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Abstract
Treatment of Staphylococcus aureus in stationary growth phase with high doses of the anti-

biotic daptomycin (DAP) eradicates the vast majority of the culture and leaves persister

cells behind. Despite resting in a drug-tolerant and dormant state, persister cells exhibit

metabolic activity which might be exploited for their elimination. We here report that the

addition of glucose to S. aureus persisters treated with DAP increased killing by up to five-

fold within one hour. This glucose-DAP effect also occurred with strains less sensitive to the

drug. The underlying mechanism is independent of the proton motive force and was not

observed with non-metabolizable 2-deoxy-glucose. Our results are consistent with two

hypotheses on the glucose-DAP interplay. The first is based upon glucose-induced carbo-

hydrate transport proteins that may influence DAP and the second suggests that glucose

may trigger the release or activity of cell-lytic proteins to augment DAP’s mode of action.

Introduction
Eradication of harmful bacteria in the human body is often cumbersome due to drug resistance
and drug tolerance particularly in biofilm embedded cells [1–7]. Biofilms accommodate a high
percentage of persister cells which are in a non-dividing and metabolically less active state [8].
Persisters are regarded as genetically identical variants among a population of unicellular
organisms that tolerate and survive high concentrations of antibiotics over extended periods of
time [9–12]. This kind of phenotypic heterogeneity is a successful bet-hedging strategy to
endure hostile conditions, such as antibiotic treatment or immune response and provides a
rationale for recurrent or chronic bacterial infections [9,13,14]. The level of persister cells
among a clonal bacterial culture is influenced by nutrient limitation, growth phase, various
stresses, quorum sensing and other factors [15–17]. Compared to the identification of numer-
ous persister-genes, information available on metabolic aspects of persisters is more limited
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[18]. A change in carbon source utilization upon glucose limitation stimulates persister forma-
tion in E. coli [19] and accordingly, E. coli persisters maintain glycerol and glucose metabolism
[20–22]. De novo synthesis of amino acids was observed with persister cells of the notorious
pathogen Staphylococcus aureus [23], which is causative of skin infections, osteomyelitis, endo-
carditis, bacteremia and further illnesses [24–27]. Multiple antibiotic resistant S. aureus strains
continue to pose a formidable challenge in hospitals and in the community [28]. The bacteri-
cidal lipopeptide daptomycin (DAP) is one of few antibiotics that is generally effective against
many S. aureus strains [29], as well as other Gram positive bacteria [30–32]. The amphiphilic
character of DAP in combination with calcium cations facilitates the incorporation into the
bacterial membrane [33]. According to the current model, oligomerization of DAP leads to
pore formation and increased permeability for ions resulting in perturbation of the proton
motive force (PMF) and cell death [34]. DAP is highly efficient also against S. aureus cells in
stationary phase, which are tolerant towards a broad range of other antibiotics [35]. As shown
previously, the eradication efficiency of S. aureus by DAP is enhanced upon combination with
other antibiotics [36,37] or D-cycloserine [38]. First cases of DAP non-susceptible strains were
documented in hospitals briefly after introduction of the drug [39]. Such strains frequently
exhibit changes in the cell envelope [40–42]. To prevent resistance formation and selection for
non-susceptible strains due to prolonged drug-treatments [7], it is necessary to develop new
efficient therapeutic strategies, with a special focus on targeting persister cells [43].

A new means for persister eradication in biofilms was achieved by a combination therapy
with rifampicin and the acyldepsipeptide antibiotic ADEP4, leading to the permanent activa-
tion of protease ClpP [44]. Furthermore, the administration of carbohydrates increases per-
sister killing by aminoglycosides due to their dependency on the proton motive force (PMF)
[45,46]. We here show that supplementing cultures of DAP challenged S. aureus cells with spe-
cific carbohydrates in vitro leads to accelerated killing, which intriguingly also pertains to
strains less susceptible to this drug. According to our data, the underlying mechanism is not-
dependent on the PMF but may be dependent on metabolization of glucose. Unraveling the
molecular basis and exploiting this phenomenon provides perspectives for a powerful anti-per-
sister therapy.

Materials and Methods

Bacteria, growth conditions, and working solutions
Bacterial strains used in this study are listed in Table 1. Unless stated otherwise, cultures were
incubated at 37°C with aeration and shaking (150 rpm) in tryptic soy broth (TSB). To provide
stationary growth phase cultures, incubations were performed overnight. In the course of this
study, two different types of TSB were used, either composed of casein peptone (pancreatic)
(17 g/L), soy peptone (A3SC) (3 g/L), NaCl (5 g/L), K2HPO4 (2.5 g/L) and glucose (2.5 g/L,
sterile filtered and added after autoclaving, or a ready-to-use powder purchased from Sigma,
both at an approximate 1:10 culture-to-flask volume ratio. Daptomycin (DAP, analytic grade
powder; designated ‘Cubicin’, Novartis Pharma, Nuremberg, Germany) was prepared freshly
prior to each application, filter sterilized (0.2 μM pore size, Whatman, Dassel, Germany) and
used to challenge stationary-phase S. aureus cells. 100-fold the MIC of DAP solution had been
determined as 400 mg/L for S. aureus SA113 before [35] and 150 mg/L corresponding to
250-fold the MIC was determined and used for NARSA strains [47]. Strain HG003 D6 [48]
was treated with 400 mg/L corresponding to 100-fold the MIC and the clinical strains with 400
mg/L corresponding to 200-fold and 800-fold the MIC for strains 616/621 and 701/703 respec-
tively. Ca2+ cations, required for DAP activity [49], were provided as CaCl2 (Merck, Darmstadt,
Germany) at a final concentration of 50 μg/mL.
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MIC determination
The MIC of all strains used in this study towards DAP was determined as described before [35]
in triplicates with at least two independent cultures grown in TSB medium. The MIC was
defined as the lowest antibiotic concentration that inhibited growth after 24 hours incubation
at 37°C without shaking.

Glucose and acetate determination
Glucose and acetate concentrations in culture supernatants were both determined using enzy-
matic kit systems (R-Biopharm, Art. No. 10716251035, Art. No. 10148261035) according to
the manufacturer’s instructions but with the following modifications: first, the supernatant of
each sample was diluted 1:10 with water prior to the reaction. For the glucose amount determi-
nation, the assay was scaled down to one third of the final volume recommended in the man-
ual. The extinction was measured photometrically at λ = 340 nm using a Hitachi spectrometer
U-2900. The acetate measurement was performed using the plate reader SpectraMax 340
(Molecular Devices) and 96 well plates (Greiner) loaded with a final volume of 200 μl of the
assay mix. Glucose (Roth, Karlsruhe, Germany) added to cultures was sterilized by filter of
0.2 μm pore size.

CFU determination
Overnight cultures of S. aureus SA113 were treated with 100-fold the MIC of DAP. Glucose
was added at indicated time-points to final concentrations of 5 g/L (25 mM) unless stated oth-
erwise. For the experiments with other compounds, glucose, fructose, ribose, xylose, glycerol,
pyruvate, succinate, arginine or 2-deoxy-glucose were added at indicated time-points to final
concentrations of 5 mM each. This concentration was chosen due to poorer aqueous solubility
of some of the compounds compared to glucose. Viable counts were analyzed by CFU analysis
on non-selective TSB agar plates. Cultures with viable counts below a threshold of 100 CFU/
mL were judged as sterilized. All viable count experiments were conducted using at least three
biological replicates.

Table 1. List of strains used in this study.

S. aureus strains Description Reference

SA113 (ATCC
35556)

NCTC8325 derivative, agr-,rsbU-. agr: accessory gene regulator quorum-sensing system; rsbU: positive regulator of
σB

[50]

MSSA 616, 621 clinical isolates, DAP MIC, 0.5 mg/L [42]

MSSA 701, 703 clinical isolates, DAP MIC, 2.0 mg/L [42]

HG003 NCTC8325 derivative, rsbU and tcaR repaired [51]

HG003 D6 Derivative of HG003 carrying SNP in SAOUHSC_00670 (pitA) and SAOUHSC_02622 (gltS). [48]

USA300 NE39 ptsG- (phosphotransferase system, glucose-specific IIABC component) [47]

USA300 NE172 ptsG- (phosphotransferase system, glucose-specific IIABC component) [47]

USA300 NE427 fumC- (fumarate hydratase) [47]

USA300 NE476 fbaA- (fructose bisphosphate aldolase) [47]

USA300 NE491 icd- (isocitrate dehydrogenase) [47]

USA300NE1003 mqo- (malate:quinone oxidoreductase) [47]

USA300 NE1046 fdh- (formate dehydrogenase accessory protein) [47]

USA300 NE1407 pyk- (pyruvate kinase) [47]

doi:10.1371/journal.pone.0150907.t001
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Statistical analysis
Data are expressed as mean ± SD. Statistical analysis is described for each experiment in the
corresponding figure legend. For all comparisons, a P value of�0.05 indicated statistical signif-
icance. All statistical analyses were performed with GraphPad Prism version 4 and 5.

Results
Cells of stationary growth phase S. aureus SA113 cultures maintain an active amino acid anab-
olism during high-level DAP treatment for several hours [23]. We assume that persister cells
recalcitrant to eradication by this drug contribute significantly to this metabolic activity. Nota-
bly, a closer inspection of killing curves of our previous study suggested an increased killing
efficiency by DAP after the addition of glucose. We here scrutinized this effect in more detail.

Addition of glucose accelerates DAP-dependent killing of stationary
growth phase S. aureus in vitro
Three SA113 cultures were grown identically in TSB medium to stationary growth phase at
which the medium is depleted for glucose [23]. 100-fold the MIC of DAP was added at time
point t = 0h to each of the cultures and at t = 3h, 5h or 7h, respectively, one culture each was
supplemented with glucose at a final concentration of 5 g/L The viable counts indicated signifi-
cantly enhanced killing when glucose was added at t = 3h compared to a culture challenged
with DAP only (Fig 1). We now refer to the observation of enhanced DAP killing upon addi-
tion of glucose as the “Glc-DAP effect”. Between t = 0h and t = 1h, the number of CFU
decreased to approximately 0.05% of the initial amount. Within the next two hours, the eradi-
cation slowed down, reflecting a typical biphasic killing behavior [9]. Of note, the addition of
glucose three or five hours after DAP challenge resulted in an eradication of persister cells in
the culture within the next five hours. In comparison, an SA113 culture exposed to 100-fold
the MIC of DAP but no glucose still contained more than 1.6x103 CFU/mL after ten hours.
Cells residing in a DAP-tolerant state for a longer period (up to 7 hours after addition of the
drug) also were susceptible to the Glc-DAP effect, albeit less pronounced. Notably, a compara-
ble behavior was observed when stationary growth phase cells were washed and resuspended in
PBS buffer, ruling out that other components in the spent medium are causative for the Glc-
DAP effect (S1 Fig).

Upon supplementing the DAP-containing medium with lower concentrations of glucose
(50 or 100 mg/L), killing of strain SA113 was only slightly affected, whereas higher glucose con-
centration markedly enhanced and killing efficiency (S2 Fig). The maximal effect was observed
with 1 g/L glucose, whereas higher concentrations (up to 5 g/L) did not accelerate killing fur-
ther. To account for glucose consumption we performed all further experiments using 5 g/L
glucose.

Glucose-enhanced killing of stationary growth phase S. aureus is DAP-
specific and independent from cell division
At this point, it was conceivable that glucose induced killing of DAP challenged cells was the
result of nutrient-dependent induction of cell division, rendering the cells generally more vul-
nerable to antibiotics. We have previously shown that stationary growth phase S. aureus cul-
tures are extremely tolerant to a number of antibiotics in vitro, even at elevated drug-
concentrations [35]. This was consistent with observations in the present study, in which drugs
targeting the cell envelope (penicillin, 100-fold the MIC, 2 mg/L, or vancomycin, 100-fold the
MIC, 400 mg/L) did not discernibly decrease the life count (S3 Fig). The addition of glucose
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did not induce killing by these antibiotics, which would be expected if the reversion to a repli-
cating mode was responsible for the reinstated drug susceptibility. We therefore conclude that
nutrient-dependent triggering of cell growth is not a reason for the Glc-DAP effect.

Enhanced killing by DAP is specific to selected carbohydrates
Are other metabolites also capable of accelerating DAP-dependent killing of stationary growth
phase S. aureus? We chose fructose, ribose, glycerol, pyruvate, succinate and arginine, all of
which are substrates or intermediates of catabolic pathways or anaplerotic reactions of S.
aureus (Fig 2A) to test this hypothesis. The compounds were added to final concentrations of 5
mM each three hours after the onset of DAP treatment. Xylose and 2-deoxy-glucose, which are
both transported into the cytoplasm of S. aureus but are not further metabolized [52,53], served
as controls. Killing was enhanced with fructose, glycerol, succinate and arginine, but only glu-
cose showed a significant effect compared to the DAP-only control. Eradication kinetics were
unaffected with xylose or 2-deoxy-glucose (Fig 2B).

As a further control, cultures were grown overnight in TSB-like medium in which glucose
had been replaced by fructose. Also these were eradicated more efficiently by the addition of
glucose, ruling out that an adaptation of metabolism to glucose during the cell cycle was mainly
causative for the Glc-DAP effect (data not shown).

The Glc-DAP effect is independent of the proton motive force
The proton motive force (PMF) is generated by the electron transport chain and reduction
equivalents originating from glycolysis and the TCA cycle. In order to examine a possible
involvement of the PMF in the Glc-DAP effect, the uncoupler carbonyl cyanide m-chlorophe-
nyl hydrazone (CCCP) was added to DAP challenged cells one hour before the addition of

Fig 1. Time dependent killing of SA113. SA113 cells were treated with 100-fold the MIC of DAP starting at
t = 0h. Glucose was added to cultures to final concentrations of 5 g/L each at time points 3h (triangles), 5h
(circles), or 7h (squares), respectively, as indicated by arrows. CFU concentrations of a culture treated with
DAP only (diamonds) were measured as a control. For statistical analysis area the delta of the CFU/mL was
calculated 1 h and 4 h after glucose addition. Delta CFU/mL (n = 3) of glucose added after 3h (from 4h to 6h),
5h (6h to 8h) and 7h (8h to 10 h) and delta CFU/mL for the same time points of the control without Glc, were
compared by 1-way ANOVA with Bonferroni's Multiple Comparison Test. ***p<0.001. n.s.: not significant.

doi:10.1371/journal.pone.0150907.g001
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glucose. CCCP impedes energizing of membranes by scavenging protons, rapidly leading to a
lack of ATP in the cell [54]. As shown previously, the activity of DAP against exponential
growth phase S. aureus is unaffected by CCCP [32]. In our experiments, CCCP treatment of
cultures during exponential growth phase ceased growth independent of DAP (S4 Fig). Treat-
ment of cells with CCCP prior to the addition of DAP resulted in approximately 10-fold

Fig 2. Influence of selected carbohydrates on DAP challenged S. aureus cultures. A) Schematic
overview of tested metabolites and their entrance into the metabolism of S. aureus and genes responsible for
selected metabolic reactions; fructose (fru), glyceraldehyde-3-phosphate (GAP), Dihydroxyacetone
phosphate (DHAP), phosphoenolpyruvate (PEP).B) Selected compounds were added to final
concentrations of 5 mM at t = 3h and the CFU values were determined after 24 hours. Groups were compared
to the untreated control group by 1-way ANOVA with Dunnett's Multiple Comparison Test. *p<0.05.

doi:10.1371/journal.pone.0150907.g002
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elevated persister levels compared to the untreated control (Fig 3), in agreement to results with
CCCP-treated exponential phase E. coli cultures [55]. The Glc-DAP effect, however, was still
observed in the presence of CCCP, suggesting a PMF independent mechanism.

Analysis of S. aureus strains defective in glucose transport and
catabolism
We next inspected selected steps of glucose transport and catabolism by exploiting specific
mutant strains of the S. aureus USA300 JE2 based NARSA Transposon Mutant Library [47].
The first two chosen strains exhibited disrupted phosphotransferase (PTS) systems, namely the
glucose-PTS specific IIABC component, SAUSA300_2476 (NE39) and the glucose-PTS spe-
cific IIBC component domain protein, SAUSA300_0191 (NE172). Compared to our PTS-posi-
tive control strain NE1046 (fdhD, formate dehydrogenase, SAUSA300_2231), both PTS
mutants’ killing curves showed a less pronounced incongruity between challenge with Glc-
DAP and DAP only (Fig 4). The reduced but still discernible Glc-DAP effect may be rational-
ized by redundant PTS systems or residual glucose transport due to secondary uptake systems
of S. aureus [52]. The results hitherto suggest the involvement of one or more metabolic path-
way(s) in the Glc-DAP phenomenon. In order to take a deeper look into central carbon metab-
olism, further transposon mutants affected at certain branch points of glycolysis, or TCA cycle,
respectively, were examined (Fig 2A). Results obtained with these mutants were inconclusive
as DAP susceptibility among the strains varied considerably even without glucose. However, a
trend towards an accelerated killing of all the tested strains upon the addition of glucose was
observed (S5 Fig).

The Glc-DAP effect is not affected by physiologic changes in the pH
The interplay between oxygen supply and an excess of glucose can lead to an overload of meta-
bolic pathways [56]. In S. aureus this results in accumulation of acetate and lactate stemming
from pyruvate and concomitant acidification of the medium [57]. We determined both the pH
value and the amount of acetate in DAP-containing cultures before and after the addition of
glucose. The medium became slightly alkalized during the first three hours of DAP treatment
(S6A Fig). After the addition of glucose the pH value rapidly decreased from 7.8 to about 7.4
and then leveled off, arguably due to glucose metabolism. The concentration of acetate was sta-
ble for the first three hours and rose upon glucose addition (S6B Fig). An artificial adjustment
of the pH value in the medium, to resemble the glucose-dependent changes, did not influence
the killing behavior by DAP only (data not shown). Thus, it is unlikely that acidification may
be causative of the Glc-DAP effect.

Strains less susceptible to DAP are also subject to the Glc-DAP effect
We next investigated, whether the addition of glucose also increases DAP-dependent killing of
strains with decreased susceptibility to this drug. Strain HG003 D6 [48] had previously been
isolated as a highly DAP-tolerant mutant generated by cyclic treatment with high doses of the
drug. The addition of glucose and DAP led to a tremendous killing also of this strain (Fig 5A)
whereas the culture treated with DAP only still contained more than 1x 108 CFU/mL seven
hours after drug-addition. The parent strain HG003 was highly susceptible for the Glc-DAP
effect reflecting a more pronounced killing behavior than SA113 (Fig 1). In addition, two DAP
sensitive strains (616, 621; MIC = 0.5 mg/L) and two less DAP-susceptible strains (701, 703;
MIC = 2 mg/L), all isolated from a patient with relapsing endocarditis during DAP therapy
[42,58] were tested for the Glc-DAP effect. Intriguingly, the killing efficiency was increased
about 100-fold (strain 703) and 600-fold (strain 701) compared to the treatment without
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glucose after 24 hours of incubation (Fig 5B). Similar results were obtained for the two less tol-
erant strains 616 and 621 (Fig 5C). While DAP is regarded as non-lytic against S. aureus [59],
the experiments with strains 616, 621, 701 and 703 revealed a drastic decrease in OD578 values
after a 24 hour period of Glc-DAP treatment (Fig 5D). The OD578 of the samples treated with

Fig 3. Influence of the protonmotive force.CCCP pretreatment of DAP challenged SA113 cultures.
Stationary phase SA113 cells were treated with 50 μMCCCP (triangles) at t = -1h, corresponding to one hour
before the addition of 100-fold the MIC of DAP. At t = 3h (arrows), glucose was added to cultures (filled
symbols). Cultures without CCCP pretreatment (squares) were handled identically. For statistical analysis
endpoint ODs after eight hours were compared by 1-way ANOVA with Bonferroni's Multiple Comparison
Test. *p<0.05.

doi:10.1371/journal.pone.0150907.g003

Fig 4. Time-dependent killing of PTS-mutants. Transposon mutants were treated with 250-fold the MIC of
DAP. Glucose was added to the culture at t = 3h (arrow). NE39 (glucose-PTS specific IIABC component,
circle), NE172 (glucose-PTS specific IIBC component domain protein, square). Strain NE1046 (formate
dehydrogenase, triangle) served as control. For statistical analysis, the area under curve (AUC) was
calculated from the time point of glucose (Glc) addition (3h). AUCs (n = 3) of all groups where compared by
1-way ANOVA with Bonferroni's Multiple Comparison Test, according to which the differences were not
significant.

doi:10.1371/journal.pone.0150907.g004
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Glc-DAP decreased by more than 75% compared to the cultures treated with DAP only. This
apparent cell lysis was observed with all four strains, irrespective of their sensitivity towards the
drug.

Discussion
Metabolite induced killing of bacterial persisters has been associated with PMF generation and
concomitant uptake of aminoglycoside compounds [20,45,46]. We here show that the lipopep-
tide antibiotic DAP also exhibits enhanced killing efficiency of S. aureus in the presence of glu-
cose. Of note, this effect was also observed with a number of strains with low DAP-
susceptibility. Our experiments with the uncoupler CCCP furthermore indicate that the Glc-
DAP effect is not merely a consequence of PMF generation. Instead, the metabolism of glucose
appears to be crucial for the Glc-DAP effect, which was neither prominent with low concentra-
tions of glucose, nor with the non-metabolizable 2-deoxy-glucose. The observations of our
study are consistent with two hypotheses for the mechanistic basis of the Glc-DAP effect. The
first one suggests an influence of Glc-transport proteins on DAP’s mode of action, while the

Fig 5. Time-dependent killing of strains with different susceptibilities towards DAP. Stationary phase
cultures of HG003, HG003 D6 and the clinical S. aureus strains 616, 621, 701 and 703 were treated with
100-fold, or 250-fold the MIC of DAP, respectively. At t = 3h, glucose was added (arrow) to the cultures (filled
symbols) and CFU values were determined over time. For statistical analysis endpoint ODs after 24 hours for
-Glc and +Glc for each strain were compared with unpaired t-test (with Welch’s correction for unequal
variances if appropriate) ***p<0.001.A)Growth-phase-dependent DAP-tolerant strain HG003 D6 (square)
and parent wild type strain HG003 (triangle). B) DAP-tolerant strains 701 (square) and 703 (triangle) (MIC = 2
mg/L). C) Sensitive strains 616 (square) and 621 (triangle) (MIC = 0.5 mg/L). D) Optical densities after 24h of
incubation. Strains were challenged with 100-fold the MIC of DAP from t = 0h. Identically treated cultures
were supplemented with glucose from t = 3h.

doi:10.1371/journal.pone.0150907.g005
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second is based upon Glc induced and DAP-specific lysis of cells. Based upon our observations
with a number of S. aureus transposon-mutants, it is conceivable that components of the Glc
PTS transport system may serve as receptors or targets of DAP. Accordingly, Glc-dependent
induction of specific PTS transporters [60,61] will increase susceptibility to DAP. A similar
effect was observed in Lactococcus lactis with bacteriocins that share biochemical features with
DAP [62]. Moreover, mutations in PTS proteins confer a high degree of DAP-non-susceptibil-
ity in Enterococcus faecium [63]. Regarding the integrity of S. aureus cells upon DAP treatment,
contradictory results have been reported. Electron microscopic images have shown tremen-
dous morphological changes of S. aureus cells during DAP challenge, but not lysis [64], in
agreement with another study also suggesting a lysis-independent mechanism of this drug
[59]. However, autolysis after DAP addition was observed, at least partially, in some S. aureus
strains during exponential phase [65]. Cell lysis may be augmented by intrinsic murein hydro-
lases. A potentiated lysis of exponential phase Staphylococcus cohnii upon addition of glucose
was described with Pep 5, a cationic bactericidal peptide produced by Staphylococcus. epidermi-
dis 5 [66]. It is conceivable that carbohydrates in combination with specific drugs induce a sui-
cidal mechanism in persister cells comparable to programmed cell death [67]. Of note,
carbohydrate metabolism influences murein hydrolase activity in S. aureus [68,69]. For exam-
ple, the pleiotropic regulator CcpA activates transcription of the hydrolase activator cidA in the
presence of glucose [70]. cidA is part of the cidABC operon which together with lrgAB is
involved in the regulation of murein hydrolase activity and autolysis [69,71,72]. According to
our previous data, an upregulation of the TCA cycle activity may lead to an overflow metabo-
lism [23] and acetate derived from pyruvate activates cidABC and lrgAB transcription. Further
studies are required to verify these speculations in regard to the Glc-DAP effect.

Recently, a resuscitation promoting factor of S. aureus was postulated that is involved in
shifting dormant cells back to a dividing state [73]. This factor can be ruled out as responsible
for the Glc-DAP effect which we also observed in buffered solution, devoid of components
found in culture supernatants. Although the regulatory network of hydrolase activity is still not
well understood, it should be considered as a potential target for the development of new anti-
persister therapies of S. aureus. Artificial activation of peptidoglycan hydrolases could thereby
lead to a random lysis process with fatal consequences for the cells independent of both the sus-
ceptibility towards antibiotics and their physiological state. It would be interesting to investi-
gate the significance of the Glc-DAP effect in the treatment of staphylococcal infection.
Notably, our experiments were based upon in vitro stationary growth phase cultures that were
challenged with DAP concentrations that exceed serum concentrations in patients treated with
this drug by more than tenfold [74,75]. Certainly, the systemic application of glucose to
enhance DAP-dependent killing of S. aureus persisters in a patient is limited, as the blood
sugar level in the human body is normally subject to homeostatic regulation. Of note, glycemia
of non-diabetic humans is in a comparable range as the glucose concentrations that we deter-
mined to enhance DAP’s function. The importance of glucose as an adjuvant for DAP may
thus have gone unnoticed in patients so far. It may be an option to improve DAP-efficiency in
the treatment of non-invasive acute bacterial skin and skin-structure infections by increasing
local concentrations of glucose. Hopefully, recent achievements regarding the eradication of
persister cells will also aid in reducing the formation of drug resistant cells that pose an ever-
growing issue in public and clinical health [4,39,76–78].

Supporting Information
S1 Fig. Time-dependent killing of SA113 cells in PBS. Stationary phase SA113 cells grown in
TSB were harvested and resuspended in PBS. At t = 0h, 100-fold the MIC of DAP was added to
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the cell suspensions. At t = 3h, one cell suspension was supplemented with glucose (filled
square), the other was left unaffected (open square) and CFU concentrations were determined
over time.
(TIF)

S2 Fig. Influence of the glucose concentration on the efficiency of the Glc-DAP effect. Sta-
tionary phase SA113 cells were treated with 100-fold the MIC of DAP at t = 0h. At t = 3h, dif-
ferent amounts of glucose were added and CFU values were determined after another four
hours. Pearson’s r coefficient: r = -0,704.
(TIF)

S3 Fig. Penicillin and vancomycin treatment of SA113 ± glucose. Stationary phase SA113
cells were treated with 100-fold the MIC of penicillin (square) or 100-fold the MIC of vanco-
mycin (triangle) at t = 0h. Glucose was added at t = 3h (arrow and filled symbols).
(TIF)

S4 Fig. Effect of CCCP on growth of SA113. SA113 was grown in TSB supplemented with
glucose (t = 0h, squares), 100 μMCCCP (t = 0h, diamonds), glucose and CCCP (t = 0h, trian-
gles), or glucose (t = 0h) and CCCP (t = 3h) (circles), respectively.
(TIF)

S5 Fig. Investigation of enzymatic branch points in glycolysis and TCA cycle. Time depen-
dent killing of stationary phase cultures with 250-fold the MIC of DAP. NE427 (fumC-, fuma-
rate hydratase, diamonds), NE476 (fba-, fructose bisphosphate aldolase, squares), NE491 (icd-,
isocitrate dehydrogenase, triangles), NE1003 (mqo-, malate-quinone oxidoreductase, x-mark),
NE1046 (fdh-, formate dehydrogenase, circles), NE1407 (pyk-, pyruvate kinase, asterisks). For
statistical analysis area under curve (AUC) was calculated from the time point of glucose (Glc)
addition (3h). AUCs (n = 3) of all groups where compared to NE1046 fdh by 1-way ANOVA
with Dunnett's Multiple Comparison Test.
(TIF)

S6 Fig. pH and acetate/glucose measurement. Cultures were treated with 100-fold the MIC of
DAP at t = 0h. A) Glucose was added (filled squares) at t = 3h (arrow) and pH values were
determined over time. B) Acetate (triangle) and glucose (square) measurement of a culture
with glucose added at t = 3h.
(TIF)
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