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Abstract: Mast cells are well accepted as important sentinel cells for host defence against selected
pathogens. Their location at mucosal surfaces and ability to mobilize multiple aspects of early immune
responses makes them critical contributors to effective immunity in several experimental settings.
However, the interactions of mast cells with viruses and pathogen products are complex and can have
both detrimental and positive impacts. There is substantial evidence for mast cell mobilization and
activation of effector cells and mobilization of dendritic cells following viral challenge. These cells are
a major and under-appreciated local source of type I and III interferons following viral challenge.
However, mast cells have also been implicated in inappropriate inflammatory responses, long term
fibrosis, and vascular leakage associated with viral infections. Progress in combating infection and
boosting effective immunity requires a better understanding of mast cell responses to viral infection
and the pathogen products and receptors we can employ to modify such responses. In this review,
we outline some of the key known responses of mast cells to viral infection and their major responses
to pathogen products. We have placed an emphasis on data obtained from human mast cells and aim
to provide a framework for considering the complex interactions between mast cells and pathogens
with a view to exploiting this knowledge therapeutically. Long-lived resident mast cells and their
responses to viruses and pathogen products provide excellent opportunities to modify local immune
responses that remain to be fully exploited in cancer immunotherapy, vaccination, and treatment of
infectious diseases.
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1. Introduction

Mast cells (MC) are strategically placed at sites that interface with our external environment such
as the skin, lung, and intestines. Within such tissues they are predominately below the epithelial
layer and closely associated with blood vessels This location allows them to act as sentinels for tissue
damage and pathogen invasion. It also places them close to other sentinel cells, such as dendritic cells.
The association between MC and blood vessels is optimal to enhance the rapid recruitment of effector
cells out of the bloodstream and into neighboring tissues. This process is facilitated by the MC’s rapid
production of cytokine mediators such as TNF and IL-1β that activate endothelium, lipid mediators
that facilitate vasodilatation, as well as a range of chemokines that promote the selective recruitment of
specific subsets of effector cells. In this chapter, we will explore MC responses, focusing on those of
human origin, to common viruses and pathogen products. We aim to highlight a range of MC–pathogen
interactions, recognizing that it is impossible to include all the very important contributions to this
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field. Understanding effective host responses to infection is also critical for defining MC activation
signals and responses by which immunity could be enhanced or inhibited in disease settings.

2. Historical Studies of MC–Virus and MC–Pathogen Product Interactions

Historically, the focus has been on the role of MCs in allergic disease. Interactions of MCs with
most viral pathogens and pathogen products were not evaluated in detail until relatively modern
times. Although not a topic for this review, substantial definition of the roles for MCs in parasitic
diseases provided many of the tools needed to examine MCs in other infection settings. Initial studies
often focused on the ability of pathogen products to induce degranulation. Several bacterial, fungal,
and parasitic products were shown to either induce MC lysis or act through G-protein-coupled or Fc
receptors, directly or indirectly to induce degranulation. The recognition that MCs could produce
cytokines without the necessity for degranulation in response to bacterial products [1,2] opened up
this area to include consideration of complex roles for MCs under circumstances where degranulation
and an impact of MC stabilizers was not observed.

Early studies of MC interactions with viruses focused on their ability to respond to the Sendai
virus through granule release [3,4] and their immortalization using Harvey sarcoma virus, Kirsten
sarcoma virus, and Abelson murine leukemia viruses [5–7]. However, even in these early days, there
was a recognition that MCs may play a key role in inflammatory responses to viral infections in certain
contexts, such as Sindbis virus infection of the central nervous system [8]. Many studies focused on
the ability of MCs to become infected with common viruses and release classical MC mediators such as
histamine and leukotrienes. These included studies of Para-influenza virus [9] and many others to be
discussed below. More recently, a complex picture of MCs during infection has emerged, whereby they
may promote effective immunity to infection under some circumstances, but also have the potential
to contribute to tissue damage and impair vascular integrity, especially upon secondary infection.
Important interactions observed in vitro and in vivo for a number of viruses including respiratory
syncytial virus (RSV), rhinovirus (RV), reovirus, dengue virus (DENV), human immunodeficiency
virus (HIV) and influenza, are noted in Tables 1 and 2.

Table 1. Key in vitro studies of mast cell responses to viral infection.

Human MC
Source

Virus/Virus
Replication Degranulation Lipid Mediator Cytokine Synthesis Additional

Biological Responses Citation

+ssRNA

HMC-1 cell line RV16/yes n.d. n.d. IL-6, IL-8, TNF-α,
IFN-α

↑ICAM
↓ Cell viability [10]

LAD cell line and
CBMC

RV1B and
RV16/yes NO n.d. IFN-β and -λ;

CXCL10 and CCL5 [11]

HMC-1 and
KU812 cell lines RV14/yes

Enhanced
following
cross-linking of
FcεRI

n.d.

Enhanced production
of IL-8 and GM-CSF
following
cross-linking of the
FcεRI

↑ ICAM [12]

Skin MCs and
human skin tissue

DENV type 2
(NGC and
K0048)/yes

Yes n.d. CCL5, IL-6, IL-8,
VEGF

-MC mediators
releases in response to
infection with DENV
induce activation and
proliferation of
endothelial cells
-DENV localized in
MC cytoplasmic
granules was shown
to be infectious

[13]
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Table 1. Cont.

Human MC
Source

Virus/Virus
Replication Degranulation Lipid Mediator Cytokine Synthesis Additional

Biological Responses Citation

HMC-1 and
KU812 cell lines

DENV type 2
strain 16681/yes n.d. n.d. n.d.

Anti-DENV
neutralizing
antibodies enhanced
DENV infection in
KU812 and HMC-1
cells in a mechanism
involving autophagy

[14]

CBMC, HMC-1,
and KU812

DENV type 2
strain 16681/n.d. n.d. n.d. CCL2, CCL4, CXCL10,

type I IFNs,

MC-derived type I
IFNs prevented
infection of KU812
with DENV

[15]

-ssRNA

RSV long
strain/limited n.d. No CCL4, CCL5, CXCL10,

IFN-α CBMC [16]

HMC-1 RSV long
strain/inefficient

Only in co-culture
of MCs with
RSV-infected A546
epithelial cells

n.d.

TNF-α only in
co-culture of MCs
with RSV-infected
A546 epithelial cells

[17]

dsRNA

CBMC Reovirus/yes No No CXCL8, Type I IFNs,
IL-10, TNF

Reovirus-infected MC
induce the
recruitment and
activation of NK cells
to sites of infection
Recruitment of NKT
[18] cells was also
observed

[15,19]

Blood derived MC
precursors

HIV-1 (M-tropic)/
yes n.d n.d. n.d. [20,21]

Non-human MCs

P815 murine cell
line

Influenza H1N1
(A/WSN/33),
H5N1
(A/Chicken/Henan/1/04),
H7N2
(A/Chicken/Hebei/2/02)/yes,
dependent on MC
apoptosis

n.d. n.d. IL-6, IL-18, TNF-α,
and CCL2 MC apoptosis [22]

Murine bone
marrow MCs

Influenza
Influenza H1N1
(A/WSN/33)
virus/inefficient

Yes Yes

CCL2, CCL3, CCL4,
CCL5, CXCL2,
CXCL9, CXCL10, IL-6,
and TNF-α

[23]

P815 murine cell
line

Influenza H5N1
(A/Chicken/Henan/1/04)Yes n.d. IFN-γ [24]

Porcine primary
MCs

Influenza H1N1
(A/Ca/04/2009)
virus/inefficient

Yes n.d. IL1A, IL6, CXCL9,
CXCL10, CXCL11 [25]
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Table 2. Key murine studies of MCs in viral infection.

Murine Model Virus Biological Responses Observed * Implication(s) Citation

Balb/c Influenza H1N1
(A/PR/8/34)

Following infection,
-MCs progenitors recruited to lungs
-MCs associated with inflammatory
cells surrounding bronchioles

Increased number of MCs in the
lungs in response to influenza may
be associated with virus-induced
asthma exacerbations

[26]

Balb/c immunized with
both the HA influenza
protein and the MC
activator C48/80

Influenza
H1N1 (A/Ca/04/2009)

-Enhanced levels of serum IgG and
mucosal IgA against HA protein.
-Reduced levels of virus titers in
lungs
-Predominant Th1 over Th2 cellular
responses

The vaccine approach combining
HA and mucosal adjuvant C4/80
elicits protective immunity
specifically [27] against H1N1 virus

[28]

C57BL/6 and
B6.Cg-KitW-sh

Influenza H1N1
(A/WSN/33)

MC-deficient mice
-Less susceptible to lose weight
-Showed reduced numbers of
inflammatory cells in lungs

MCs are crucial effectors in the
pathological innate immune
responses

[23]

Balb/c Influenza H5N1
(A/Chicken/Henan/1/04)

Severe bronchiolitis and infiltration
of inflammatory cells to lungs were
reduced in mice treated with
ketotifen previous and during
infection with H5N1 virus

MC activities, specifically
degranulation, promote lung lesions
during viral infection

[24]

C57BL/6NTac mice DENV strain EDEN2

Many of the pathological changes
derived from infection with dengue
virus, including metabolic
dysregulation and inflammation,
were reversed by treatment of
infected mice with ketotifen

Therapy for dengue virus infection
may include the use of MC
stabilizer drugs

[29]

C3H/HeN DENV type 2 strain
16681

MC degranulation and production
of CCL-2, CCL5, and CXCL10 in
response to dengue virus infection
were reduced in mice treated with
antibodies targeting the NS1
dengue protein.

Dengue-associated pathological
effects can be reduced using
anti-NS1 antibodies by mechanisms
involving inhibition of MC activities

[30]

C57BL/6 and
MC-deficient
KitW-sh/ HNuhrJaeBsmJ

DENV type 2 strain
16681

KitW-sh mice:
-Were more susceptible to infection
with DENV
-Showed prolonged bleeding and
enhanced production of
macrophage-derived CCL2 and
macrophage infiltration at
inoculation sites

MCs and macrophages coordinately
may restrict DENV infection in the
skin

[31]

C57BL/6 DENV type 2, strain
Eden 2

-MCs infected with DENV promote
increased vascular permeability via
chymase and leukotriene
production
-Usage of MC-stabilizing drugs
restore vascular permeability in
mice infected with DENV

-DENV-associated vascular leakage
might be prevented by
therapeutically targeting MC
activities
-Translation of these data to human
settings showed chymase as a
predictive biomarker distinguishing
dengue fever from dengue
hemorrhagic fever

[32]

C57BL/6 Vaccinia virus strain
Western Reserve

-LAT-activated MCs showed
improved antiviral activities against
VV
-MCs produce cathelicidin via TLR2
in response to LTA expressed by
commensal bacteria

MCs primed via TLR2 fight more
efficiently vaccinia virus [33]

* Compared to control conditions.

3. Mast Cells and Mosquito-Borne Viruses

MCs respond to the bites of various insects including ticks and mosquitos. Indeed, mosquito
saliva has been shown to have a number of impacts on MCs. Human in vitro systems and mouse
models which include natural mosquito bites have provided evidence of mosquito bite-induced lymph
node hypertrophy as well as demonstrations of mosquito-induced local immune suppression [34–36].

Studies of DENV initially demonstrated that human MC and MC lines produce a number
of cytokines and chemokines following infection [37,38]. Infection was associated with high
levels of MC apoptosis, and there is evidence of RNA sensors being involved in the initiation
of chemokine responses [15,39]. Human skin MCs have also been shown to be infected in the context of
mosquito-borne infection, with some evidence for infectious DENV associated with MC granules [13].
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In vitro infection of human MCs with dengue was highly antibody-dependent and occurred through an
FcγRII-dependent mechanism [40]. This could suggest that the major contribution of MCs in response
to human DENV infection might be in the context of secondary infections that are associated with
more severe disease. Consistent with this observation, clinical studies have revealed evidence of MC
degranulation associated with dengue hemorrhagic disease and dengue shock syndrome [41–43]. Most
recently, tryptase release, which is associated with severe forms of dengue disease, has been associated
with endothelial barrier dysfunction [44]. In vitro, DENV infection of MCs leads to the production of
other mediators that induce endothelial activation, such as IL-1β, together with chemokines capable of
recruiting a variety of inflammatory and effector cells [15,45]. It is likely that multiple MC-dependent
processes contribute to enhanced vascular leakage in severe disease. In the complex setting of secondary
infection, other stimuli, such as complement components and Fc receptor cross-linking, may also play
a role in activating MCs in response to local or disseminated infection. Studies in mice have suggested
that a very high-dose DENV challenge can induce MC degranulation and mediator responses directly,
without the necessity for antibody-dependent enhancement. They also demonstrate MC-dependent
elicitation of an early innate response and subsequent acquired immunity [46]. MCs contribute to a
response to infection that involves multiple cell types. In addition to MC endothelial cell interactions,
the interface between dengue virus, monocytes and macrophages and MCs may be of particular
importance [47]. Notably, MC infection with hantavirus has also been associated with a similar
mediator response that may contribute to vascular dysfunction [48].

The Zika virus has similarities with DENV and is carried by the same mosquito vector. The ability
of MCs to become infected with Zika and promote an immune or inflammatory response is an
important area of current studies but few published studies are yet available. However, given the
many similarities between Zika and DENV, both (+) RNA flaviviruses, it is likely that some shared
responses and mechanisms to evade infection are in place. Histamine, IL-9, and a Th2 response have
been clearly implicated in Zika disease pathology [49].

4. Responses to Respiratory Viruses

Responses of MCs to respiratory virus infection are of interest in view of the association between
allergic asthma exacerbations and viral infection. Early studies of bovine respiratory syncytial virus
models demonstrated MC degranulation associated with infection in vivo [50,51]. This was followed
by evidence of MC activation including both degranulation and lipid mediator release in wheezing
human infants associated with RSV infection [52], along with suggestions of an important role for virus
specific IgE in some cases [53]. More direct studies of interactions between RSV and MCs paint a slightly
different picture. In the absence of virus-specific IgE, complement activation and other factors, which
may have a role in vivo, RSV was found to have limited ability to induce degranulation or leukotriene
generation. RSV also demonstrated limited transcription of viral products in human primary MCs.
However, contact between RSV and human MCs induced substantial chemokine production as well as
the production of type I interferons (IFNs) [16].

The impact of influenza and parainfluenza viruses on MC activation has also been a subject of
considerable scrutiny. Early studies demonstrated mediator release by parainfluenza-treated calf and
rodent MCs [9,54]. Studies in Brown Norway rats confirmed that in this strain, with higher numbers
of MCs resident in airways tissues and a Th2 predisposition, there was evidence of MC hyperplasia,
MC activation, and more severe airway inflammation [55,56]. In 2013, two important studies of the
response of MCs to influenza A virus (IAV) infection were published. Graham et al. described a
role for MCs in the response to IAV in vivo, although they were using an older c-kit-dependent MC
deficiency model. This group also showed both MC degranulation and production of cytokines and
chemokines by distinct mechanisms using rodent systems. Marcet et al., using human MC lines,
demonstrated limited evidence of productive IAV replication, and again evidence of cytokine and
chemokine production, as well as type I IFN production [57].
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RV is possibly the most well-characterized infection, closely linked to asthma exacerbations.
Similar to other respiratory viruses, it was also initially examined for impacts on classical MC mediator
release and leukotriene generation [12,58]. Both human MC lines and cord blood-derived MCs support
viral replication and produce a range of IFNs in response to RV infection [11]. Detailed recent studies of
human MC lines have revealed complex responses which include some lactate dehydrogenase release
and the production of several cytokines and chemokines, including CXCL8 and TNF [10]. Similar to
DENV [39], RV also induces apoptosis in human MC lines [10]. Notably, RV infection of both primary
MCs and MC lines is limited by pre-exposure of the cells to IFNβ [11]. This latter finding is in keeping
with evidence that IFNβ production is deficient in asthmatics who show increased susceptibility to
respiratory viral infection. Taken together, these findings suggest a role for MCs in enhancing asthma
exacerbations and having a proinflammatory impact in response to RV.

In each of these settings, the human MC shows evidence of a response that is consistent with
promoting early host defence, when in contact with a number of important respiratory viruses, which
presumably would occur predominantly once infection has breached the epithelial barrier. MCs
themselves are resistant to becoming productively infected with influenza or RSV but have a protective
response that includes the production of cytokines and chemokines promoting the recruitment of
antiviral effector cells. In addition, human MCs produce substantial amounts of type I IFNs which
would promote a local antiviral response and resistance to infection. Of course, in a more disseminated
infection, especially in situations where MC numbers were elevated, these responses could also
contribute to potentially damaging inflammation. In the case of RV, MCs themselves are productively
infected, but retain the ability to initiate host defence processes. Together with the potential impact of
antiviral antibody responses (via both complement products and Fc receptor-mediated activation),
it would be expected that the impacts of MCs on infection and the potential for a more damaging
inflammatory response would be heightened upon secondary or subsequent infection with related
viruses, although few studies have examined these issues directly.

5. Mast Cell Responses to HIV

MCs are found in substantial numbers at most mucosal surfaces, including the urinogenital and
gastrointestinal tract. MC progenitors in the blood express low levels of CD4, CCR3, CXCR4, and CCR5.
This profile led to their consideration as a target for HIV infection. Two early reports demonstrated
infection of MC precursors and defined both a role for CCR5 and a propensity for infection with M
tropic virus strains [59,60]. In one of these reports, it was suggested that circulating MC precursors
from allergic individuals might be more susceptible to infection [60]. IL-16 was shown to limit the
susceptibility of MC precursors to infection with M tropic virus [21]. It was also suggested from early
work that HIV-1 gp120 acted as a viral superantigen. It was observed that HIV gp120 interacted with
the heavy chain, variable 3 region of IgE, to induce cytokine release from FcεRI-positive cells. Possibly
of greater importance clinically, was the suggestion that human MCs have the potential to act as a viral
reservoir. Human MCs in vitro that were positive for proviral DNA showed evidence of productive
HIV-1 infection following activation via Toll-like receptors [61]. In support of a potential viral reservoir
role for MCs, HIV-infected women were found to have placental tissue MCs with inducible infectious
HIV, despite antiretroviral therapy [62]. These observations proved controversial [63] and may be more
important in the context of pregnancy associated immune suppression. The potential for MCs to aid in
the spread of HIV has also been examined and both the transfer of virus to T cells by MC-dependent
mechanisms and the recruitment of MCs by HIV-derived Nef protein has been reported [20,64].
Although all of these processes are of interest to understanding disease pathology and help us to
understand the roles of MCs in infection, there remains little direct evidence for a critical clinical role
for MCs in the susceptibility to or course of HIV infection.
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6. Mast Cell Responses to Hepatitis Viruses

Although MCs are associated with blood vessels in most tissues, including the liver, the normal
hepatic tissues are not MC-rich. However, following viral infection several reports suggest that MC
numbers increase at this site. This has been noted in the context of chronic hepatitis C infection [65].
In addition, directly or indirectly, hepatitis C virus infection can modify MC behaviour. For example,
MCs have been shown to upregulate HLA-G expression, associated with fibrosis, in HCV-infected
livers or in response to IL-10 or type I IFN treatment. Increased MC expression of miRNA-490 has also
been reported in response to HCV E2 protein [66]. Many reports have implicated MCs as drivers or
contributors to profibrotic processes in tissues such as the liver, but their precise role remains unclear
in this context. Similarly, mast cell activation could potentially help promote conditions necessary for
tumor development, either through enhancing ongoing inflammatory processes or through promotion
of early angiogenesis.

In addition to direct impacts of viral infection and viruses on MCs there are many indirect
interactions which could lead to MC activation. An excellent example of this is the increase in
circulating levels of protein Fv that occurs during hepatitis. Under normal circumstances protein Fv
circulates at low levels, however, in the context of infection, these levels rise dramatically. In vitro,
protein Fv was shown to activate human heart derived MCs inducing degranulation and lipid mediator
production via interactions with the VH3 region of IgE [67,68].

7. Mast Cell Promotion of Effective Immunity and Response to Oncolytic Viruses

There is substantial evidence for increased numbers of MCs at the growing edge of several
common tumor types. As described above, MCs act as sentinel cells for infection enhancing the earliest
immune responses to pathogens and facilitating the development of subsequent immune responses.
In this context, the ability of MCs to respond to viruses with a known propensity to infect and promote
the immune response to tumors is of particular interest. However, very few studies have examined
MC responses to the most well-established oncolytic viruses, such as HSV, VSV, and vaccinia virus.
The role of MCs in oncolytic therapies is not well defined and would likely be highly dependent
upon tissue site and tumor type. MCs also have key roles in the regulation of tumor angiogenesis
making analysis of their roles complex. However, it is known that, in mouse models, MCs promote
effective anti-HSV responses in the skin and eyes [69,70]. Similarly, MCs have been suggested to have
site-protective roles against vaccinia virus infection at sites such as the skin [71,72]. These impacts may
extend to promoting the types of immune responses that also combat tumors through the mobilization
of effector cell populations or dendritic cell responses but could be highly dependent upon local MC
density and other microenvironmental factors.

The MC response to oncolytic reovirus, a common mucosal infection which has been used in
clinical trials as an oncolytic treatment, is an excellent model for examining the role of MCs in an
effective immune response to viral infection. Both human and mouse MCs can be productively infected
with reovirus and this leads to a vigorous type I and type III IFN response. Infected MCs also produce
substantial amounts of a range of chemokines. Of these, CXCL8 has been shown to be critical for
the recruitment of human natural killer (NK) cells in response to viral infection both in vivo and
in vitro [19,73], whereas, CD56-positive T cells are recruited by MC via a distinct mechanism [18].
The large amounts of type I IFNs produced by infected MC have the capacity to further activate
recruited NK cells [19]. These interferons also act in an autocrine manner on MCs to promote both
classical responses such as CXCL10 production and promote tissue remodelling and inflammation
resolution through both VEGF and IL-1RA production [74]. Lytic viruses, such as reovirus and HSV,
can also lead to the release of alarmins from cells; these include IL-33 which can activate MCs to
produce a range of cytokines and chemokines [75] and promote neutrophil recruitment. Some key
features of the degranulation-independent responses to reovirus and subsequent impacts of IFN and
chemokine production, many of which are shared by other viral infection, are outlined in Figure 1.
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Figure 1. Selected, critical and early mast cell (MC) responses to viral infections which occur without a
requirement for MC degranulation. MCs can be activated directly by active viral infection or by contact
with viral particles. They can also be activated by alarmins released as a result of infection of neighboring
or epithelial cells. This MC activation leads to the production of multiple mediators including large
amounts of type I interferons (IFNs) and type III IFNs by virus infected human cells. While inducing
an antiviral state in neighboring cells, such IFN responses also initiate multiple additional responses
(blue arrows), the expression of a number of chemokines which together with MC-derived cytokines
enhance the local recruitment of effector cells such as NK cells, T cells, and CD56-positive T cells from
local blood vessels and promote the activation of NK cells, enhancing their cytotoxic functions. Such
IFNs also act in an autocrine fashion to further promote selected mediator production by MCs. MC
mediators, in several infections, would also act to enhance lymph node hypertrophy and mobilize local
dendritic cell populations promoting the development of a subsequent acquired immune response.

8. Pathogen Products that Activate Mast Cells

Over recent years, significant progress in MC research has uncovered the responses to pathogens
and pathogen products from bacteria to viruses to fungi, and the mechanisms of activation. These
studies have allowed us to better understand the roles of MCs in host defence against pathogens and
serve as a foundation for developing improved therapeutics. Some key pathogen products that MCs can
recognize are provided in Table 3, and some of the important interactions are described below. Given
the increased propensity for bacterial and fungal infections associated with several viral infections and
the widespread impact of pathogen products, beyond local sites of infection, it is important to consider
both the impact of pathogen products, their mechanism of action, and direct pathogen–MC interactions
to fully understand the role of these enigmatic cells in host defence and infectious disease pathology.
We also need to consider that, especially in chronic or persistent infections, the ability of mast cells
to mobilize acquired immune responses through actions on dendritic cells and promotion of T cell
responses could lower the threshold for the development of autoimmune or chronic inflammatory
disorders. In many cases, responses that do not usually, as single stimuli, involve degranulation
such as those mediated by TLRs and RNA sensors, are similar in mechanism to those described for
other cell types, especially monocytes, macrophages, and dendritic cells, although the predominant
mediator responses may differ. However, the comprehensive innate immune receptor profile of mast
cells together with their potent menu of preformed, newly-generated protein and lipid mediators
ensures that they provide unique and rapid responses to many pathogen challenges. Notably, we need
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to recognize that responses to all forms of infection or pathogen challenge are complex and involve
multiple cell types and microenvironmental signals. For this reason, it may be difficult to separate out
the role of a specific receptor in the overall mast cell response. For example, during both viral and
fungal disease mast cell degranulation in clinical settings has been reported, which is not normally
observed following simple infection of mast cell in vitro or exposure of mast cells to pathogen products.
Signaling through receptor systems, which may not induce degranulation alone, may contribute to
this process by enhancing the expression or activity of receptors associated with degranulation such
as complement receptors, other G-protein-coupled receptors or Fc receptors. Similarly, mast cell
stabilizing agents, which have proven effectiveness in reducing IgE-mediated mast cell activation,
may have limited effectiveness in regulating mast cell mediator release induced by the Fc receptor
independent mechanisms typical of responses to pathogens. However, other immunosuppressive and
anti-inflammatory agents, such as corticosteroids, may effectively modify or suppress aspects of the
mast cell-pathogen response.

Table 3. Major classes of direct mast cell responses to pathogen products.

Major Pathogen Products Associated MC Receptor Example of Pathogens Citation

Bacterial Pathogens and Products

Peptidoglycan TLR2 S. aureus [76]
Lipopolysaccharide TLR4 E. coli [77]
CpG motif-containing bacterial DNA TLR9 † Multiple strains [78,79]
Fimbriated adhesion molecule H CD48 Fimbriated E. coli [80]
Protein A Fc receptors S. aureus [81]
Staphylococcal enterotoxins Undefined S. aureus [82,83]
Staphylococcal superantigen-like
proteins TLR2 S. aureus [84]

Cytolysin Substance P receptor V. cholerae [85]
Pertussis toxin CD48 B. pertussis [86]
Clostridium toxin C. difficile [87]
Mycobacterial antigens M. tuberculosis [88,89]

Viral Pathogens and Products

dsRNA TLR3 RSV, Reovirus [73,90]
ssRNA TLR7 † Influenza A, VSV, Sendai [78,91]
CpG motif-containing viral DNA TLR9 † mCMV, HSV [78,92–94]
dsRNA, uncapped viral RNA RIG-I Influenza A, Dengue [15,23,95]
Orf virus-encoded IL-10 IL-10 receptor Epstein Barr virus [96]
Superantigens (Protein Fv, envelope
glycoprotein gp120) Fc receptors Viral hepatitis, HIV-1 [67,68,97]

Fungal Pathogens and Products

Yeast zymosan, chitin and derivatives † TLR2 C. albicans S. cerevisiae, C. neoformans [98–102]
β-glucans, zymosan, chitin and
derivatives † Dectin-1 C. albicans, S. cerevisiae, C. neoformans [99–101,103–107]

Mature fungal hyphae
IgE-independent; StuA and
MedA transcription
factor-mediated

Aspergillus fumigatus [108]

† Inferred from current studies on other immune cells, but not directly demonstrated.

9. Bacterial Pathogens and Products

Bacterial pathogen products are well described to activate MCs through pattern recognition
receptors (PRRs) located on the MC surface, which recognize and respond to pathogen-associated
molecular patterns. Toll-like receptors (TLRs) can recognize a multitude of bacterial pathogen products.
Peptidoglycan (PGN) is a key structural component of Gram-positive bacterial cell walls such as in the
Staphylococcus aureus bacteria [109]. PGN from S. aureus has been well described to activate immune cells
through TLR2-dependent mechanisms [110], and this has been shown in both murine and human MCs
where activation led to increased production of inflammatory mediators GM-CSF and IL-1β [76,98].
TLR4-mediated responses are also important in MC-mediated host defence against Gram-negative
bacteria such as Escherichia coli. It has been reported that activation of MCs by E. coli-derived
LPS, through TLR4-dependent mechanisms, results in TNF and IL-6 proinflammatory cytokine
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production [77]. Similar to multiple viral stimuli, LPS activation of MCs has also been demonstrated to
enhance IFN production by NK cells in vivo [111]. TLR9 detects CpG motifs enriched in bacteria and
other micro-organisms [79]. MCs also respond to CpG-containing DNA activation through selective
proinflammatory cytokine production. In addition to TLRs, MCs express a variety of Fc receptors.
Immunoglobulin superantigens, such as protein A of S. aureus, can bind to immunoglobulins attached
to FcεRI on MCs. Activation of MCs through this mechanism by S. aureus protein A resulted in
release of mediators such as histamine and leukotrienes [81,112]. Bacterial superantigens have also
been reported to enhance MC activation, in some cases leading to degranulation, although impacts
on cytokine production have been less well studied. Examples of these include enterotoxins A and
B, and superantigen-like proteins (exotoxins) from S. aureus [82–84]. Bacterial toxins such as those
derived from cholera, pertussis, and clostridium species have also been reported to be able to induce
MC responses [85–87,113]. A wide variety of other more pathogen-specific interactions also occur.
In vivo, complement activation also likely contributes to MC responses to bacterial products through
MC receptors for C5a and C3a. As a result of expression of multiple receptors, MCs are well-equipped
to detect and initiate a rapid response to bacteria and their pathogenic products either with or without
concurrent degranulation. In most bacterial infections, multiple mechanisms of mast cell activation
can be triggered through both direct pathogen interactions and indirect mechanisms.

10. Viral Pathogen Products

Viral products have been shown to activate MCs through multiple receptor types, as described
above, and also through TLRs and other classical viral sensors. Double-stranded RNA (dsRNA)
products of multiple viruses can activate MCs through TLR3 and other RNA sensors. Activation can
result in increased type 1 interferons and recruitment of other immune cell types such as NK cells
through chemokine production when stimulated with a viral dsRNA analog [73,90]. Other PRRs
such as retinoic acid-induced gene I (RIG-1) can recognize and respond to intracellular viral RNA
products such as dsRNA and uncapped viral RNA. Deficiency or knockdown of the RNA sensor RIG-1
in MCs resulted in blunted cytokine and chemokine production when challenged with influenza A
virus and DENV, respectively [15,23,95]. The fundamental mechanisms by which mast cells respond to
viral products are, in many cases, similar to those used by multiple other cell types. However, the
ensuing mediator response is profound in the diversity of cytokines and chemokines produced and the
amount and range of IFNs produced in several situations [16,18,19,38,73]. As described above for some
bacterial pathogen products, viral pathogen products are able to activate MCs through Fc receptors
found on the surface. These superantigens such as protein Fv (an endogenous protein produced by
the liver during viral hepatitis) and envelope glycoprotein gp120 (human immunodeficiency virus
type-1 (HIV-1) have been shown to bind to the VH3 region of IgE bound to FcεRI on MCs, resulting in
activation and release of different mediators [67,68,97]. Viruses can also produce a number of products
that modulate immune activity. One of the best examples of this is Orf virus-encoded interleukin 10,
such as that produced during Epstein Barr virus infection which has been demonstrated to enhance
mast cell proliferation, similarly to mammalian IL-10 (see Table 3). These interactions are just some of
the established mechanisms by which MCs are capable of recognizing viral pathogens and pathogen
products to elicit appropriate immune responses. However, much more work needs to be done in this
area to better define the nature and plasticity of MC responses to viral products.

11. Fungal Pathogens and Products

MCs are in a prime location to recognize foreign fungal pathogens and products to initiate
host defence mechanisms. Complex interactions between MCs and fungal pathogens have been
described, with both positive and negative regulatory roles involved. Zymosan, a cell wall component
of Saccharomyces cerevisiae, has been shown to activate TLR2 signaling elements on MCs. Activation
of TLR2 by zymosan led to increased proinflammatory mediator production such as GM-CSF and
IL-1β as well as lipid mediator leukotriene C4 [98]. Apart from TLR activation by fungal pathogen
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products, other immune cell PRRs, such as dectin-1, have a major role in antifungal immunity through
recognition and binding of β-glucans and zymosan as well [114,115]. MCs have been shown to express
dectin-1, where signaling through this receptor by zymosan from S. cerevisiae resulted in increased
reactive oxygen species and leukotriene C4 production [105,107]. Furthermore, Candida albicans yeast
and hyphae resulted in MC degranulation, production of proinflammatory cytokines and chemokines,
and recruitment of macrophages through increased chemotactic properties in a dectin-1-dependent
manner [103,104]. Although limited in number, studies providing strong evidence regarding MC
activation by fungal pathogens and products have been gaining recognition recently. For example,
chitin and derivatives such as chitosan from fungal pathogens such as Cryptococcus neoformans have
been shown to activate immune cells through pathways associated with TLR2 and Dectin-1 [100–102].
Furthermore, chitosan-containing nanoparticles have been shown to promote MC activation and
IFN-gamma and IL-17 production associated with their adjuvant properties [116]. Mature fungal
hyphae of Aspergillus fumigatus have also been reported to induce degranulation of MC with release of
β-hexosaminidase [108]. A summary of major pathogen products inducing MC activation is provided
in Table 3.

12. Conclusions

MCs are recognized as important participants in responses to viral infection and pathogen
products in multiple settings, as summarized in Figure 2. Their impacts can be positive or negative,
depending on the pathogen and immune status of the subject. However, we still have a relatively
poor understanding of the scope and importance of MC responses in human disease. The substantial
production of type I and II interferons by MCs in response to a number of viruses, together with
their production of cytokines which activate endothelium and chemokines which promote effector
cell recruitment allow for the rapid, local development of responses to pathogens. The impact of
selected MC mediators on dendritic cells and local lymph nodes promotes longer term acquired
immune responses. The ability of MCs to serve as sentinel cells during infection or tissue injury
suggests that MC activation could be a relatively unexploited route to enhance immune responses
in chronic infection or cancer. However, there are certainly situations where reducing some aspects
of MC mediator production might be beneficial, such as in severe dengue disease. Key unanswered
questions remain regarding the extent to which mast cells normally contribute to preventing infection
and promoting effective immunity in human disease. We lack a proper understanding of many of the
key signaling pathways involved in mediating selective cytokine and chemokine responses from mast
cells. Since much of MC actions are at local sites of pathogen invasion, there may be opportunities
to enhance effective early immunity at a local tissue level in sites such as the skin or airways. Too
much of our current information is derived solely from rodent models and further work in a clinical
setting to address these issues is urgently needed. Through a better understanding of the nature of
MC responses to viruses and pathogen products and understanding how they are regulated, we can
begin to build approaches to selectively activate these powerful immune cells to induce or inhibit local
immune events and harness their functions therapeutically.
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Figure 2. Mast cells can recognize and respond to pathogens either directly through pathogen
infection, or indirectly through an array of pathogen products, host defense mechanisms, or
phagocytosis. Activation results in the secretion of classical mast cell mediators that can be categorized
as degranulation-dependent or degranulation-independent. These mediators contribute to the
inflammation and changes to the site of pathogen infections, recruitment of other immune cell
types, and regulation of the immune response to pathogens.
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