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It is as if man had been appointed managing director of the  
biggest business of all, the business of evolution . . . the  

sooner he realizes it, the better.
Julian Huxley

Introduction
Moving down the food chain to a more plant-based diet with 
less nicotinamide encouraged fertility over the last 30 000 years 
or more.1 This led to population booms with benefits, but the 
Neolithic was also the crucible of disease and inter-group vio-
lence over resources. Signalling molecules from diet and micro-
biome, such as serotonin, played a part in settling down and 
domestication.2–8 Domestication and diet is fundamental to 
our recent evolution (even dogs changed their diet to domesti-
cate).9–14 A pro-fertility diet and a pro-family communal child 
rearing culture saved us, we think, from extinction with orna-
mentation religion and the arts being survival and mating 
mechanisms, not ‘icing on the cake’, as was enlightened pro-
social thinking, language, and writing.15–49

Cereal cultivation moved down first from the ‘hilly flanks’ to 
Mesopotamian riverside alluvial plains that allowed animal 
domestication but typically still needed steppe pastoralists to 
specialise in meat production with surpluses to trade for cere-
als.50–63 History can be seen in the light of a drive for an omniv-
orous diet whether trades, raids, or (civil) wars; many social 
relationships, belief systems, and institutions may be built on 
this essential infrastructure needed for reproduction. Overall 
progress was made when amalgamations occurred between 
agrarian farmers and pastoralists or where geography allowed 
mixed farming and a balanced diet in the first place.64–68 A 

high-meat high-cuisine diet however was often the preserve of 
the clever ruling classes and more recently the middle classes 
that expanded on ‘wheat and beef ’ in the wealthier and usually 
Anglophone countries.69,70 This desire for meat continues 
against ecological opposition and climate concerns but may 
have good biological reasons.71,72

Nicotinamide adenine dinucleotide (NAD) can be synthe-
sised from tryptophan via the kynurenine ‘immune tolerance’ 
pathway, but the preferred source is dietary nicotinamide 
mainly derived from animal products (Figure 1). Nicotinamide 
has a detoxification pathway via nicotinamide 
N-methyltransferase (NNMT) that links to methyl metabo-
lism. Nicotinamide adenine dinucleotide consumers control 
metabolism and NAD sensors drive the quest for food and 
construction of a NAD world. There are important interac-
tions with the immune system, but it is complex with some 
currently irreconcilable effects including on disease models 
depending on dose, metabolite, and even route of administra-
tion so we have had to simplify to support our hypothesis: 
although some contradictions may pertain to mixing ultimate 
and proximate causation and a system where resting immuno-
logic state and secondary or even tertiary homeostatic reactions 
cannot always be easily separated.

Our history is full of famines that did not affect fertility in 
the direction anticipated, except when extreme. We explain 
high fertility on poor diets by an interaction with tryptophan 
catabolism. Tolerance of the allogeneic foetus occurs by con-
trolling indoleamine 2,3-dioxygenase (IDO) that also affects 
microbial survival and symbiont acceptance. Kynurenines 
modulate T cells.73–78 This pathway is conditioned by 
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nicotinamide and is perhaps the basis for our constitution that, 
with our collaborative, sexual, and social natures, forms the 
mainspring for successful civilisations.79,80 Mismatched diets 
perhaps cause delayed demographic and exaggerated disease 
transitions, and friction. Dietary friction between sexes has 
been dated to the invention of ploughs relegating women to 
secondary producers of food (although women may, in fact, 
prefer a lower meat diet to aid reproduction).81–83

Meat as a Main Nicotinamide Source
Meat was key to our evolution with extensive meat sharing but 
also aggression with hustling and wars to obtain it, or the 
wherewithal to stock-breed whether land, water, or fossil fuels. 
Meat has, like cereals, been revered in our early cultures and 
gods, often with animal or human sacrifice, and hunting was 
the main subject of cave drawings. Meat has a divided literature 
with emotive titles such as ‘The Hunting Apes’ or ‘The Meat 
Crisis’.84–86 There is evidence for a genuine ‘meat hunger’ and 
that meat is not all about violence for violence’s sake, or status, 
or sexual preferment: vegetarian movements demonstrate the 
need for balance.87

Steppes up to the Plate
Reversion to hunter-gathering once an agricultural society was 
rare – it did occur on climatic edges (such as Norse Greenland) 

but more tellingly where populations were short of meat and 
prone to pellagra, as in the Americas, suggesting that the ben-
efit-to-risk ratio of a cereal diet could be a close call and some-
times reverse.88,89 At the end of the Roman empire, settled 
agriculturalists defected to the pastoralist Huns suggesting that 
the drive for meat can contribute to the demise of empires. 
Many early trading arrangements were centred on pastoralist 
to agriculturalist ‘meat for cereal’ deals and trading routes that 
originated as herding pathways, such as the Silk Road. Meat 
intake has long been linked with success as individuals, as 
tribes, or as countries. Much of African history can be seen in 
this light with many other examples found in all other 
continents.90

Empires and Economic Divergences: Meat Eaters 
Win
Columbian and other exchanges and conquests: diet 
and ‘virgin soil ’ disease

The Columbian exchange was an example of meat-eating 
Europeans conquering a maize-based low-meat culture with 
the winners having better technological brains and a better 
constitution to fight many infectious diseases. On other occa-
sions, where immunity can develop, diseases can protect against 
‘virgin’ colonialists as seen with yellow fever and malaria, but 

Figure 1.  Nicotinamide switch. Higher doses shift the immune system from tolerance of infection to intolerance of antigens with consequences for both 

disease and fertility. Many modern therapies try to rebalance the immune system but moderation of the nicotinamide dose might have prevented the 

problem. AHR indicates aryl hydrocarbon receptor; BD, Behçet disease; IL, interleukin; MS, multiple sclerosis; NAD, nicotinamide adenine dinucleotide; 

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TGF, transforming growth factor; TRYP, Tryptophan.
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those with the better constitution still usually win.91–97 Animal 
diseases can alter dynamics – rinderpest or sleeping sickness in 
cattle aided the colonial acquisition of Africa and coincided 
with outbreaks of pellagra in the local population. It has been 
surprisingly difficult during our history to achieve even subsist-
ence-level balanced diets so getting ahead of the meat curve 
may have been crucial for success – with more conventional 
explanations being secondary often necessary, but not suffi-
cient, developments98–116 (Figure 2).

Post Black Death

Most historical crises and cycles were famine followed by plague 
or war then a baby boom, then repeat. The more unusual benefi-
cial long-term effects of the Black Death are attributed to 
increased pastoralism and availability of meat with higher wages 
from a reduced workforce. Agricultural developments helped as 
they benefitted the nitrogen cycle through crop rotation, 
ploughing and feeding animals in winter, and more use of ani-
mal by-products such as manure117,118 (Figure 3). This benign 

Figure 2.  A well-balanced diet is the base from which all else follows. Formulae for success had emphasised the necessity of the higher tiers, although 

without much agreement. Superstructure is however important as positive feedback loops further secure a high-quality diet.

Figure 3.  After the Black Death (triggered by famines), the population remained remarkably stable as did the supply of meat helped by increased wages. 

This period is generally agreed to have been a take-off for the industrial revolution.
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period petered out in the early 18th century due to climate 
change from volcanic activity, poor harvests, wars (impeding use 
of imports), and epizootic diseases of cattle. This decline in diet 
quality that became virtually vegetarian coincided with a spurt 
of population growth due to increases in fertility (as happened 
in the Neolithic).119–139 Even rich peers suffered so one can 
imagine how much life deteriorated for the poor making the 
increase in population even more remarkable140–161 (Figure 4). 
This state of affairs was mitigated later in the mid-19th-century 
United Kingdom by meat imports and by revised Corn Laws 
that enabled the price of grain to fall along with imperialistic 
acquisitions to avoid crises with civil war and food revolts. The 
concept (and German argument for their expansion) of 
‘Lebenstraum’ – farming space – is generalisable with ‘Landrush’ 
phenomenon explaining many aspects of many European 
empires’ behaviour. Sometimes, flexing between agrarian and 
pastoralism is done peaceably but even within economies can 
cause friction as with the Scottish ‘clearances’ needed to feed 
meat to cities.162–164

Lessons from America: common denominator is 
pellagra

America’s ‘King Cotton’ states and industrial North in the 19th 
century form another link with pellagra. The poorer and weaker 
South (home to pellagra) lost the civil war, losing both men 
and even more cattle. The North industrialised with many 
Yankee inventions and better wages that emerged ‘out of thin 
air’.165 In effect, a poor-meat diet and pellagra held back a 
modern economy for over 50 years166–169 (Figure 5). Fertility 
declined faster and earlier in the richer New England states 
and data support high fertility rates in slaves, short of starva-
tion170–174 (Figure 6). As happened in the north of Italy, nicoti-
namide deficiency delays or stalls the switch to modernity 
however defined.175–177 A classic demographic transition as 

happened in the United Kingdom from 1850 correlates, by 
contrast, with rising meat and therefore nicotinamide levels 
(Figure 7).

There has been debate over economic divergences between 
England and Europe or East and West. All relate to higher 
wages or natural resources allowing a higher meat intake. 
Nicotinamide adenine dinucleotide supply is the crucial varia-
ble. The first ‘luxury’ above subsistence level is meat. We now 
live in an ‘Age of Extremes’ without fully recognising that a 
balanced diet is at the base of progress or that NAD homeosta-
sis is not only the master variable but also the master 
narrative.178–184

Lessons From Asia: ‘Land to the Tillers’ and Triumph 
of Gardening
Over the last 75 years, ‘tiger’ economies led by Japan, Taiwan, 
and South Korea transformed themselves reaping a demo-
graphic dividend from a healthy youthful population. China 

Figure 4.  After the Black Death, the meat supply remained affordable 

and in step with the price of grain until around 1650. Then in the ‘little 

ice-age’ (perhaps triggered by population collapse in the new world) with 

harvest failures, and wars, meat became very expensive and with the 

exception of the wealthy the population became virtually vegetarian. 

Consistent with our hypothesis, fertility and population took off as did TB 

in the period just before the United Kingdom’s demographic transition 

around 1850 and the decline of TB as meat became more available, 

largely thanks to the wealth to pay for imports. TB indicates tuberculosis.

Figure 5.  The poor diet in pellagra-ridden American southern states 

delayed economic progress, despite being the source of the international 

cotton industry.

Figure 6.  Comparison of birth rates between the industrial North and the 

South of the United States. Southern states prone to pellagra maintained 

high fertility for a lot longer as did the pellagra-prone province around 

Venice a century earlier – both examples lengthening their demographic 

transitions.
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and India are following after false starts – such as the ‘Great 
Leap Forward’ pulling farmers off the land for ill-conceived 
industrial projects causing famine – or coercive family plan-
ning. Others are behind such as the Soviet bloc, North Korea, 
Cambodia, and Papua, New Guinea.185–195 Land and agrarian 
reform whether internally or externally driven (as happened in 
Japan) with reversion to small-holding mixed farming and later 
encouragement of export-led manufacture all improving diet 
was key to success. The tension between rural and town is 
striking with the latter being motivated to keep food and meat 
prices low: support for rural peasants in the form of land reform 
drives local innovation and efficiency and seems to work. Later, 
corporate agricultural arrangements can make sense once 
countries can import quality produce such as meat – policies 
that subsidise or import cheap or free cereals may however be 
disastrous in the long term.

Avoiding Malthusian Traps
Success and prosperity relate to avoiding Malthusian traps set 
up by calorific surpluses leading to population booms that bust. 
England and later America and now China all achieved this on 
the back of a higher nicotinamide diet that suppressed fertility 
and allowed better brains and longer lives. Malthus was per-
haps right when discussing cereal-dependant economies but 
could not factor in food quality particularly if that relates not 
only to the ‘food necessary for existence’ but also to his second 
postulate that human passion between the sexes ‘would remain 
in its present state’.196–199 If societies get ahead on the meat 
curve, either after a Malthusian crash or from economic suc-
cess, then lower fertility and better brains drive technological 
and economic progress in positive feedback cycles.200–220 It will 
be ironic if meat equity could have avoided such high global 
populations and high meat and cattle needs that are a major 
contributor to deforestation and ‘green-house’ gases through 
the use of fertilisers, water, and fossil fuels. Technological 
advances, often invoked to show that Malthus was wrong, 

could be temporary and ultimately cataclysmic fixes unless 
technology changes its biases towards optimal meat intake 
rather than more and more cereals delaying demographic tran-
sitions221–226 (Figure 8).

Nicotinamide, Gut Microbiome, and Tuberculosis
Nutritional symbioses include organisms that are dangerous by 
reputation, such as tuberculosis (TB). These symbionts support 
poor diets as does the gut microbiome but become dysbiotic if the 
diet becomes very poor. ‘Latent’ TB is metabolically active using 
host-derived cholesterol in exchange for nicotinic acid (Figure 9). 
Tuberculosis rarely evolves to evade the immune system (unlike 
the ‘arms races’ of pathogens): hosts may be tolerant for good 
metabolic reasons but seem perfectly capable of sterilising granu-
lomas when they choose.227–237 The role of nutrition in activating 
latent TB has long been implicated and the harvest of deaths 
from TB when under dietary and other stresses often noted.

Gut symbioses favour complex carbohydrate busters: even 
the oligosaccharide concentrations in breast milk affect the 
infant microbiome and make a contribution to nicotinamide 
levels (ruminants rely on their microbiome to supply vitamin 
B; Figure 10). Helminth interactions show extensive use of the 
tryptophan-NAD pathway that might benefit the host and 
NAD relationships extend to malaria and the host’s genetic 
responses. With malaria, an ecological approach is necessary as 
agricultural static water encourages Anopheles larvae, which 
grow on maize-specific pollen and then are more likely to be 
dichlorodiphenyltrichloroethane (DDT) resistant, and the 
adult malaria vector bites humans where there are few other 
animals to target.238–244 Emergent diseases in general are all 
more likely to evolve or become dysbiotic in poor ecological 
circumstances.

Tryptophan Metabolism and the Immune System
‘Host-directed therapies’ that enhance immunity through nor-
malising NAD-consumer and energy-related sensors, such as 

Figure 7.  Fertility rates fell after the death rate and as meat intake rose in the United Kingdom’s demographic transition. This is the opposite of what 

happened in the pellagra-prone provinces of Italy and the United States.
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mammalian target of rapamycin (mTOR) and AMP-activated 
protein kinase (AMPK) signalling rediscover the importance 
of nicotinamide. Metabolic regulation, over and above bioener-
getic and biosynthetic demands of T cell differentiation, of 
immune responses works often through simple compounds, for 
instance, short-chain fatty acids (SCFAs) or glutamate metab-
olites programming T cell fates and the ratio of T helper 17 
(Th17) and induced regulatory T cells (Tregs). These are con-
ditioned by tryptophan status and co-evolved together in pla-
cental mammals to enable reproduction: functionally these 
pathways ameliorate autoimmune encephalomyelitis, the 
model for MS, and other pathogenic Th17-mediated autoim-
mune disease.8,245–273

Role of Tregs

Nicotinamide insufficiency activates the ‘de novo’ pathway. 
This leads to dysbioses, poor defences against pathogens, and 
‘autocarnivory’ with organ damage. Activation predisposes to 
immune tolerance through the production of more Treg but 
less Th17 cells.274–284 Regulation of T cells has been linked 
with leprosy and TB (nicotinamide is antibiotic) and MS, 
myasthenia, and rheumatoid arthritis. Tregs that only exist in 

the periphery in placental mammals cause, shown by transfer 
experiments or rare mutations, other autoimmune diseases 
including oophoritis. Tregs with Th17 cells, even though they 
have a common developmental path, form an immune fulcrum 
governing tolerance to self and non-self and pro/anti-inflam-
mation and B cell antibody responses and even (muscle) stem 
cell regeneration and tumour control. High levels of specific 
Tregs (but low Th17) with their anti-inflammatory cytokines 
and effect on dendritic cells discourage elimination of TB and 
other organisms, but low levels encourage ‘rogue’-specific self-
reactive T cells and a spectrum of autoimmune diseases and 
allergies.285–290

Nicotinamide Switch Explains the Hygiene 
Hypothesis
This system therefore has checkpoints that connect nicotina-
mide with metabolism and innate and adaptive immunity, spe-
cifically the balance of Tregs and other T cell populations. This 
forms the ‘nicotinamide switch’ controlling the inflammatory 
response from activation to tolerance important to the latest 
versions of the ‘hygiene hypothesis’.291–299 In states of affluence, 
we ‘miss’ an evolved dependence on nutritional symbionts that 
are now surplus to requirements and are therefore ‘absent’. 
Even the foetus is exposed to this new environment with 
‘maternal immune activation’ working through excess Th17 
cells and interleukin-17 and a dearth of Tregs. At the other end 
of the nutritional spectrum, the IDO pathway will shut down 
when there is not even enough of its substrate tryptophan – 
and that will cause frank pellagra and complete immune and 
dysbiotic disarray and neurodegeneration – but notably no 
autoimmune disease.300,301

Indoleamine 2,3-dioxygenase is also a critical mediator of 
autoantibody production from B cells and a pathogenic driver 
of organ-specific autoimmune disease alongside its role in 

Figure 9.  Koch’s postulates need revision for nutritional symbiotic 

relationships. Symbionts, such as TB, enhance the supply of 

nicotinamide when the diet is poor but become dysbiotic if the diet 

becomes extremely poor. Improving diet, a preventive in the early stages, 

may no longer be enough to reverse pathology later. TB indicates 

tuberculosis.

Figure 8.  Conventional demographic transition joined to the Neolithic transition. Lower meat drove the Neolithic, whereas an increase in the meat/cereal 

ratio drove recent transitions. Natural increase = excess of birth after deaths. NAD indicates nicotinamide adenine dinucleotide.
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immune privilege, whether for the foetus or immune evasion 
for symbionts and cancers, and has an impact on mood by 
diverting tryptophan away from serotonin and tryptamine 
synthesis.302

High nicotinamide in diet therefore has the overall conse-
quence of inducing immune intolerance (accepting some con-
tradictions in the literature) and that may be behind the 
epidemic of autoimmune and allergic disease but perhaps also 
cancers and neuropsychiatric ills including autism and carbo-
hydrate-induced obesity. A summary of the main pathways of 
nicotinamide metabolism is shown in Figures 11 and 12.

Meat Elites
Americans and Europeans consume 150 kg of meat per annum 
alongside 250 kg of milk and eggs. The poorest eat negligible 

amounts of animal products. This is ironic as meat sharing was 
a defining feature of hunter-gatherer days, but later cattle own-
ership was the original form of capitalism that drove stratifica-
tion and ‘meat elites’. Cash handouts to the poor would lead to 
a reasonable meat ration but is opposed currently for reasons 
that include cost and environmental concerns.

Too Little and too Much Meat – TB or Cancer and 
Autoimmunity
In recent times, these extremes have been tested with poor out-
comes for billions. There is a long history of concern that too 
much meat causes cancer and an even longer history of advo-
cating meat/milk supplements for the poor. One example – 
‘Zomotherapy’ (zomos = meat broth) – was advocated by Nobel 
Laureates Charles Richet and Renee Dubos who also sug-
gested skim milk for targeting TB (as did the sanatorium 
movement); this was later implemented as milk supplements 

Figure 10.  Many pathogens import niacin. TB (and some gut microbes) can export nicotinic acid. On a high-nicotinamide diet, both classic pathogens 

and symbionts are less virulent or dysbiotic. NAD indicates nicotinamide adenine dinucleotide; TB, tuberculosis;

Figure 11.  NAD(H) recycles (not shown) in redox and dehydrogenase 

reactions and supplies mitochondria to generate ATP. Here we show 

consumption reactions and salvage pathways that conserve the supply of 

nicotinamide. When the dietary supply is poor, the ‘de novo’ pathway 

needs a dietary supply of tryptophan. ATP indicates adenosine 

triphosphate; NA, nicotinamide; NAD, nicotinamide adenine dinucleotide; 

NAD(H), nicotinamide adenine dinucleotide plus hydrogen; NAM, 

nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NMN, 

nicotinamide mononucleotide; NMNAT, nicotinamide mononucleotide 

adenylyltransferase; NNMT, nicotinamide N-methyltransferase; NR, 

nicotinamide-riboside; PARP, poly(ADP-ribose) polymerase.

Figure 12.  Structure of nicotinamide showing its detoxification pathway 

that consumes methyl groups and produces N-methyl-nicotinamide that 

is metabolically active but then excreted. MNAM indicates N1-

methylnicotinamide; NAM, nicotinamide; NNMT, nicotinamide 

N-methyltransferase; SAH, S-adenosylhomocysteine; SAM, 

S-adenosylmethionine.
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and school meals with documented health benefits. Even ear-
lier, Roget (of Thesaurus fame) in 1799 had published 
‘Observations on the non-prevalence of consumption among 
Butchers and Fishermen’ – who, of course, had preferential 
access to their own produce.

Williams documented in 1908 falling TB rates with rising 
cancer rates and correlated them with meat intake in the United 
Kingdom and we replicated this finding (Figure 13). Rapid 
increases in TB rates have been documented on multiple occa-
sions when diet deteriorates: some are recent, for instance, in the 
Russian ‘katastroika’ (around 1990) TB rates doubled in less than 
5 years and life expectancy fell as the meat market collapsed. 
There is a further history of support for more meat for working 
people: for example, in the 19th-century United Kingdom there 
were calls for an ‘Industrial ration’, to be supplied by ‘killed and 
chilled’ corn-fed imports; and later for a ‘Colonial’ diet based on 
pioneering work done early in 20th-century Kenya showing the 
importance of animal products was proposed; and more recently 
rations (that included meat, bacon butter, and milk) were imple-
mented to overcome the very poor meat intakes in the inter-war 
and world war years.303–306 Positive meat transitions from 
improved economics and these interventions are correlated with 
periods when health, height, and IQ increase and ‘modern minds 
are forged’.

Diseases Disappear and Appear: Risk of Plague
Both TB and leprosy disappear when and where nicotinamide 
dose in diet increases – nicotinamide is, after all, the original 
‘antibiotic’ for both organisms.307,308 Malaria can also ‘disap-
pear’ and of interest nicotinamide has anti-malarial activity as 
it does for other parasites. However, we should not be fooled by 
this ‘Mirage of Health’ given the recent grim comeback of 
‘medieval’ pestilences and near apocalypses, such as plague in 
Madagascar.309–318 Recent warnings have come concerning 
future plagues using the parallel of the 1918 Spanish Flu pan-
demic that hit hard when metabolic requirements were high in 

the young and diets were poor. Diet is the commonest cause of 
impaired resistance to a wide variety of organisms including 
measles and smallpox epidemics, particularly on ‘virgin soils’ 
where populations have no previous exposure. Such warnings 
emphasise air travel, the ‘global village’, and antibiotic resist-
ance but do not always emphasise the real microbe mutant 
magnets of poor diet and general squalor allowing the emer-
gence of disease that are then a danger to rich and poor alike.

Earlier global crises, discussed already, were triggered by the 
weather (a lesson about dangers of climate change) and poor 
harvests from lost summers. There were widespread revolts 
between haves and have-nots as populations exploded then 
collapsed with descriptions of pellagra within the famines; 
‘blackened faces like ovens’ in prematurely aged children among 
widespread poor behaviour, followed by plagues, and the rise of 
TB. Recovering nations revolutionised their agriculture away 
from cereal dependence with more pastureland and a mixed 
diet aided by the mass emigration to America and the first wel-
fare states.

Circumstances where people live in ‘barnyard’ circumstances 
point now to crucibles of plagues in Asia or Africa – but it is 
worth remembering that the Flu epidemic 1918 - that killed 
more than both world wars combined – originated in pellagra-
prone Kansas. The Cuban experience shows that poor-income 
countries can have effective health care systems coping with an 
epidemic of nutritional disease with widespread vitamin sup-
plements.319–321 Amartya Sen, the Nobel Laureate, once said ‘I 
wonder whether there is any way of making poverty infectious 
– if so, I am certain its elimination would be remarkably rapid’ 
– dangers from poverty are, in fact, infectious (including vio-
lence) and that is one important lesson from the history of 
pellagra.

Nicotinamide and Better Brains
Pellagra also causes brain atrophy. Atrophy due to poor diet can 
be prevented as shown by the Flynn effect. Improved diet being 

Figure 13.  Striking time linked correlations between the fall in TB and the rise of cancer at a time when meat intake doubled. The same was true of the 

rise, particularly after 1900, in allergic and autoimmune diseases, as well as Parkinson’s disease. TB indicates tuberculosis.
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necessary to improve learning (and teaching) before better 
schooling can build on a stronger cognitive base and lead to 
economic progress further improving diet and education. 
Improvement in IQ allows better brain reserves to combat age-
ing and that may explain the recent decline in the incidence of 
dementia in rich countries.322–327

Longevity: ‘Mens Sana in Corpore Sano’
There are links between nicotinamide and longevity. The 
observation is not controversial as nicotinamide has been 
explored as an anti-ageing compound in organisms from yeasts 
to worms to man. Proximate reasons relate to a better constitu-
tion, DNA repairs and reductions in virulence of pathogens 
and dangerous symbionts.328–335

A Refresh and Call to Action
Nicotinamide deficiency is unmeasured and 
underdiagnosed

The Columbian exchange brought maize to the Old World as it 
has the advantage of being easy to grow in difficult hydrological 
circumstances and has big returns per grain planted. Pellagra and 
subclinical nicotinamide deficiency is a risk (particularly when 
cultural traditions of mixed farming and special cooking are not 
exported) and had consequences first in the Americas but now in 
Asia and Africa. Pellagra still exists but is rarely formally diag-
nosed, prevented, or treated masquerading as ‘environmental 
enteropathy’ or general ill health and poor cognition – there is no 
easy biochemical test. Social breakdown can also be a feature as 
a (Marxian) ‘metabolic rift’. History is repeating itself as even in 
the pellagra epidemics cases were missed as the symptoms are 
protean and vague and seasonal with remissions. As a form of 
sunburn, black skins are resistant even evolved for and make it 
harder to spot. In the southern states of America, pellagra was 
rife and long before the official epidemic was endemic in the 
slave population and among poor whites ‘antebellum’ (and may 
have been a determinant of Confederate defeat) and instead 
called ‘black tongue’ or typhoid or a (genetic)negro ‘disease’.336

Nicotinamide: all is in the dose

A continuing role for missing symbionts is supported by evi-
dence that re-introducing parasitic infection protects against 
allergic disease. This does not imply that they are metabolically 
needed when diet improves but emphasises their role in edu-
cating the immune system and that their absence causes prob-
lems, at least for a generation or two.

Nicotinamide at low doses is anti-cancer and neuroprotec-
tive but at a higher dose it is carcinogenic or neurotoxic. An 
optimal dose is even described in stem cell models as the 
‘Fountain of Youth’. Some genetic and toxic and anoxic diseases 
respond if NAD is raised through diet or enzyme manipulation. 
A beneficial effect of nicotinamide on perinatal asphyxia or 
trauma alongside a range of developmental conditions has been 
demonstrated.337 Diseases that are NAD sensitive cover a 

variety of phenotypes and proposed mechanisms of neurotoxic-
ity whether mitochondrial, proteotoxic, oxidative stress, or exci-
totoxic and whether cell body or axonal degeneration.338–356

Nicotinamide toxicity is common

High dosage in diet with induction of NNMT indicates that 
there might be a hypervitaminosis state with a wide pheno-
type – that includes the metabolic syndrome, some cancers, 
Parkinson, schizophrenia, and autism with double-edged 
sword relationships with dose. Depending on the dynamics of 
enzyme induction, if the dose is not maintained throughout 
life, then nicotinamide deficiency could occur on an appar-
ently normal diet with increased catabolism confusing epide-
miological studies.

Obesity and cancer

NNMT may be a target for obesity using novel anti-sense 
technology. High nicotinamide in diet could be toxic by a 
number of means and even homeostatic attempts to remove it 
with high NNMT levels in inflamed or pre-cancerous tissue 
could have long-term dangers357–373 (Figure 14).

Parkinson’s disease

Nicotinamide N-methyltransferase is raised in the brains of 
Parkinson’s disease (PD) patients as is N-methyl-nicotinamide 
excretion contributing to an argument, backed by epidemio-
logical evidence that incidence had risen in rich high-meat-
eating countries but was low in previous pellagra states, that 
nicotinamide could cause dopaminergic toxicity as an MPTP 
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-like mole-
cule. High-dose nicotinamide has shown toxicity in a proteaso-
mal toxicity model of PD even though neuroprotective 
prophylactically in MPTP models. Nicotinamide is an impor-
tant morphogen encouraging neuronal differentiation towards 
dopaminergic cells at moderate but not high doses.374 
Furthermore, NNMT has been shown to interfere, by consum-
ing methyl groups, with DNA methylation and autophagy that 
controls quality of proteins and organelles, as shown by toxins 
or PD mutations, but if excessive can cause cell death. There is 
epidemiological support for PD being a disease of affluence: 
China had an incidence of one fifth of rich nations but this is 
closing rapidly as their meat intake increases. The argument 
that this rise in incidence is all due to an ageing population is 
complex if higher nicotinamide dose is driving longevity – PD 
then being a side-effect of the cause of better ageing, rather 
than due to ageing per se375–386 (Figure 15).

International fertility: redux and review

Many have mentioned cereal diets increasing fertility by 
increasing carbohydrates, or indirect effects such as enabling 
early weaning, but have not discussed the tryptophan pathway. 
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We showed correlations between meat intake and improved 
longevity and declining fertility in the United Kingdom during 
1850 to 1950 and argued that averting a population collapse 
was helped by revisions of the Corn Laws and the ‘ecological 
windfall’ of using money from (cotton) exports to import meat 
often from colonies. Meat famines at home were mitigated by 
agricultural and hunting arrangements abroad – to the detri-
ment of local populations (now the Third World) but allowing 
painless demographic transitions at home.

France, for instance, where maize was banned for human 
consumption, barely had a demographic transition: whereas 
low-meat eaters such as China, India, and Japan had their tran-
sition in the mid-20th century slowly and painfully with large 
population booms much later than Europe – cereal-dependant 
modern Africa fails to complete the transition. These observa-
tions are consistent with population booms on American 
maize, between 1750 and 1850. Looking to poor diet for high 
fertility makes a welcome relief from blaming poor genes or 

Figure 15.  Nicotinamide dose matters from conception to cradle to grave. PD is a good example. An optimal dose induces NNMT and supplies NAD to 

mitochondria and NAD consumers and is enough to regulate DNA methylation and stimulate autophagy to keep organelles in good repair. Too much (or 

too little) nicotinamide and all fails, exacerbated by genetic mutations that affect autophagy known to be important in PD. MPTP indicates 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine; NAD, nicotinamide adenine dinucleotide; NNMT, nicotinamide N-methyltransferase; PARP, poly(ADP-ribose) 

polymerase; PD, Parkinson’s disease; SAM, S-adenosylmethionine.

Figure 14.  High nicotinamide in diet has consequences. The switch from infections to inflammation and autoimmunity can be explained by several 

overlapping mechanisms as can relative infertility and longevity alongside the metabolic syndrome and cancer. MNAM indicates N1-methylnicotinamide; 

NMN, nicotinamide mononucleotide; NNMT, nicotinamide N-methyltransferase; SAM, S-adenosylmethionine; PD, Parkinson’s disease.
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race as in the United States where eugenists believed that pel-
lagrins were ‘feeble-minded’ and ‘shiftless’ multi-generationally 
and should enter legal sterilisation programmes with marriage 
and immigration prohibitions: casting a long shadow to later 
genocidal and immigration policies.

Analyses of declining birth rates first among the wealthy 
discuss conscious contraception or a preference for careers or a 
reluctance of women to produce ‘cannon fodder’ but overlook 
diet as a potential factor. Education, emancipation, and birth 
control may however be the dividend building on a food-
dependant demography and higher human capital. Increased 
fertility on a more vegetarian diet and decreased fertility on a 
high-meat diet go back to hunter-gatherers such as the Khoisan 
people in South Africa who were out-reproduced by Bantu 
agriculturalists. Meat reduces and poor vegetarian diets increase 
fertility. This may explain (and been evolved for) baby booms 
after famines and why low-meat/high-cereal societies have 
population booms and ‘Malthusian’ corrections. Evidence from 
other animal populations that pumping in calories (‘paradox of 
enrichment’) leads to population instability will make sense 
once tryptophan metabolism is factored into their interpreta-
tion. Optimal meat/nicotinamide may allow for painless demo-
graphic transitions with sustainable environments and 
populations. As a corollary, fertility declines may reverse when 
extremes of high meat intake moderate.

‘Antagonistic Pleiotropy’, ‘Disposable Soma’, ‘Thrifty’ 
Genes and Phenotypes
In possible ‘proof of concept’ twists, the early fertility crises 
reversed by a more plant-based diet in the Palaeolithic left marks 
on our genome. Intriguingly, these pro-fertility genes, such as 
apolipoprotein E4 (APOE-4), interact with infections with 
resistance to diarrhoeal illness predisposed to by pellagra. 
Mutations spread at the time of fertility and infectious stress now 
showing up as risk factors for late-onset non-communicable dis-
eases such as cancer and neurodegeneration.387–392 Many muta-
tions involve NAD metabolism and DNA repair suggesting that 
they evolved at times when nicotinamide homeostasis was out of 
kilter – but could now be helped by altering the dose of nicotina-
mide by individual genome and depending on age.393–398 Another 
trade-off between fertility and healthy ageing is the ‘disposable 
soma’ theory whereby reproduction is metabolically favoured over 
repairs – this trade-off (with immunosuppression leading  
to greater fecundity but more infection) fades away during  
epidemiological transitions with a more carnivorous diet, and 
experimentally with increased ‘autocarnivory’.390,399–408 ‘Thrifty’ 
genotypes and phenotypes can also be brought into this discus-
sion as they may be a manifestation of ‘r’ selection for quantity 
over quality at a price with late costs, such as the metabolic syn-
drome, being perhaps avoidable by fairer nicotinamide sourcing 
throughout and across lives.400,409–414

Conclusions
Nicotinamide is critical to ‘evolution in four dimensions’ as it 
affects genomic, epigenomic, behavioural, and symbolic/cultural 

inheritance.415–419 Nicotinamide resonates between develop-
mental and phenotypic plasticity and a niche-constructed eco-
logically inherited ‘NAD’ world. Nicotinamide, buffered by the 
microbiome, allowed and selected hominid lineages to evolve 
into anatomically modern man and then a fertility crisis 30 000 
to 40 000 years ago in Europe (earlier in southern Africa and 
Asia) drove a pro-fertility-plant-based diet with mating brains 
and cultural artefacts that we call civilisation.420,421

As Huxley implied, we should now direct our evolution by 
ensuring an appropriate diet for all as an entitlement. The 
flourishing of humankind’s culture in the Mesolithic and the 
later economic and artistic and scientific ‘take-off ’ involved 
diet that is an independent variable for fertility, health, and 
brain power. Iatrogenic climate change and other worries about 
the future may sort themselves with higher human capital but 
lower numbers of people.422–427

Moving up then down the food chain led to the ‘Ultra-social 
conquest of Earth’ but now we can aim for individual quality. We 
no longer need poverty to encourage fertility and should guaran-
tee a ‘goldilocks’ diet for all as a human right and out of self-
interest to avoid plagues and wars. A well-balanced diet would 
underpin progress everywhere so that ‘No One’ country is domi-
nant and return to our more egalitarian meat-sharing past.428,429 
Active intervention in population control has not been that suc-
cessful suggesting that we need to look at fundamental biological 
and dietary controls given that ‘Demography is Destiny’.430–432

Food sovereignty puts an emphasis on food quality by politi-
cal and scientific means known as ‘Physiocracy’ that can be 
traced back to mixed farming enthusiasts, such as Virgil or Cato, 
and Hippocratic dietary regimens.433–449 Hippocratic regimens 
are only slightly different from current dietary advice. Becoming 
vegans in a ‘meat retreat’ is not the answer to good health, ani-
mal rights, population control, climate change, or loss of biodi-
versity. Meat hunger is for good biological reason and Engel’s 
law repeatedly shows that poor individuals (and nations) eat 
more meat if allowed. However, there is a limit and we propose 
a hypervitaminosis B3 with an equally broad phenotype to pel-
lagra. This is the ‘Wisdom of the Body’ pertaining to NAD 
homeostasis. We should avoid ending, like other empires that 
collapsed, because we ignored historical intelligence and did not 
appreciate fully that progress depends on a balanced diet and 
sharing meat across societies and nations.450–456
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