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Background: Although mortality remains high in patients with atrial fibrillation (AF), there

have been limited studies exploring machine learning (ML) models on mortality risk

prediction in patients with AF.

Objectives: This study sought to develop an ML model that captures important

variables in order to predict all-cause mortality in AF patients.

Methods: In this single center prospective study, an ML-based mortality prediction

model was developed and validated using a dataset of 2,012 patients who experienced

AF from November 2018 to February 2020 at the First Affiliated Hospital of Shantou

University Medical College. The dataset was randomly divided into a training set (70%, n

= 1,223) and a validation set (30%, n = 552). A total of 122 features were collected for

variable selection. Least absolute shrinkage and selection operator (LASSO) and random

forest (RF) algorithms were used for variable selection. Ten ML models were developed

using variables selected by LASSO or RF. The best model was selected and compared

with conventional risk scores. A nomogram and user-friendly online tool were developed

to facilitate the mortality predictions and management recommendations.

Results: Thirteen features were selected by the LASSO regression algorithm. The

LASSO-Cox model achieved an area under the curve (AUC) of 0.842 in the training

dataset, and 0.854 in the validation dataset. A nomogram based on eight independent

features was developed for the prediction of survival at 30, 180, and 365 days following

discharge. Both the time dependent receiver operating characteristic (ROC) and decision

curve analysis (DCA) showed better performances of the nomogram compared to the

CHA2DS2-VASc and HAS-BLED models.

Conclusions: The LASSO-Cox mortality predictive model shows potential benefits

in death risk evaluation for AF patients over the 365-day period following

discharge. This novel ML approach may also provide physicians with personalized

management recommendations.
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INTRODUCTION

AF is one of the most common chronic cardiovascular health
problems globally (1–3). In Europe and the USA, 2–3 % of the
population suffers from AF (4), and it is estimated that AF will
affect 6–12 million people in the USA by 2,050 and 17.9 million
people in Europe by 2,060 (5, 6). The incidence of AF is not high
among young people but increases with age, reaching more than
10 % in those >80 years of age (7). The inevitable global aging of
the population, combined with a cumulative increase in chronic
cardiovascular diseases, will lead to considerable growth in the
number of AF patients in the next few decades. AF is associated
with a nearly five-fold increased risk of ischemic stroke (8, 9), and
provokes significant increases in all-cause mortality along with
important financial burden (10, 11). Consequently, higher risk of
all-cause mortality associated with AF has become a significant
public health issue (1, 11–13).

Several classic risk scores, including CHA2DS2-VASc and
HAS-BLED scores, predict clinical outcomes, such as for
stroke, bleeding and mortality (14–17). Machine learning can
learn to identify the underlying pattern and classes from
multidimensional data by utilizing computational algorithms
(18). Based on novel ML algorithms, more accurate and
intelligent models, such as the Global Anticoagulant Registry in
the Field (GARFIELD)-AF risk model and the Multilayer Neural
Network artificial intelligence model, have been developed (19–
21). In contrast to the high awareness regarding clinical outcomes
of AF in Europe and the USA, there is limited knowledge for East
Asia. In addition, few ML models have used multi-dimensional
features to predict future mortality of AF patients.

Advances in supervised ML allow the recognition and
translation of multi-dimensional data into valuable models (21,
22). The use of machine learning for predicting clinical outcomes
may enable physicians to improve efficiency, reliability, and
accuracy of management decisions. In the present study, we used
multiple ML approaches that included LASSO feature selection
and the Cox proportional hazards regression model to predict
all-cause mortality outcome over the 30–365-day period after
discharge in patients with AF.

METHODS

Study Cohort
For machine learning model construction, a prospective
observational study was undertaken using data from patients
who were hospitalized for evaluation and treatment of AF
between November 2018 and February 2020 at the First Affiliated
Hospital of Shantou University Medical College. Inclusion
criteria were a diagnosis of AF and availability of complete data
concerning clinical indicators for evaluating AF and follow-up.
The diagnosis of AF required recording the heart rhythm by
electrocardiogram (ECG). Three diagnostic criteria shown by
ECG are: (1) absolutely irregular RR intervals, (2) no discernible,
distinct P waves, and (3) an episode lasting at least 30 s. Many
individuals with AF have both symptomatic and asymptomatic
episodes. The exclusion criteria were pregnant women, age≤ 18,
or patients who refused follow-up.

Data Collection
A systemic clinical evaluation for AF was conducted during
the hospitalization when patients were enrolled. Overall,
122 variables were initially used for the selection of key
features (Supplementary Table 1), which included medical
histories, physical examinations, laboratory examination results,
medications, comorbidities, ultrasonic cardiogram, CHA2DS2-
VASc score, and HAS-BLED score. Follow-up by outpatient
follow-up and/or telephone interview was carried out at 30, 180,
and 365 days after discharge. The main outcome of the AF cohort
was all-cause death.

This study complied with the principles of the Declaration
of Helsinki and was approved by the Ethics Committee of the
First Affiliated Hospital of Shantou University Medical College.
All participants provided written informed consent to participate
in this study. All procedures were performed in conformity with
the European Society of Cardiology guidelines (23).

Variable Selection and Model Development
Due to the 122 variables present in the dataset, conducting
variable selection was necessary and could lead to improved
prediction performance. Both the LASSO algorithm (24) and RF
(25) were used to select the features for model training. The top
20 predictor variables were chosen using RF based on relative
variable importance (26).

We used five algorithms, including Cox regression, RF,
support vector machines (SVM) (27), backpropagation neural
networks (BP-NN) (28), and gradient boosting (GB) (29), to
train models using the variables that were selected by LASSO
and RF. Ultimately, 10 models, including LASSO-Cox, LASSO-
RF, LASSO-SVM, LASSO-BP-NN, LASSO-GB, RF-Cox, RF-RF,
RF-SVM, RF-BP-NN, and RF-GB, were established.

Statistical Analyses and Model
Performance Measures
Statistical analyses were performed using SPSS 23.0 (Inc.,
Chicago, Illinois, USA), X-tile 3.6.1 (30), and R (version
4.0.2; R Foundation for Statistical Computing, Vienna, Austria)
software. Continuous variables are presented as the mean ±

standard derivation. We used multiple imputation to account for
missing data on continuous variables if missing data was <30%
(31). Missing values were imputed using the “mice” package.
Categorical variables are presented as numbers and percentages.
Statistical differences of continuous variables were examined by
two-tailed t-tests or Mann-WhitneyU tests. Categorical variables
were analyzed by the chi-square test or Fisher exact test. Various
R packages were used to conduct this study. The glmnet package
was used for logistic regression with LASSO regularization (32).
Random forest, e1071, neural net, and gbm packages were used
for the RF, SVM, BP-NN, and GB models, respectively (29, 33).

The predictive accuracy of the LASSO-Cox model was
compared with the performances of CHA2DS2-VASc and HAS-
BLED scores. The performances of the models were assessed by
the AUC derived from receiver operating characteristics curves.
A nomogram for predicting the 30-, 180- or 360-day survival
was established using the LASSO-Cox regression model, and
the cut-off value for mortality risk stratification was calculated.
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FIGURE 1 | Flow chart for the training and valuation of models. LASSO, least absolute shrinkage and selection operator.

The nomogram and calibration plots were generated with the
rms package. The pROC package was used to plot ROC curves.
Kaplan-Meier curves were produced using the survival package.
P < 0.05 was considered to indicate statistical significance.

RESULTS

Patient Baseline Demographics
This study was conducted according to the flow chart shown
in Figure 1. Eligible study participants consisted of 1,775 AF
patients. A total of 1,223 AF patients were randomly assigned
in the training dataset and 552 patients in the validation dataset.
Baseline characteristics of the study cohort are shown in Table 1.
The mean age was 69.22 years (SD= 12.05 years) for the training
dataset and 69.02 years (SD =11.65 years) for the validation
dataset. The mean CHA2DS2-VASc was 3.37 (SD = 1.18) in
the training set and 3.19 (SD = 1.80) in the validation set.
There were no significant differences in diabetes, atherosclerosis,
prior stroke, heart failure, cerebral hemorrhage, cancer, renal
insufficiency, bleeding, current smoker status, statin medication,
and urine ketone bodies in the training set compared with the
validation set. An all-cause mortality end point event occurred
for 194 of the 1,775 patients (10.9%, 111 males and 83 females),
143 in the training set (11.7%) and 51 in the validation set

(9.2%). There was no significant difference in all-cause death rate
between the training and validation set.

Feature Selection and Model Performance
Comparison
LASSO coefficient profiles of the 122 variables and ten-fold
cross-validation for tuning parameter selection in the LASSO
model are shown in Figure 2. Thirteen variables were selected
by the LASSO regression algorithm, including CHA2DS2-VASc,
stroke, cancer, red cell volume distribution width-coefficient of
variation (RDW-CV), statin medication use, lymphocyte ratio,
neutrophil-to-lymphocyte ratio, basophilic granulocyte number,
urine ketone body (KET), blood glucose (GLU), blood urea
nitrogen (BUN), cholinesterase (CHE), and monoamine oxidase
(MAO). In addition, the top-20 variables were selected by
the RF algorithm (Supplementary Table 2). Next, we built 10
models using these two sets of selected features, and their
prediction performances were described using AUC, sensitivity,
and specificity (Figure 3). The key performance of machine
learning was evaluated by AUC.

Among the 10 models, LASSO-BP-NN had the highest AUC
(0.910, 95% CI: 0.875–0.944) in the training dataset, but a
relatively low AUC (0.685, 95% CI: 0.613–0.756) in the validation
dataset. The LASSO-Cox model, over the 1-year follow-up,
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TABLE 1 | Baseline characteristics of the AF prospective cohort.

Variable Training set (n = 1,223) Validation set (n = 552) P-value

Age (years) 69.22 ± 12.05 69.02 ± 11.65 0.749

Gender: male 682 (55.8) 334 (60.5) 0.062

Diabetes mellitus 324 (26.5) 163 (29.5) 0.184

Atherosclerosis 446 (36.5) 202 (36.6) 0.959

Hypertension 759 (62.1) 297 (53.8) <0.001

Prior stroke 319 (26.1) 127 (23.0) 0.167

Cerebral hemorrhage 36 (2.9) 9 (1.6) 0.103

Heart failure 319 (26.1) 119 (21.6) 0.041

Cancer 80 (6.5) 30 (5.4) 0.371

Renal insufficiency 154 (12.6) 67 (12.1) 0.788

Bleeding 47 (3.8) 22 (4.0) 0.886

Current smoker status 347 (28.4) 150 (27.2) 0.603

Alcohol 87 (7.1) 31 (5.6) 0.241

Anticoagulant treatment 696 (56.9) 299 (54.2) 0.281

β-Blocker treatment 546 (44.6) 237 (42.9) 0.502

Digoxin treatment 398 (32.5) 192 (34.8) 0.354

Statin medication 486 (39.7) 230 (41.7) 0.443

WBC (109/L) 8.43 ± 3.71 8.30 ± 3.29 0.47

KET 0.463

0 1,093 (89.4) 497 (90.0)

1 124 (10.1) 52 (9.4)

2 6 (0.5) 2 (0.4)

3 0 (0.0) 1 (0.2)

Lymphocyte ratio 20.20 ± 10.65 20.59 ± 10.93 0.48

Creatinine (mmol/L) 119.05 ± 78.09 117.84 ± 73.22 0.758

RDW-CV (%) 14.53 ± 2.01 14.36 ± 1.79 0.962

Platelet (109/L) 205.18± 69.61 202.30 ± 73.27 0.426

Platelet distribution width (%) 15.62 ± 1.98 15.67 ± 1.93 0.648

GLU (mmol/L) 7.00 ± 3.65 6.76 ± 3.28 0.191

BUN (mmol/L) 7.77 ± 4.75 7.92 ± 5.17 0.542

CHE (U/L) 6.42 ± 1.96 6.41 ± 1.96 0.927

MAO (U/L) 4.89 ± 2.35 4.91 ± 2.68 0.862

Neutrophils/lymphocytes (%) 5.85 ± 6.61 5.96 ± 7.19 0.748

CHA2DS2-VASc score 0.51

0 59 (4.8) 33 (6.0)

1 139 (11.4) 76 (13.8)

2 198 (16.2) 99 (17.9)

3 256 (20.9) 103 (18.7)

4 250 (20.4) 110 (19.9)

5 169 (13.8) 68 (12.3)

6 100 (8.2) 46 (8.3)

7 42 (3.4) 12 (2.2)

8 10 (0.8) 5 (0.9)

Data are represented as mean ± standard deviation or frequency (percentage). WBC, White blood cell; KET, Urine ketone body; RDW-CV, Red cell volume distribution width - coefficient

of variation; GLU, Blood glucose; BUN, Blood urea nitrogen; CHE, Cholinesterase; MAO, Monoamine oxidase.

achieved an AUC of 0.842 (95% CI: 0.809–0.875) in the training
dataset, and an AUC of 0.854 (95% CI: 0.807–0.901) in the
validation dataset. Due to the very good performances in both
the training set and validation set, the LASSO-Cox regression was
chosen as the best model.

Nomogram Construction
Based on the Cox proportional hazards regression analysis, we
identified eight independent risk factors in the training cohort.
CHA2DS2-VASc (hazard ratio, HR = 1.188, P = 0.002), stroke
(HR = 1.717, P = 0.008), cancer (HR = 2.208, P = 0.002),
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FIGURE 2 | Identification of variables using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The numbers above the graph

represent the number of variables involved in the LASSO model. (A) LASSO coefficient profiles of the 122 variables. (B) Identification of the optimal penalization

coefficient λ in the LASSO model. The partial likelihood deviance is plotted against log (λ), where λ is the tuning parameter. Red dots indicate average deviance values

for each model with a given λ, and partial likelihood deviance values are shown, with error bars representing s.e. The dotted vertical lines are plotted at the value

selected using the 10-fold cross-validation and 1 – s.e. criteria.

statin medication use (HR = 0.341, P < 0.001), KET (HR =

1.730, P = 0.006), BUN (HR = 1.037, P = 0.003), CHE (HR
= 0.889, P = 0.032), and MAO (HR = 1.133, P < 0.001)
were all significantly associated with mortality in AF patients
(Supplementary Table 3).

A nomogram based on the eight independent features from
the training cohort was developed for the prediction of the
30-, 180-, and 365-day survival (Figure 4). The nomogram
demonstrated that MAO contributes the most to survival,
followed by CHE, KET, BUN, CHA2DS2-VASc, stroke, statin use,
and cancer. The total score, obtained by adding the scores for
each of the eight features, helped in estimating the 30-, 180-, and
365-day survival rate for each individual patient.

Validation and Calibration of the
Nomogram
ROC curves were used to evaluate the predictive ability
for 30-, 180-, and 365-day survival in both the training
and validation sets. Our Cox model demonstrated good
discriminative ability in both the training (30-day AUC: 0.848,
180-day AUC: 0.826, 365-day AUC: 0.762) and validation
(30-day AUC: 0.834, 180-day AUC: 0.788, 365-day AUC:
0.841) datasets for the 30-, 180-, and 365-day survival
rates (Supplementary Figure 1). The calibration plots of our
nomogram also showed optimal agreement between the actual
observations and the predicted outcomes both in the training
set and validation set (Supplementary Figure 2) for all time
points. Thus, the above nomogram-based results displayed good
accuracy for predicting the 30-, 180-, and 365-day survival of
AF patients.

Comparison of the Nomogram With
CHA2DS2-VASc and HAS-BLED Models for
Predictive Performance
The time-dependent ROCs of the training and validation sets
(Figure 5) based on the nomogram were higher than those based

on the traditional CHA2DS2-VASc and HAS-BLED models.
These results indicate that our nomogram has greater potential
for accurately predicting prognosis compared to the traditional
models. DCA was performed to compare the net benefit of
the nomogram with that of the traditional CHA2DS2-VASc and
HAS-BLED scores. Compared to the CHA2DS2-VASc and HAS-
BLED scores, the curve of our nomogram showed larger net
benefit (Figure 6). We further converted the nomogram to a
web calculator for the clinician’s convenience (https://afnom.
shinyapps.io/DynNomapp/).

In addition, the optimal cut-off point was determined
using the X-tile program to accomplish risk stratification. As
shown in Supplementary Figure 3, the optimal cut-off point
was 0.8. Thus, we stratified the AF patients into a low-risk
group (≤0.8) and high-risk group (>0.8). Kaplan–Meier curves
showed that the high-risk group exhibited poorer survival than
the low-risk group in both the training and validation sets
(Supplementary Figure 4).

DISCUSSION

This study investigated a novel LASSO-Cox model for the
prediction of all-cause mortality in patients with AF to identify
AF patients at high risk and to provide personalized treatment
using a data-driven approach. Several important findings were
identified. First, eight independent risk factors predicted all-
cause mortality, including CHA2DS2-VASc score, CHE, KET,
BUN, MAO, stroke, statin medication use, and cancer. Second,
a LASSO-Cox model for 30-, 180-, and 365-day risk prediction
was established and validated. Third, the use of the nomogram
and risk stratification enables the prediction of mortality for
AF patients.

Machine learning can identify non-linear associations and
identify interactions in complex and multidimensional variables.
The use of the LASSO ML algorithm for variable selection is
a well-established method that has been previously utilized for
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FIGURE 3 | Forest plot of area under the curves (AUC) of the training and validation datasets for the ten models. AUCs are shown with 95 percent confidence

intervals for training set and validation set in each algorithm group. RF, random forest; SVM, support vector machine; GB, gradient boosting; BP-NN, backpropagation

neural network; LASSO, least absolute shrinkage and selection operator.

cancer, heart failure, andAF populations (34–36). The advantages
of the LASSO algorithm are high accuracy and stability. Cox
proportional hazards regression is a traditional model, that
is mainly used to analyze the prognosis of cancer and other
chronic diseases. Indeed, our LASSO-Cox model was robust
and displayed good discriminatory power in predicting all-cause
mortality both in the training and the validation dataset.

There is growing evidence that AF significantly worsens the
mortality rate (37–39). Furthermore, AF is an independent risk
factor for higher risk of mortality (11). While worse outcomes
among AF patients have been confirmed in various studies from
Europe and North America, data from East Asia is limited.

Traditional guidelines in AF have focused on identifying
patients with different risks of stroke and major bleeding.
Several studies have developed and examined prediction models
or risk scores in AF patients for stroke, major bleeding,

or composite outcomes, although not exclusively for death
outcomes (19, 23, 40). Recently, a death risk score based on
age, biomarkers, and clinical history (ABC) was developed
and performed well in two large independent clinical trial
cohorts (41). However, the detection of novel biomarkers such
as GDF-15 are not easily performed in developing countries
and regions.

In this LASSO-Cox model, not taking statins is an
independent risk factor for AF-associated death. As recently
reported, the levels of total cholesterol (TC) are non-linearly
associated with all-cause mortality, as well as cancer and
cardiovascular disease mortality, in the American population
(42). Thus, it is necessary to maintain TC in a moderate range by
statin medication. The GARFIELD-AF and ROCKET AF studies
have shown that heart failure and sudden cardiac death are the
major reasons for death of AF patients taking oral anticoagulant

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 October 2021 | Volume 8 | Article 730453

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. LASSO-Cox Model for AF Mortality

FIGURE 4 | Nomogram for predicting 30-, 180-, and 365-day survival probabilities for AF patients. To calculate patient survival probabilities, obtain points for each

covariate value by dropping a vertical line from the points axis to the value of each covariate, calculate the total points obtained from all eight covariate values, and

then drop a vertical line from the total points axis to locate the associated 30-, 180-, or 365-day survival probability. KET, urine ketone body; BUN, blood urea nitrogen;

CHE, cholinesterase; MAO, monoamine oxidase.

FIGURE 5 | Time-dependent ROC of the nomogram compared with CHA2DS2-VASc and HAS-BLED models in the training and validation sets. (A) Training set. (B)

Validation set.

medication (38, 43). Death risk prediction in these patients may
give rise to more intense management of risk factors, such as
valvular heart disease, myocardial dysfunction, and coronary
heart disease.

Among the independent risk factors of death, the four
common laboratory examination indicators, including MAO,
BUN, CHE, and KET, are strongly associated with mortality.
Contemporary AF trials show that cardiac-related deaths account
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FIGURE 6 | Decision curve analysis of the nomogram, CHA2DS2-VASc score and HAS-BLED score. The y-axis represents the net benefit and the x-axis represents

the threshold probability. The null plot represents the assumption that no patients survive, while the all plot represents the assumption that all patients survive at a

specific threshold probability.

for the vast majority of all deaths, whereas stroke and bleeding
represent a small fraction (44). In our study, MAO is recognized
as the most important mortality risk factor in AF patients.
Elevated MAO is known to be associated with liver cirrhosis and
chronic congestive heart failure. Recent studies show that MAO
is a major source of deleterious reactive oxygen species (ROS),
regulating cardiomyocyte aging or death (45, 46). Myocardial
ROS are involved in the pathophysiology of cardiovascular
diseases such as hypertension and heart failure (47, 48), and are
important markers of atrial fibrillation in patients after cardiac
surgery (49). Thus, MAO inhibition therapy is protective in
several settings of cardiac stresses such as pressure overload heart
failure, diabetic cardiomyopathy and chronic ischemic heart
disease (47). Further studies exploring the potential relationship
between AF and ROS are needed.

Increased BUN levels are mainly triggered by impaired renal
function, which might be highly related to the occurrence of
ischemic stroke in AF patients despite adequate therapeutic
warfarin anticoagulation (50). A Swedish study showed that
neoplastic disease and renal failure contribute to the increased
risk of all-cause mortality in AF patients, which is consistent
with our result (11). Declination of cholinesterase is associated
with the advanced liver cirrhosis, hepatic failure, and myocardial
infarction. Inhibition of CHE has been reported to directly
affect the intrinsic cardiac nervous system (51). In addition,
increased levels of KET reflects the severity of diabetes, and
AF patients with diabetes mellitus have a higher mortality rate
(52–54). Collectively, the above risk factors suggest a renewed
emphasis on the management of comorbidities such as liver
cirrhosis, renal dysfunction, heart failure, and diabetes mellitus,
is essential to improve the overall survival and quality of life in
AF patients.

The nomogram could provide clinicians with the opportunity
to assess risk of all-cause mortality by using a data-driven
approach. An additional strength of the LASSO-Cox model is
that the eight predictive factors in this nomogram are widely and
easily available internationally. In order to facilitate medical use,
the clinical implementation of the LASSO-Cox model can either
be based on the nomogram, or preferably an online tool.

Limitations
Several limitations of this LASSO-Cox model should be
considered. First, validation of this model was performed using
a dataset generated from a single center. The performance
of our LASSO-Cox model in external datasets needs be
tested by data from other institutions. Second, the LASSO-
Cox model did not include information about biomarkers,
such as NT-proBNP and hs-cTnT. However, considering that
these biomarkers often require additional examination, thus
increasing the difficulty of acquisition, our model has good
accuracy and ease of application. Third, multiple imputation for
the missing values is a potential source of bias. Nevertheless,
multiple-imputation is a commonly used rigorous technique for
imputation (55).

CONCLUSION

A new LASSO-Cox model for predicting risk of all-cause
mortality in patients with AF was successfully developed,
and internally validated. The LASSO-Cox model using
CHA2DS2-VASc score, statin medication, medical history
(stroke, cancer), and four clinical examination parameters
(KET, BUN, MAO, and CHE), performed well and

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 October 2021 | Volume 8 | Article 730453

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chen et al. LASSO-Cox Model for AF Mortality

may assist physicians in decision-making when treating
AF patients.
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