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Gun identification from gunshot 
audios for secure public places 
using transformer learning
Rahul Nijhawan1, Sharik Ali Ansari2, Sunil Kumar1*, Fawaz Alassery3 & 
Sayed M. El‑kenawy4,5

Increased mass shootings and terrorist activities severely impact society mentally and physically. 
Development of real-time and cost-effective automated weapon detection systems increases a sense 
of safety in public. Most of the previously proposed methods were vision-based. They visually analyze 
the presence of a gun in a camera frame. This research focuses on gun-type (rifle, handgun, none) 
detection based on the audio of its shot. Mel-frequency-based audio features have been used. We 
compared both convolution-based and fully self-attention-based (transformers) architectures. We 
found transformer architecture generalizes better on audio features. Experimental results using the 
proposed transformer methodology on audio clips of gunshots show classification accuracy of 93.87%, 
with training loss and validation loss of 0.2509 and 0.1991, respectively. Based on experiments, we are 
convinced that our model can effectively be used as both a standalone system and in association with 
visual gun-detection systems for better security.

Mass shootings in public places like schools, clubs, and roads are becoming common and its rate is alarmingly 
increasing in the US1. Even the countries like Canada, Australia, France, UK have seen gun violence in pub-
lic places. Addressing seriousness of problem, these countries have built unique organizations to tackle mass 
shootings2. According to Mother Jones magazine’s database, Fig. 1 shows us the public gun violence incidences 
across the US between 1981 and 2021. Almost all major cities get covered under the red zone. In India, Naxalite 
and terrorism problems are very frequent. Clearly, there should be a mechanism to detect gun violence and act 
fast on it irrespective of gun laws. This paper takes a step in this direction to provide a real-time and cost-effective, 
reliable, and robust methodology for detecting gunshots. This will help people spend quality life with family, 
friends, and colleagues and take immediate action if anything serious happens around them.

Guns are dangerous, especially when operated by people who want to harm others. Mass shootings in schools 
and public places are becoming a common place. Terrorist attacks are also increasing and creating new security 
challenges. Such incidents either kill or traumatize survivors for a lifetime, creating a sense of insecurity in soci-
ety. This highlighted the need for a system that increases security in such situations. Even at the military level, it 
would help develop strategies to protect our troops at the workplace.

The computer vision community is contributing, wherever possible to protect the life of people in such 
uneventful situations. Automated camera-based surveillance systems are highly focused previously. These include 
a system to detect cold weapons, and guns, differentiating handheld items from weapons that undoubtedly 
increased such systems’ strength. The problem that these researchers focused on is detecting the weapon by 
visually seeing it on camera, preventing the mishap, and alerting the authority.

If it fails, the attack will occur, and security forces will be called to confront the attackers. At such point, 
forces don’t know what kind of weapons the attackers are using. By knowing their weapon, we can secure and 
give an edge to our security personnel. Most of the time, attackers fight from spots not covered by surveillance 
(including drones). At such a point, using the audio of the weapon is our only option to get information about 
the attacker’s weapon. The camera has limited view of capture, audio’s view is not limited. The use of audio will 
improve these systems by adding a small audio capture device.
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Previously, researchers widely used Convolution neural network (CNN) architectures to solve computer 
vision problems. Although promising, CNN-based architectures have some weaknesses. Firstly, as the convolu-
tions work with constant window size, the model helps in finding the local information rather than long-range 
spatial relationships between different parts of the image and the complete image3. Secondly, there is some loss 
of local information through max-pooling4. Inspired by Natural language processing (NLP), Vision transformers 
have recently been proposed as an alternative to CNNs and have shown promising results in the field of com-
puter vision3. Vision transformer is free of convolutions and identifies an image as a sequence of patches, hence 
overcoming the issues of locality and translation invariance faced by CNN. This approach has been observed to 
use the hardware resources more efficiently than CNN and could be pre-trained on the public ImageNet dataset 
with fewer resources3.

In this paper, we have investigated whether we can classify different gun types from audios of their shots. 
The hypothesis arises as experienced military personnel can accurately tell which gun the shot is fired from by 
listening to audio. To test this, we created a dataset that consists of 1-s audio of shots. Transformers have proved 
their success from NLP to vision tasks. However, they were never used to classify audio. To replicate a human’s 
sense of understanding of audio, we used Mel-frequency to represent audio and developed a transformer-based 
classifier to predict the class of gun.

Major Challenges faced while working in this area are as follows. firstly, creating such a dataset is difficult and 
costly due to the legalities and risks involved. We created a dataset using audio from YouTube videos. Secondly, 
no such features were proposed earlier for attention-based approaches for gun audio classification. It is not 
known whether we can use attention directly on shot audio or if there exists some feature that can use attention 
to give a better result.

Our main contributions in this paper are the following:
1. We manually created a 1-s gun audio shot dataset and made it available for public use.
2.We optimized transformer hyperparameters, showing that the vision transformer has significantly improved 

the gunshot detection accuracy compared to the other state-of-the-art algorithms.
3. Our proposed approach has the advantage of showing sublime results on every type and aspect of the data 

that led to obtain unparalleled results for the task of gunshot detection when compared with state-of-the-art 
algorithms.

The rest of the paper is divided as: related work, the methodology that we used and dataset creation, results 
and discussion, conclusion, limitations and future scope.

Related work
Choi et al. highlighted CCTV’s significance for better police service5. They also studied CCTV-based intelligent 
security systems for constructing crime-zero zone6. In 2018, they further analyzed the feasibility of security 
systems based on their economic value7. Adding an audio-based gun-shot detection method will enhance the 
reach of such systems. With a nominal increase in cost, a completely new sensory ability increases its usefulness. 
Liang et al.8 proposed a method that can detect the shooter’s position using only a few user-generated videos 
that include the sound of gunshots. Liang et al.9 in 2017 solved the issue by developing a temporal localization 
framework for intensive audio events in videos. The localization results are improved by the proposed method 
using Localized Self-Paced Reranking (LSPaR).

Figure 1.   Heatmaps shown in the map represent the data collected by Mother Jones. The data shows the 
mass-shootings from years 1981 to 2021. More red areas means, multiple mass-shootings in that area. Software: 
Location History Visualizer, Source: https://​locat​ionhi​story​visua​lizer.​com/​heatm​ap/.

https://locationhistoryvisualizer.com/heatmap/
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Morshed et al.10 proposed a robust neural network-based approach for audio classification. They employed an 
encoder that contains a sequential stack of neural networks. Further, they also used a temporal-based interpola-
tion approach for performing the scene-level embeddings. Banoorupa et al.11 proposed a hybrid fingerprinting 
based approach for performing audio classification using LSTM. In this approach, the fingerprints were created 
employing the MFCC spectrum and finally converting the spectrum obtained into digital images.

Phan et al.12 proposed a multiclass audio classification solution for polyphonic audio event detection. They 
divided the event categories into multiple sets and created a multi-class problem employing a divide and conquer 
approach. Wang et al.13 proposed a 2D CNN based technique for audio classification.This algorithm was widely 
used in various speech recognition and classification tasks. Zhang et al.14 propose an AED module called Multi-
Scale Time-Frequency Attention (MTFA) it informs the model where to focus along the time and frequency 
axes by collecting data at different resolutions, which has not been taken care in the past. Zhang et al.15 and 
Shen et al.16 proposed a a multiscale time-frequency convolutional recurrent neural network (MTF-CRNN) for 
sound event detection15.

Deep learning has evolved a lot over time. Earlier CNNs were being used and continue to work very well. 
Recently, Transformers were introduced, and state-of-the-art methods have proved their performance in both 
NLP and Vision tasks. In this paper, we are searching for the best way to classify guns based on their audio. We 
have done many experiments for this task with CNNs and transformers.

Traditional machine learning based researches.  This subsection discusses the machine learning-
based audio classification approaches, and researcher’s contribution are represented in Table 1. Gunshot audio 
depends on various aspects, i.e., (1) firing power (size of bullet), (2) length and width of the nozzle, and (3) envi-
ronment (echo). If firing power or length/width of gun nozzle changes, it reflects the weapon’s is changed. Vrysis 
et al.42 compared 1D and 2D CNNs for audio classification using various features. 2D CNN with spectrogram 
worked best according to them. Nanni et al39 used an ensemble of CNNs to classify animal sound using spec-
trogram and some handcrafted features. In our work, we have utilized Mel-frequency and spectrogram-based 
features to identify the audio sound.

Transformer as new state of the art.  Transformers are first proposed by Vaswani et al.43 for the text-
classification task of NLP. It is complete attention based, removed the recurrent nature completely; is faster to 
train, and offers better performance. Experimenting with pairwise and patch-wise self-attention, Zhao et al.44 
found both outperform CNNs. Dosovitskiy et al.3 used transformers for image recognition. They used a simple 
transformer as an encoder. Transformer architecture has proven success in different domains. Inspired by this 
success we employed transformers to classify audio of gun shots.

The research based on gun identification has been done by Kiktova et al.45 which was an extension of an intel-
ligent acoustic event detection system. The work was based on extracting a variety of features where by using 
mutual information for the feature selection, the length of feature vectors were reduced. Thereafter, the Hidden 
Markov Model and Viterbi-based decoding algorithm utilized those obtained features. In a recent publication of 
2021, Dogan46 presented work on predicting the gun model by identifying sound and developed an intelligent 
audio forensics tool. Dogan has used the fractal H-tree pattern-based classification method, where fractal and 
statistical features were utilized by SVM and kNN classifiers. Researchers have not explored the classification of 
gunshots; research has also been done on measuring and analysing the gunshot sound as they may cause hearing 
impairments47. In their study, acoustic data was collected from four different guns where sound was captured at 
a sampling rate of 204.8 kHz. The method developed to measure gunshot was based on using image processing 

Table 1.   This table shows various techniques employed in previous relevant audio related researches along 
with a research focus (purpose) and publish year. It provides a general outline of previous literature. More 
relevant previous works are delineated in the literature review section with important detail.

Techniques Purpose Year Accuracy (%)

Neural network, SVM, KNN, decision tree17–20 Audio classification 2003–2007 60.0–80.4

Multi layer perceptron21 Audio classification 2008 70.1

One-class SVM22 Audio classification 2009 76.3

Neural network23 Feature extraction 2010 80.0

Deep neural network24 Audio classification 2013 85.2–8

CNN, hierarchical neural network25–27 Audio Classification 2014, 2015 86.1

LSTM, RNN28 Audio classification 2016 88.2–89.3

CNN29–31 Audio tagging, deep feature extraction 2017 90.3–91.5

Deep unsupervised learning, Unsupervised learning, weakly supervised learning, 
attention network32–35 Audio event detection, audio representation, audio classification 2018 89.0–92.0

Few-shot attention, graph neural network, adversarial feature, capsule network36–38 Audio classification 2019 89.2–91.5

Attention-based networks, DNN ensemble39,40 Audio classification 2020 90.2-91.8

Attention-based networks, zero-shot federated learning41 Audio classification 2021 91.0-92.5

Proposed approach Audio classification 2022 93.8
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techniques where Short Time Fourier Transform (STFT), was used to get the spectrogram of an audio signal. 
Once the spectrogram was generated, then kNN and random subspaces were used to classify them. The study 
found that STFT gives better accuracy than CWT. Mares and Blackburn have focused on reducing gun violence 
by providing an evaluation for St. Louis’ Acoustic Gunshot Detection System’s (AGDS)48. They have done a 
quasi-experimental longitudinal panel study by conducting various experiments over time. The experimental 
study shows a substantial increase (80%) in gunshot responses by the system. Thus, from the overall study and 
literature survey, it has been observed that gunshot detection plays an important role in the forensic, health sec-
tor, and security, which motivated us to work in this area.

Methodology
Proposed approach.  In this section, the methodology which has been used to classify gunshots is dis-
cussed in detail. The proposed work approach has not been used earlier to classify audios and is thus considered 
to be a novelty. The approach used to carry out the work follows some steps, which are given below:

•	 Loading the audio samples To load the .mp3 shot samples we have used the Librosa library. This Library 
produces a 21,624 or 22,200 lengths Numpy array for a one second sample array. To make its lengths equal to 
nearest whole square (22,500), as deep learning algorithms work on such lengths, we padded it with another 
array containing ‘− 1’.

•	 Extracting features from the audio: Mel-frequency Cepstral Coefficients (MFCCs): Cepstral helps us to 
understand periodic structures in frequency which gives us information related to echos. In MFC, frequency 
bands are equally spaced on Mel-scale which maps audio better. MFCCs are coefficients of MFC. To obtain 
MFCC sequence, we have used sampling rate of 22,500 Hz, the number of output MFCC features is set to 
44, length of the FFT window is 2048 samples, the number of samples between successive frames is 512, and 
the type2 discrete cosine transform.

•	 Mel-spectogram: A spectrogram is a visual representation of changes in frequencies of a signal with respect 
to time. To the human ear, the frequencies 600 Hz and 1000 Hz may sound different, but 7600 Hz and 8000 
Hz sound similar. Due to non-linear transformations of the frequency scale, the pitches (frequencies) that 
sound less distant appear less distant on Mel-scale. In Mel-spectrogram, y-axis is Mel-scale, and x-axis 
is time. The Mel-spectrogram is calculated by splitting the audio signal into the windows of length 2048 
samples and hop length of 512. Then, applying a fast Fourier transform to each window and separating the 
given audio spectrum into evenly spaced frequencies; 128 such Mel bins are taken for this purpose. Finally, 
for each window, based on Mel-scale frequencies, breaking down the magnitude of the audio signal into its 
components.

•	 Vision transformer For the image classification task, a variation is made to the traditional transformer 
architecture used in NLP. In our approach, the input part is processed by the encoder and the output from 
the encoder is fed to a Multilayer perceptron after flattening it. No decoder is used, as shown in Fig. 2. The 
approach treats each patch from the image like text.

	   The transformer takes a linear vector with positional embedding as input. Therefore, first, 2D patches from 
the image are flattened to linear vector. Then, the positional embedding and class token are added to it. As 
shown in Fig. 3, the encoder part has many encoder blocks. Each encoder block has multiple layers of multi-
headed self-attention mechanisms. The output from the encoder is normalized and sent to dense layers for 
image classification as shown in Fig. 3. The model is inspired from Dosovitskiy et al.3.

	   Pre-trained model have proven their success in many researches. After identifying diminishing gradient 
problem, researchers have proposed using residual connections in Resnet50 paper49. In our experiments, 
while training couple of times, we found that even the Resnet50 model quickly overfits. We tried using Drop-
out with high value, still problem of very high difference in training and validation loss exists. As shown by50, 
transformers are better at handling such situations.

Figure 2.   The figure shows the division of an image into patches of size 32× 32 . The outputs from the linear 
projection layer is combined with positional embedding and a learnable class embedding for classification. The 
above diagram of the transformer encoder was derived from the work of Vaswani et al.43.
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	   Among various available architectures of vision transformers, we have used the L32 model for this research. 
The input to the transformer is a 3-channel (RGB) image of size 224× 224 . The image is divided into patches 
of shape 32× 32 . Each patch is given as input to the linear transformation layer, which changes into a fixed-
length vector. Vector of each patch has given its position information by adding a position embedding. As our 
problem is boiled down to image classification, a class descriptor token is also added to the patches. We pass 
the combined vector to the transformer encoder block. In the L32 model, we have 24 self-attention encoder 
blocks through which input passes for feature extraction. As our problem needs, we added two dense layers 
with 400 and 100 nodes, respectively. Both layers use ReLU activation. The dense layers are followed by the 
softmax layer, which classifies input into three classes: handgun, rifle, and none. The L32 model we choose is 
pre-trained on ImageNet dataset. We fine tune the model keeping each layer trainable.The Adam optimizer 
is used while fine-tuning with learning rate schedule of 1× 10

−3 using a warmup phase followed by a linear 
decay, and categorical cross-entropy is used as the loss function while training.

In this paper, we have used the concept of multi-head attention instead of single head attention by using dmodel 
dimentional keys, values and queries as used by Vaswani et al.43.

Experimental setup
Dataset collection and pre‑processing.  The dataset which has been used to carry out work contains 
short Gun Shot audio clips of 1 s. First, 200 videos containing multiple gunshots, were collected from YouTube. 
Among these 200 videos, 101 videos are of “rifle” shots, and 99 videos have “handgun” shots. The gun-shot is 
usually of less than 1 s, which is randomly taken audio from before and after the shot act.

To segment the 1-s shot audio, manual annotation was corrected up to a millisecond by using a video player. 
Thereafter, ffmpeg tool was used to crop annotated audio segments from videos. We kept one to several shots from 
each video, given they are different. In each audio clip, the background noise padding is at a different position.

To extract audio from random noise or audio containing no gun-shot, the annotations given to extract 
gunshot audios have been used. We have simply left the audio where the gunshots were present as these were 
already marked by us manually to create the dataset for the other two classes. A total of 322 audio images with 
noise was obtained.

Finally, all the audios were manually verified, and any unclassified audio was removed. Each audio for rifle 
and handgun class contains only one gunshot, which is either handgun or rifle. The dataset contains a total of 
1661 audios comprising 649 handgun sample shots, 693 rifle sample shots, and 322 none or random noise in 
.mp3 format.

Each audio file for every class is split into set length frames in order to provide the network with sufficient 
and relevant data. We divided the original audio files into two categories as a first step: training samples (which 
constituted 70% of the original data) and test samples (which constituted 30% of the original data). This is done 
to prevent the network from overfitting and producing inaccurate results when tested on data that was previously 
used to train the network. With K = 5, we performed a K-fold cross-validation to effectively test the proposed 
network, as shown in Table 2.

Comparison with other datasets and system configuration.  We test our method on two additional 
available datasets to confirm the efficacy of the proposed method. (1) TRECVID Gunshot Videos (TREC): we 

Figure 3.   The diagram shows VIT-32 Model Architecture. It contains 24 transformer encoder blocks. The 
encoder block is shown in Fig. 2. in details. The arrows show the forward propagation.
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have 57 videos of gunshots from the TRECVID SIN task51. (3) UrbanSound Gunshot Videos (Urban): from the 
UrbanSound dataset52, we have extracted 117 audio files that include gunshots. We run experiments on these 
two datasets, and Table 4 reports the comparison on testing accuracy for each dataset.

All the experiments were conducted inside google collaboratory. The system provided in google collabora-
tory has Nvidia k80 GPU with 12 GB of VRAM. The system has an Intel Xeon processor with two cores, 12 GB 
of RAM, and 25 GB of disk space. All the implementations were done in python 3.

Results and discussion
This section describe the results. Table 1, shows audio classification algorithms employed in the past, with the 
comparison of their performance on a yearly basis. Further, we compared our proposed approach with algorithms 
developed by other authors, as shown in Table 4. Also, in order to check the generalizability of our proposed 
approach, we compared the results with two available datasets, (1) TRECVID Gunshot Videos (TREC), and (2) 
UrbanSound Gunshot Videos (Urban). Our proposed approach outperformed the state-of-the-art methods in 
all three datasets, as seen in Table 4. It is to be noted that our proposed approach produced testing accuracy of 
89.0–90.0%. We could see that zero-shot federated learning produced accuracy within 83.5–86.0% (Table 4). 
Further, DNN Ensemble model produced accuracy of 83.0–84.5%, and capsule network produced the audio 
classification accuracy between 82.2 and 83.6% as shown in Table 4.

So far, CNNs53–55 have dominated audio classification tasks. CNN’s work is based on where it extracts sig-
nificant features and edges by applying filters to a section of the data56. This allows the model to learn only the 
most important elements from the data rather than the fine details. Moreover, our proposed model works on the 
principle where the complete audio data is put into it, rather than only the sections that the filters can extract (or 
find relevant). This serves as a reason why our proposed approach outperforms the state-of-the-art approaches.

We have tried using raw audio signals directly to train Resnet50 as a baseline. When resnet50 is fine-tuned on 
the raw audio signal, the model overfits quickly. Training accuracy at the 50th epoch is 99.47%, while validation 
accuracy remained just 77.78%. On lower epochs, the validation accuracy is far poor. The training and validation 
loss were 0.0471 and 1.488. We found many variation in training and validation loss and classification accuracy. 
Then MFCC and Mel-Spectrogram features were also tested both individually and combined. When these are 
combined, we found that better classification accuracy is obtained. So we continued with the combined feature 
as our input.

We fine-tuned Resnet50 on MFCC and Mel-spectrogram features. As shown in Fig. 4, the Resnet50 model 
still has a lot of variations compared to the Vision transformer. The training accuracy and time for this is 98.88% 
and 18 h, respectively. The maximum validation classification was obtained to be 93.87% for both Resnet50 and 
Transformer (Table 3). However, for this accuracy vision transformer has a training loss of 0.2509 and valida-
tion loss of 0.1991. On the other side, Resnet50 has a lot of variation in Training loss 4.0× 10

−4 to 0.04 and in 
Validation loss of 0.2768–1.538.

The classification accuracy of vision transformer on testing dataset ranges between 89.0 and 90.0% in differ-
ent training testing experiments (Table 4). Comparatively, the accuracy of Resnet50 ranges from 84.0 to 87.0% 
(Table 4). We split the dataset into training and testing (the terms validation and testing are interchangeably 
used). Our dataset size limits us to divide available audio into training testing and validation. While training, we 
used training data and validation data and trained the model for a fixed number of epochs. For the transformer, 
the best model is obtained at about 100 epochs while fine-tuning. While for resnet50 above approximately 50 
epoch model start to overfit quickly.

We trained and validated models multiple times. We performed 5-fold cross-validation as shown in Table 2.
Interestingly, the Vision Transformer, which is reputed for quick overfitting behavior, did not overfit when 

the MFCC+MelSpec feature in the form of an image was passed. But it overfits when raw audio is given as input. 
Resnet50 worked well with raw audio but overfitted when MFCC+MelSpec feature as images are passed.

While training on both raw audio and features, we observed that Resnet50 and VT created their features. 
Considering the recording devices, the environment (echo) was different, and background noise was present.

Vision transformer verses CNN.  Vision transformers have shown remarkable performance in several 
computer vision-based tasks. These architectures work on multi-head self-attention mechanisms that can accept 
a sequence of image patches to encode contextual cues.

We are intrigued by the fundamental differences in the operation of convolution and self-attention that have 
not been extensively explored in the context of robustness and generalization. It is known that convolutions 
learn local interactions between elements in the input domain. In contrast, self-attention has shown to learn 
global exchanges effectively, for example, relationships between far-off objects57,58. Given a query embedding, 
self-attention finds interactions with the other embeddings in the sequence, thereby conditioning the local 

Table 2.   5-Fold cross validation audio classification results in percentage.

Class Accuracy Recall Precision F1 score

Rifle 91.52 89.44 89.01 88.40

Handgun 90.85 89.76 88.65 89.32

Random noise 91.21 90.12 88.43 90.41

All classes 90.01 90.34 89.87 90.34



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13300  | https://doi.org/10.1038/s41598-022-17497-1

www.nature.com/scientificreports/

content while modeling global relationships59. In contrast, convolutions are content-independent as the exact 
filter weights are applied to all inputs regardless of their distinct nature. In this paper, our analysis illustrates that 
Vision transformer can adjust their receptive field in order to work with the noises in the data and improve the 
expressivity of the representations.

Figure 4.   Graph (A) shows the training and validation accuracy curve for Resnet50 on our dataset. Graph (B) 
shows the training and validation loss curve for Resnet50 on our dataset. Graph (C) training and validation 
accuracy curve for VIT-32 on our dataset. Graph (D) shows the training and validation loss curve for VIT-32 on 
our dataset. In all the graphs, the x-axis shows the number of epochs.

Table 3.   Resnet vs ViT top training accuracy and loss range in nearby epochs.

Rifle vs Handgun shot audio dataset Top accuracy (%) Loss range in nearby epochs

Resnet50+MFCC+MelSpectogram 93.87 0.0004–0.0400

VIT-32+MFCC+MelSpectogram 93.87 0.2768–1.538

Table 4.   Comparison of our proposed approach with state of the art algorithms (testing accuracy range), on 
different available datasets.

Model Our dataset (%) TREC (%) Urban (%)

Resnet50 (Baseline: raw audio) 76.0–78.0 71.0–73.0 70.0–73.4

Capsule network37 82.2–83.6 83.1–84.3 80.1–81.9

DNN ensemble40 83.0–84.5 82.2–83.4 84.0–85.0

Zero-shot federated learning41 83.5–86.0 82.9–24.8 83.0–85.0

Resnet50+MFCC+MelSpectogram 84.0–87.0 83.0–84.5 82.9–85.0

(PA) VT+MFCC+MelSpectogram 89.0–90.0 88.0–89.5 87.4–89.0
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Conclusion
This paper examined the vision transformer-based approach for audio-based gun-type identification tasks. 
Various features like MFCC and MelSpectogram were experimented with as previous research suggested. Vision 
Transformer was found to work better in terms of closeness of training and validation loss, thus giving us a bet-
ter fitting model. Results indicate that though only a shallow gun audio classification is done in this paper, these 
techniques can be employed to classify various handguns and rifles based on their shot audio.

Collecting the dataset for such a project is very difficult. It has both legal and financial issues. However, such 
projects are necessary.

Our dataset, though, still captured audio of gunshots in different environments; the plausible audio filters 
used in videos would have disturbed the original audio signal. Due to such disturbance, some critical information 
is missing in the audio. We felt it and therefore limited the research only to classify gun types. Had the audios 
been recorded using the same device with no audio filter and in various environments, we could have classified 
different handguns and various rifles based on shot audios. Some attackers use audio suppressors. This audio 
is also classifiable.

To increase the audio-based gun identification task’s, the first step will be to collect raw gun audio shots. For 
each gun among various types of handguns and rifles, with and without suppressors, multiple shots in different 
environments must be collected. As mentioned in the limitations above, this step requires the support of legal 
authorities and monitory support.

After dataset collection, we can train a model that will classify different types of guns based on audio of shots. 
Like CCTV cameras, we will attach an audio input device with CCTVs, and any gunshot will be recognized. In 
such a way, we can attend to such situations quickly, bypassing human intervention, which usually delays the 
response and causes damage to intensify.
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