological”
HFOs, potentially even under normal conditions that have
similar parameters.

Choice of Models and Parameters

This work has utilized two models, a biophysical model to
show how network interactions produce different HFOs,
and a constructed LFP model to show the differences
between HFOs produced by IPSPs and APs. The bio-
physical model contains a simple hippocampal network,
which assures that we are simulating generic, rather than
structure-specific, phenomena. Because it was designed
to simulate fast oscillations, it did not include the slower
effects of OLM cells that produced theta oscillations in the
original presentation of this model (Tort et al., 2007).
Omission of OLM cells (and several other potential in-
terneurons) does eliminate some effects that might be
important in generation of particular HFOs. For instance,
recent work has suggested OLM cells are involved in
some HFOs (Varga et al., 2012; Pangalos et al., 2013),
although other work showed that OLM cells were silent
during HFOs (Klausberger et al., 2003a). More complex
HFO models show the effects of several other interneu-
rons in producing “normal” ripples (Schomburg et al.,
2012), or complex networks of axo-axonal gap junctions
producing fast ripples (Simon et al., 2014). These models,
and the others we have previously discussed, contain
some effects not present in our model, which are likely to
produce subtle differences in the HFO characteristics;
however, these are not generic mechanisms of HFO gen-
eration, and it is difficult to compare the results between
such models. Our goal with the current model was to
investigate the unifying mechanisms of HFOs, from
gamma to fast ripples, which might reconcile such differ-
ent networks.

One critical parameter in our biophysical model is the
intensity of synaptic noise, which is the primary force
driving cellular activity. It is important to determine
whether the range of noise intensity in our model is phys-
iologically plausible. The lower levels of noise intensity are
easily justified, but several of the effects in this work arise
only when the noise reaches extremely high levels. For
instance, we demonstrate ripples produced by either bas-
ket cells or pyramidal cells firing at 200 Hz (Figs. 2, 6). In
the interneurons, whereas some studies have shown that
basket cells do not reach this frequency under certain
conditions (Massi et al., 2012; Povysheva et al., 2013),
others have validated that they can reach these firing
rates during HFOs (Klausberger et al., 2003a; Hajos et al.,
2013). Similarly, it is uncommon for pyramidal cells to fire
so fast, and some of our results show cells driven into
depolarization block (Fig. 6A,B). Although such a high
level of noise intensity may seem extreme, it is actually
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common during epileptic conditions (Grenier et al., 2003;
Dzhala and Staley, 2004; Stacey et al., 2009; Jirsa et al.,
2014; Karlécai et al., 2014) and not unlike other physio-
logical conditions, such as the Up state (Destexhe et al.,
2003). This powerful input is the key to our model of HFOs
in uncoupled cells. Because neighboring pyramidal cells
have similar structural and dynamic parameters, their ab-
solute refractory periods and peak firing rates are also
similar. Thus, when there is a strong enough network
drive, cells will have similar firing rates, which can pro-
duce coherent oscillations regardless of network connec-
tivity. A recent study by Alvarado-Rojas et al. (2014)
provides strong experimental support for this scenario.

We developed the constructed LFP model to answer
several questions regarding how HFOs can be formed by
APs versus IPSPs. This model gave us explicit control of
when the events occurred, allowing us to investigate how
the LFP would appear under a vast range of different
network firing, independent of the specific mechanisms
that would produce such firing. It is important to point out
that each waveform template (i.e., the signal produced
when an AP or IPSP occurred) was actually recorded from
the biophysical model. Thus, although there was no neu-
ronal network in this model, its output approximates any
implementation of the biophysical network that produced
the same firing times. Note, however, that this model does
not take into account the nonlinear spatiotemporal rela-
tionships between different somatodendritic sinks and
sources that comprise LFP signals.

Mechanisms of Normal and Pathological HFOs

It is currently thought that normal ripples are produced
either nearly exclusively by IPSPs (Ylinen et al., 1995; Le
Van Quyen et al., 2008) or a roughly equal mixture of
IPSPs and active currents (Schomburg et al., 2012),
whereas epileptic HFOs are most likely produced pre-
dominantly by the active currents associated with popu-
lation spikes (Bragin et al., 2011). Our biophysical model is
consistent with this view, because noisy synaptic bom-
bardment of either basket cells (which generated an IPSP-
dominated LFP) or pyramidal cells (which generated an
LFP comprised of both APs and IPSPs) tended to pro-
duce ripples when inhibition was intact (Fig. 4), and ab-
normal ripples when inhibition was compromised (Fig. 5).
The mechanisms underlying fast ripple generation have
been more challenging to explain. Previous studies on
pathological HFOs (Foffani et al., 2007; Demont-Guignard
et al.,, 2012; Wendling et al., 2012; Aivar et al., 2014;
Karlécai et al., 2014) have shown that fast ripples occur
when pyramidal cells become very excitable and inhibi-
tion is compromised. Many specific mechanisms have
been investigated both experimentally and computation-
ally: axo-axonal gap junctions (Traub and Bibbig, 2000;
Schmitz et al., 2001; Traub et al., 2005; Roopun et al.,
2010; Simon et al., 2014), recurrent synapses (Dzhala and
Staley, 2004; lbarz et al.,, 2010), spike time variability
(Foffani et al., 2007), uncorrelated firing (Demont-
Guignard et al., 2012), decreased Ca%* concentration
(Aivar et al., 2014), and disconnected populations (Ibarz
et al., 2010). All have demonstrated some experimental
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evidence, and each may exist under different conditions,
but reconciling these theories has been controversial.

In this study, we take an alternative approach by focus-
ing on the general dynamical properties of network activ-
ity necessary to generate HFOs, rather than specific
lower-level mechanisms. We provide a generic framework
to identify and unify the mechanisms underpinning normal
ripples, pathological ripples, and fast ripples in the hip-
pocampus. In general, normal gamma and HFOs arise
when low to moderate levels of network drive induce
coherent IPSP firing. As the drive increases, pathological
HFOs arise when pyramidal cells become highly active,
under any particular network structure (Fig. 4). At ripple
frequencies, the output can be any combination of IPSP
and AP waveforms. High levels of inhibitory feedback in
the network are likely to limit pathological HFOs to ripple
frequencies (Fig. 3). However, as the pyramidal cells be-
come very active, it becomes more and more likely that
they will transiently desynchronize if inhibition is impaired
(Fig. 5). This transition from normal to epileptiform activity
as noise increases is reminiscent of recent work showing
how a network moves from the normal to seizure regime
(Jirsa et al., 2014). Like that work, our model shows that
the same network activity can result from a variety of
underlying mechanisms.

Asynchronous HFOs

Although several previous studies have assumed that
AP-dominated ripples result from highly synchronous py-
ramidal cell firing (Bragin et al., 2010; Menendez de la
Prida and Trevelyan, 2011), our results suggest an alter-
native scenario is also possible: that AP-dominated rip-
ples in fact do not require any specific structure at all.
They may result from asynchronous firing of a population
of pyramidal cells driven near their maximum firing rate.
Figures 7 and 8 illustrate how a population of indepen-
dently and randomly firing pyramidal cells may generate a
strong ripple oscillation when each fire at =200 Hz (which
several studies have shown to be a realistic rate under
pathological conditions; Grenier et al., 2003; Dzhala and
Staley, 2004; Aivar et al., 2014; Karlécai et al., 2014). This
result is consistent with previous theoretical studies
showing that asynchronous neuronal firing can produce
coherent LFP rhythms (Ray et al., 2008; Nunez, 1995).

Emergent fast ripples

Fast ripples will in turn transiently and sporadically
emerge from such pathological ripples (Figs. 5, 7, and 8)
provided there are enough spikes to produce an LFP
signal, since fast ripples almost certainly must be com-
prised of APs (Fig. 9). Fast ripples thus do not depend
upon a specific network structure, but are a general,
emergent phenomenon. The only requirements to pro-
duce fast ripples are that: (1) pyramidal cells are very
active, (2) the cells can become desynchronized, and (3)
the LFP is dominated by APs. We predict that any network
conditions that produce these effects will be capable of
generating fast ripples. Note that these conditions do not
necessarily imply pathological activity, which may explain
why fast ripples have been observed in normal cortex
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(Amassian and Stewart, 2002; Blanco et al., 2011; Kuce-
wicz et al., 2014).

Comparison with past models

Fast ripples emerge in our model when two clusters of
cells fire out of phase (Fig. 7C). This is similar to past work
(Foffani et al., 2007; Ibarz et al., 2010) but with a crucial
difference: in our model the cells can be completely un-
coupled. This results in completely asynchronous activity
producing ripples which briefly form fast ripples when the
population assumes a bimodal state (Figs. 7, 8B-E). For a
ripple rhythm generated by asynchronous spiking, in-
creased jitter will impair the emergence of fast ripples (Fig.
8F). In contrast, for ripples generated by synchronous
firing (Foffani et al., 2007) increased jitter will facilitate fast
ripple formation. These two mechanisms therefore ap-
proach fast ripple activity from opposite ends of the spec-
trum: one starts with highly synchronous activity, the
other with completely asynchronous activity, so that dif-
ferent network conditions induce different paths to fast
ripple generation. The possibility that initially asynchro-
nous activity might generate pathological rhythms is sug-
gested by experimental evidence of asynchronous firing
in interictal discharges (Alvarado-Rojas et al., 2013) and
epileptic seizures (Truccolo et al., 2011), as well as previ-
ous work comparing epileptic spikes and fast ripples
which found a clear role for asynchronous firing (Demont-
Guignard et al., 2012). Two novel features of our model
are: (1) its ability to describe the transition from normal
gamma to abnormal fast ripples in a single set of param-
eters, and (2) it provides a mechanistic link between path-
ological ripples and fast ripples, thereby helping to explain
why fast ripples are often intermixed with ripples (Bragin
et al., 1999; Worrell et al., 2008), as well as why fast
ripples are so ephemeral.

Features of Normal and Pathological HFOs

Even after nearly two decades of research, there is still no
clear way to determine whether an HFO is produced by
normal or abnormal mechanisms. What is clear is that
peak frequency alone is insufficient to make the distinc-
tion. Less than 250 Hz, HFOs can be indicative of either
completely normal or epileptic activity. Fast ripples origi-
nally appeared to be more specific to epilepsy in hip-
pocampus, but recent human data have placed that in
doubt as well (Kucewicz et al., 2014), and fast ripples have
been well known in normal somatosensory cortex for
many years (Amassian and Stewart, 2002; Baker et al.,
2003; Barth, 2003; Blanco et al., 2011). Thus, additional
methods are needed to distinguish normal from abnormal
HFOs.

Our data suggest two important aspects of abnormal
HFOs that may help in future research. First, the fact that
fast ripples emerge from pathological ripples may explain
why they are transient and coexist with ripples on the
same electrode recordings. This suggests an alternative
strategy of searching for similarities between such events
as harmonic frequencies or other features, rather than
assuming they are different. Second, our biophysical sim-
ulation (Fig. 4) demonstrates that although peak fre-
quency may be similar in normal and epileptic HFOs,
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there are more subtle features of the signal such as high
frequency band power (>250 Hz) that might distinguish
them. The rigorous solution to this question will require
large amounts of human data in which vast numbers of
HFOs can be analyzed. Recent work using controlled
stimulation has shown that different HFOs can be distin-
guished using basic features (Matsumoto et al., 2013;
Kucewicz et al., 2014); our results can help guide future
analysis of such signals to find more comprehensive dif-
ferences.

Conclusion

Distinguishing normal from pathological HFOs remains a
challenging problem whose solution holds great promise
for people with epilepsy. In this study, we have focused
on the network mechanisms that differentiate the varieties
of HFOs, motivating future experimental studies to obtain
a more comprehensive picture of network activity. This
study also provides a foundation for investigating differ-
ential LFP signatures for normal versus pathological
HFOs, and guides future experimental and clinical HFO
research.
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