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Abstract: Feline morbillivirus (FeMV) was first isolated in stray cats in Hong Kong in 2012. Since its
discovery, the virus has been reported in domestic cats worldwide, including in Hong Kong, Japan,
Italy, US, Brazil, Turkey, UK, Germany, and Malaysia. FeMV is classified in the Morbillivirus genus
within the Paramyxoviridae family. FeMV research has focused primarily on determining the host
range, symptoms, and characteristics of persistent infections in vitro. Importantly, there is a potential
association between FeMV infection and feline kidney diseases, such as tubulointerstitial nephritis
(TIN) and chronic kidney diseases (CKD), which are known to significantly affect feline health and
survival. However, the tropism and viral entry mechanism(s) of FeMV remain unknown. In this
review, we summarize the FeMV studies up to date, including the discoveries of various FeMV
strains, basic virology, pathogenicity, and disease signs.

Keywords: chronic kidney disease; feline morbillivirus; paramyxovirus; persistent infection;
tubulointerstitial nephritis

1. Introduction

FeMV Belongs to Family Paramyxoviridae

Paramyxoviruses are enveloped, non-segmented, negative-sense, single-stranded RNA
viruses [1,2]. They infect a large variety of mammalian hosts, such as humans, mice, pandas, hyenas,
whales, bats, rats, dogs, and cats, as well as non-mammalian hosts, such as birds and reptiles [1,3–7].
Many pathogenic viruses within the Paramyxoviridae family significantly affect animal and human health.
Examples include measles virus (MeV), mumps virus (MuV), Newcastle disease virus (NDV), Rinderpest
virus (RPV), and the highly pathogenic zoonotic Hendra virus (HeV) and Nipah virus (NiV) [1,4,8,9].
Therefore, the outbreak of these viruses can cause critical human and veterinary health burden, as
well economic damage to several livestock industries [10–13]. The Morbillivirus genus within the
Paramyxoviridae family contains highly infectious animal viruses, including peste-des-petits-ruminants
virus (PPRV), canine distemper virus (CDV), and cetacean morbillivirus (CeMV), which can cause
severe and sometimes fatal systemic disorders [14–16]. In 2012, a previously unknown virus now
named feline morbillivirus (FeMV, formerly abbreviated FmoPV), was discovered in Hong Kong to
infect cats and subsequently classified in the Morbillivirus genus [1,17,18].

There are six genes in the paramyxovirus genome arranged in order 3′-N-P/V/W/C-M-F-HN/

H/G-L-5′ [1]. The negative-strand RNA is tightly bound to the nucleocapsid (N) protein and forms
a ribonucleoprotein complex (RNP) along with the large (L) RNA-dependent RNA polymerase
and the phosphoprotein (P) [19]. The matrix protein (M) is a non-glycosylated peripheral
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membrane protein involved in virus particle assembly and budding [20,21]. Viral attachment
and entry into target cells depend on two surface glycoproteins, the fusion (F) and the attachment
or receptor binding [hemagglutinin–neuraminidase (HN)/hemagglutinin (H)/glycoprotein (G)]
glycoproteins [3,22]. Paramyxovirus attachment glycoproteins bind to cellular receptors, such as
neuraminidase– proteinaceous receptors (for HN), ephrinB2 and ephrinB3 (for G), and SLAM (also
known as CD150, for H) [23–26]. After receptor binding, the two surface glycoproteins undergo
conformational changes and trigger F to undergo the viral-cell membrane fusion cascade that results in
viral entry. This process facilitates fusion of viral and host cell membranes and viral entry into host
cells [27,28].

2. Discovery of Various FeMV Strains

FeMV is an emerging morbillivirus that has been isolated and studied by numerous research groups
worldwide. Cats infected with FeMV have been detected in Hong Kong, Japan, Italy, United States,
Brazil, Turkey, United Kingdom, Germany, Malaysia (Figure 1). FeMV RNA was first detected in 56
out of 457 stray cats (12.3%, 53 urine samples, four rectal swabs and one blood sample) by reverse
transcription polymerase chain reaction (RT-PCR) utilizing consensus primers designed using the
partial sequence of the morbillivirus L gene, a highly conserved sequence within the genome [1,10].
The three complete genome sequences (761U, 776U, and M252A) had less than 80% nucleotide identities
to known paramyxoviruses [1]. The three genomes followed the characteristic paramyxovirus genome
layout, the rule of six, and the herringbone nucleoprotein morphology [1,29,30]. Based on these
observations and the phylogenetic analysis, the three strains were added to the Morbillivirus genus [1].
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Since then, new FeMV strains have been continuously isolated from cat urine samples and
identified by RT-PCR based on the partial L gene sequences. In 2014, viral RNA was detected in five
out of 82 urine samples (6.1%) and one among ten blood samples (10%) in Japan. The six unknown
viruses were determined to be FeMV strains (SE4, CL5, SE7, SE14, MS25, and MS26), as they shared
92–94% identity with the three viruses identified in Hong Kong [31]. Furthermore, three strains (SS1,
SS2 and SS3) were isolated from 13 cat urine samples and had a 90–99% nucleotide similarity to the
isolates from Hong Kong. SS3 showed an around 99% similarity to strain M252A [32]. Based on the
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high similarity between FeMV strains identified in Japan and Hong Kong, the researchers suggested
a possible transmission of FeMV by unidentified vectors. For instance, infected cats may have been
transported between the two countries [32].

Partial L gene sequences of FeMV strains were amplified using RT-PCR from samples such as
cat urine, kidney, and blood [2,31]. The large protein sequences from the different FeMV strains were
aligned in Figure 2. Whole genome sequences of some viruses were determined by various techniques,
such as overlapping RT-PCR amplicons, next-generation sequencing (NGS), and sequence-independent
single primer amplification (SISPA) [2,5]. The partial and whole genome sequences known to date are
shown in Table 1. MiJP003 is one of the FeMV strains whose complete genome sequence has been
determined [2]. Interestingly, the genomic organization and the similarity analysis results showed that
the intragenomic region between F and H is different from other strains [2]. This suggests a possible
recombination event among the known FeMV strains [2,33].
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Figure 2. Diagram of the Morbillivirus family. The phylogenetic tree was built after obtaining the RNA
polymerase/large protein sequences of the viruses from the NCBI Protein Database. The protein
sequences were aligned by using the COBALT multiple alignment tool and the fast-minimum
evolution method and visualized using FigTree. The virus names and GenBank accession numbers
are: Feline morbillivirus (FeMV) strains TV17 (AVH81382.1), Thai-U16 (AVD98481.1), Piuma/2015
(AMM62640.1), US1 (AMH87247.1), 761U (YP_009512964.1), 776U (AFH55526.1), M252A (AFH55534.1),
SS3 (BAR91703.1), SS2 (BAR91698.1), SS1 (BAO58314.1), ChJP073 (BAP74678.1), MiJP003 (BAP74672.1),
OtJP001 (BAP74666.1), A1 (AVT56121.1), H10 (AVT56123.1), H1 (AVT56124.1), S1 (AVT56126.1),
H3 (AVT56127.1), S2 (VT56128.1), FmoPV/TR/Sev (AMZ80122.1), FmoPV/TR/507 (AMZ80121.1),
FmoPV/TR/486 (AMZ80120.1), FmoPV/TR/109 (AMZ80119.1), FeMoV/TR/Moj (ALM58465.1),
FeMoV/TR/Chls(ALJ78003.1), PCS139 (AQV13350.1), RSS88 (AQV13353.1), UPM53 (AQV13352.1),
UPM10 (AQV13351.1), UPM23 (AQV13349.1), GT2-Gordon (QBC65287.1), GT2-TV25 (QBC65293.1);
cetacean morbillivirus (CeMV)—2990 (AYR16899.1), phocine distemper virus (PDV)—Wadden
(YP_009177604.1), rinderpest virus (RPV)—LA96 (AEX65767.1), peste-des-petits-ruminants virus
(PPRV)—Turkey2000 (CAH61259.1), canine distemper virus (CDV)—PS (AFG24211.1), measles virus
(MeV)—Edmonton (AAA75501.1).
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Table 1. Reported FeMV complete/partial sequences.

Virus Strain Country Reference Sequence GenBank Accession No.

FeMV

761U

Hong Kong [1] Complete

JQ411014

776U JQ411015

M252A JQ411016

SE4

Japan [31] Partial (L gene)

AB828138

CL5 AB828139

SE7 AB828140

SE14 AB828141

MS25 AB828142

MS26 AB828143

SS1

Japan [32] Complete

AB910309

SS2 AB910310

SS3 AB910311

OtJP001

Japan [2] Complete

AB924120

MiJP003 AB924121

ChJP073 AB924122

Piuma/2015 Italy
[42] Partial (L gene) KT306750

[5] Complete KT825132

US1 US [43] Complete KR014147

BR1 Brazil [12] Partial (L gene) KX452077

FmoPV/TR/109

Turkey [10] Partial (L gene)

KU053510

FmoPV/TR/486 KU053511

FmoPV/TR/507 KU053512

FmoPV/TR/Sev KU053513

A1

UK [44] Partial (L gene)

MG640027

S9 MG640028

H10 MG640029

H1 MG640030

S6 MG640031

S1 MG640032

H3 MG640033

S2 MG640034

TV17 Germany [45] Complete MG563820

1073U

Italy [34] Partial (L gene) N/A434K

1568K

Tremedino/2018
Italy [41] Complete

MK088516

Pepito/2018 MK088517

UPM23

Malaysia [35]

Partial (L gene)

KU646847

PCS139 KU646848

UPM10 KU646849

UPM53 KU646850

RSS88 KU646851

UPM23

Partial (N gene)

KU646852

PCS139 KU646853

UPM10 KU646854

UPM53 KU646855

RSS88 KU646856

FeMV-GT2
Gordon

Germany [46] Complete
MK182089

TV25 MK182090

* N/A indicates not available.
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The rate of FeMV-positive urine samples has varied between studies. One possible explanation is
the different clinical and environmental backgrounds of the samples and donors. Stray cats are more
easily infected, as they have a higher risk of exposure to infectious agents and conditions, thus the
positive rate of the virus in stray cats is higher than that in household cats [10,31,34,35]. Interestingly,
unneutered male cats showed a higher risk of FeMV infection than female cats. This may be due
to higher activity and aggressive tendencies of male cats, such as territorial fighting and marking
behaviors [33,35].

3. FeMV Detection Techniques

To isolate new FeMV strains, several techniques have been developed to increase detection
efficiency. For instance, a real-time RT-PCR system showed an over ten times higher sensitivity than
the conventional RT-PCR method. Using real-time RT-PCR, 25 FeMV positive urine samples were
detected out of 166 samples (15.1%). This was about twice the positive rate than the previous study,
which showed only six positives out of 82 (7.3%) [31,36]. Furthermore, the reverse transcription
loop-mediated isothermal amplification (RT-LAMP) assay has a 100 times higher sensitivity and is
time-efficient as compared to conventional RT-PCR [37]. An enzyme-linked immunosorbent assay
(ELISA) was also developed and applied for serological detection of FeMV [38]. The purified FeMV P
protein was used in the assay as an antigen, because (1) it is important in viral replication, (2) is highly
expressed in infected cells, (3) has less conserved gene sequence, and (4) does not need post-translational
glycosylation [38]. The P protein-based ELISA assays have been developed for other paramyxoviruses
and show higher accuracy and specificity as compared to conventional methods of detection [39,40].
Using ELISA, P protein antibodies were detected in 22 of 100 cats (22%), supporting previous study
results [1,32,33].

4. Signs of FeMV-Infected Cells and Cats

In vitro, FeMV has been shown to cause cytopathic effects that include cell rounding, detachment,
lysis, and syncytia formation in infected Crandall–Reese Feline Kidney (CRFK) cells [1,32,41]. Clinically,
FeMV-positive cats have shown urinary tract signs (renal disorders and residue in urine), gastrointestinal
signs (anorexia, diarrhea, and vomiting), as well as weight loss, fever, and depression. Additionally,
infected cats had decreased red blood cell, hemoglobin, albumin, and urobilinogen counts, as well as
higher alanine transaminase, alkaline phosphatase, and bilirubin levels as compared to uninfected
cats [10]. However, the authors did not state whether the six FeMV-positive cats were all hospitalized or
healthy. Furthermore, they mentioned that some FeMV-positive cats were also positive for other viruses,
such as Feline Coronavirus, feline immunodeficiency virus, and feline leukemia virus. Therefore,
the signs observed cannot be concluded as caused solely by FeMV.

German strain GT2 (FeMV-GT2), identified in 2019, was isolated from a cat with polyuria–
polydipsia syndrome. FeMV-GT2 is phylogenetically distinct and belongs to a different subgroup than
other known FeMV strains. FeMV-GT2 can infect cells, such as renal and pulmonary epithelial cells
and primary cells from the cerebrum and cerebellum. FeMV-GT2 also infected immune cells, such as
CD4+ T cells (40–70%), CD20+ B cells, and monocytes (20–40%) [46]. However, some of the authors’
observations in this study did not match the previous studies. First, the authors did not observe
any cytopathic effects, including syncytia formation, in feline kidney cell lines. Second, the authors
suggested that the prevalence of the strain was only 0.83% in urine, which is much less as compared to
other studies. This may be due to (1) possible RNA degradation during a few weeks of storage before
RNA extraction from the samples and (2) the high genetic diversity between strains [2,33,46,47].

5. Virology, Tropism, and FeMV Entry into Host Cells

The in vitro host range of FeMV infectivity has been studied in 32 different cell lines that originated
from 13 different animal species, including human, cat, dog, mouse, rat, African green monkey, rabbit,
ferret, mink, quail, cattle, horse, and swine [47]. The cells were incubated with the FeMV SS1 strains
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and cultured for two weeks, and the viral infection was detected by RT-PCR that amplified the L
gene. Kidney cell lines derived from both cats and African green monkeys, as well as other feline
cell lines, including epithelial, fibroblastic, lymphoid, and glial cells, were susceptible to the viral
infection. This suggests the receptor(s) for FeMV, which remain(s) unknown, is(are) ubiquitously
expressed, at least in cats. Human cell lines were not susceptible to FeMV, suggesting there is low risk
of cross-species transmission between humans and felids [47]. Similarly, transmission between cats
remains undetermined. So far, cohabitation has not caused most cats to become FeMV-positive [10].
However, due to the high genetic diversity of the virus and the relatively high mutation rate of the
paramyxoviruses, including potential gene recombination, FeMV may have the capacity to adapt to
new host species such as humans through physical contact with cats [2,33,47].

Little is known about the specific viral entry mechanism for FeMV. However, host cell receptors
such as SLAM (CD150) and nectin-4 are potential candidates, since other morbilliviruses, such as
CDV, MeV, RPV, and PPRV use them as their primary receptors for their respective hosts [2,48,49]. For
example, MeV suppresses the immune system by binding to the human SLAM on dendritic cells [50,51].
CDV interacts with monkey, dog, and feline SLAM, but less efficiently with the cells expressing human
SLAM [52–54]. Since receptors are one of the crucial factors to determine the tissue tropism and host
range of a virus, it is important to identify the receptor of FeMV [2,53]. Interestingly, the cleavage
site of the FeMV F protein is different from the typical cleavage site of other known morbillivirus F
proteins. Although immunoblot analysis showed FeMV F cleaved into the typical F1 and F2 subunits,
the FeMV F protein has a single basic proteolytic cleavage site, while other morbillivirus F proteins
have multibasic cleavage sites [1,32,55]. This observation suggests that different proteases may cleave
the FeMV F protein, which may affect viral entry and host cell tropism.

6. Possibility of Persistent FeMV Infection

Several studies have shown evidence of persistent infection with FeMV [13,32,33,43,46].
For example, FeMV strain US1 was obtained from a male domestic cat in 2013, and the identical strain
was detected in the same cat 15 months later based on amplification and sequencing of the H gene [43].
Furthermore, almost half of the infected cats (14 out of 29) were positive not only for RNA, but also
for antibodies against the N protein [33]. Further, two cats infected by FeMV strain GT2 shed the
virus in their urine for up to several years [46]. These results suggest that persistent FeMV infection is
possible. Interestingly, while cat urine (50.8%) and kidney (80.0%) samples were found FeMV-positive
as determined via nested RT-PCR targeting the L gene, blood samples were all FeMV-negative [35].
This suggests that the cats were not viremic when the samples were collected. These observations
suggest that FeMV either has a long incubation period or a short viremic duration [35]. Another
possibility is that during early stages of infection, FeMV in circulation may infect lymphocytes and is
below the threshold of PCR detection [56,57]. Overall, the pathogenesis of FeMV remains not well
understood. Further studies will be required with a larger sample size and various incubation periods
to understand persistent FeMV infections.

7. Controversies of FeMV Studies

A controversy surrounding FeMV research is whether the virus is involved in tubulointerstitial
nephritis (TIN). This is one of the primary causes of renal failure, which can lead to and may
trigger chronic kidney disease (CKD). This is one of the most common metabolic diseases of cats,
particularly for older cats, frequently causing feline death [42,58,59]. There has been a suggested
association between FeMV and TIN after the discovery that seven out of 12 FeMV-infected cats
had TIN [1]. Additionally, four of the fixed kidney tissues from ten cats with nephritis (40%)
were FeMV-positive [31,60]. Furthermore, a significant association between FeMV infection and
TIN was found based on immunohistochemistry (IHC) [60]. The pathology observed in 38 kidney
tissue samples was consistent with chronic kidney disease, including interstitial cell infiltration,
glomerulosclerosis, tubular atrophy, and fibrosis. The authors also compared FeMV-positive and
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negative samples, scored and statistically evaluated the correlation between FeMV infection and TIN,
and found particular statistical significance in tubular atrophy, luminal expansion, urinary casts for
renal tubules, inflammatory cell infiltration, and fibrosis in the interstitial areas. The differences were
significant for thickness of capillaries and glomerulosclerosis in renal tubules [60]. On the other hand,
other conducted studies were unable to find a clear statistical relationship between cat nephritis and
FeMV infection [10,12,32,34,35,44]. FeMV, however, might be involved in CKD or lower urinary tract
diseases (LUTD), based on the reported IHC detected in 19 cat kidney tissues of FeMV-infected cats [33].
However, the authors proposed that FeMV may not necessarily cause feline urinary tract diseases,
but simply act as a helper or bystander [33]. Several possible explanations of this controversy have
been proposed. First, some feline chronic diseases, including TIN and CKD, can still develop when no
FeMV RNA is detected in urine. Second, the research that showed no clear association between FeMV
and TIN or CKD might have chosen indirect markers for detection. Finally, the primers used for FeMV
detection may be relatively poorly optimized [60]. Another controversy in the field is the potential
cross-reactivity between FeMV and CDV. Sakaguchi et al. showed immunoreactivity of the anti-FeMV
N antibody to CDV N, and of anti-CDV dog serum to FeMV [32]. However, other studies did not find
any cross-reactivity between these two viruses using an immunofluorescence (IF) test for anti-FeMV
serum binding to CDV N, an ELISA assay to test cross-reactivity between CDV P and FeMV P, and an
RT-LAMP assay using the RNA extracted from CDV-infected Vero cells [33,37,38].

8. Conclusions

Cats are among the most common household pets. Feline kidney diseases such as TIN and CKD
are among the leading causes of death in domesticated cats, particularly in geriatric cats. Although the
link between FeMV and kidney diseases has not been clearly defined, an association is possible, even if
it is not causal. It is possible that some cats establish persistent FeMV infection, shedding FeMV RNA
in their urine for extended periods of time. Moreover, considering the high genetic diversity of FeMV,
there is a possibility for cross-species infections. Therefore, FeMV research may have significance
beyond feline health. Since FeMV is a relatively newly identified virus, currently, there are not enough
case studies or clinical data available. Therefore, further studies with larger sample numbers or full
genome sequences of the identified strains would be beneficial to understand the effects of FeMV in
the worldwide feline health.
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