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Abstract

Background: Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete
understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is
elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and
fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these
observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic
lung disease where adenosine levels are elevated.

Methodology/Principal Findings: We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine
deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results
demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation,
remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent
activation of STAT-3 in airway epithelial cells.

Conclusions/Significance: These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote
aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide
benefit in halting remodeling processes such as fibrosis and air-space destruction.
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Introduction

Excessive remodeling and fibrosis are detrimental components

of chronic lung diseases such as asthma, chronic obstructive

pulmonary disease (COPD), and interstitial lung disease [1,2,3].

Although substantial information is available concerning the

biogenesis of these disorders, the mechanisms that promote the

extensive tissue remodeling seen remain enigmatic. Chronic lung

diseases are largely untreatable and are the third leading cause of

death in the United States [4,5]. Thus, identifying signaling

pathways involved in the regulation of progressive pulmonary

remodeling may provide novel therapeutic approaches for these

devastating disorders.

Extracellular adenosine is generated following cellular injury

and promotes tissue protection and repair by enhancing anti-

inflammatory processes and stimulating wound healing [6,7,8].

However, excessive adenosine production in the lung promotes

tissue injury and remodeling and has been hypothesized to engage

amplification pathways that contribute to disease chronicity [9].

Accordingly, adenosine levels are elevated in the lungs of humans

and animal models with chronic lung disease [10,11]. Extracellular

adenosine signals through cell surface G-protein coupled adeno-

sine receptors (A1R, A2AR, A2BR, and A3R) [12], which are also

altered in the lungs of animals [11,13] and patients [14,15] with

chronic lung disease. Recent studies suggest that the A2BR is

responsible for regulating many of the remodeling activities of

adenosine in these disorders [15,16].

Adenosine regulates the production of the pleiotropic cytokine

IL-6 in numerous cell types through engagement of the A2BR

[15,17]. As an inflammatory and pro-fibrotic cytokine, IL-6 is
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involved in the pathogenesis of lung diseases such as asthma [18],

COPD [19] and idiopathic pulmonary fibrosis (IPF) [20,21]. IL-6

signals by binding the membrane bound IL-6Ra, which then

associates with the signal-transducing gp130 protein to facilitate

phosphorylation of the transcription factor STAT-3 [22,23].

Phosphorylated STAT-3 translocates to the nucleus where it

regulates target gene expression. IL-6 mediated activation of

STAT-3 has been implicated in several diseases [24,25,26];

however, little is known about the ability of adenosine to activate

this pathway in the context of chronic lung disease.

The ability of adenosine to promote the production of IL-6

together with the pro-fibrotic features of this cytokine led us to

hypothesize that this pathway contributes to features of chronic

lung disease in environments where adenosine levels are elevated.

The goal of this manuscript was to test this hypothesis using a well

characterized model of adenosine-mediated lung injury, the

adenosine deaminase (ADA)-deficient model [9,16,27,28]. In this

model, elevations in lung adenosine levels promote pulmonary

inflammation, air-space destruction and fibrosis. We examined the

contribution of IL-6 in this model by treating these mice with a

novel IL-6 neutralizing antibody and genetically removing IL-6.

Results demonstrated that IL-6 contributes to the development of

pulmonary inflammation, tissue remodeling and fibrosis in ADA-

deficient mice. The pursuit of mechanisms responsible for IL-6

mediated effects on fibrosis revealed an adenosine and IL-6

dependent activation of STAT-3 in airway epithelial cells.

Together these findings identify a novel pathway for adenosine

mediated amplification of pulmonary inflammation, remodeling

and fibrosis, and highlight novel therapeutic approaches for

treating chronic lung diseases.

Methods

Ethics Statement
Animal care was in accordance with institutional and NIH

guidelines. These studies were reviewed and approved by the

University of Texas Health Science Center at the Houston Animal

Welfare Committee in Houston, Texas, USA. The approved

animal protocol number was HSC-AWC-09-188.

Mice
ADA-deficient mice were generated and genotyped as described

previously [29]. Mice homozygous for the null Ada allele were

designated ADA-deficient (Ada-/-), while mice heterozygous for the

null Ada allele were designated as ADA competent mice (Ada+). All

mice were on a mixed 129/C57BL/6J background, and all

phenotypic comparisons were performed among littermates. To

generate Ada/IL-6 double knockout mice (Ada/IL-6-/-), IL-6-/-

mice congenic on a C57BL/6J background (Jackson Laboratory,

Bar Harbor, ME, USA) were backcrossed with Ada-/- mice also

congenic on the C57BL/6J background. Mice were housed in

ventilated cages equipped with microisolator lids and maintained

under strict containment protocols.

ADA Enzyme Therapy
Polyethylene glycol modified ADA (PEG-ADA) was generated

by the covalent modification of purified bovine ADA with

activated polyethylene glycol as described [30]. The ADA-

deficient model of lung disease was run in two manners. One to

assess the impact of reversing adenosine levels, in which mice were

injected with PEG-ADA on postnatal day 18, a stage when lung

disease is established but reversible [27]. In this model mice were

given a single injection of PEG-ADA (5 Units) and endpoints were

monitored 72 hours later. However, this model cannot be used for

the assessment of air-space enlargement, because of defects in

alveolargenesis. Therefore, a second model of delayed adenosine

elevations was used [16]. For this model, Ada-/- mice were

identified at birth by screening for ADA enzymatic activity in the

blood and were maintained on ADA enzyme therapy from

postnatal day 1 until postnatal day 25. Ada-/- mice received

intramuscular injections of PEG-ADA on postnatal days 1, 5, 9,

13, and 17 (0.625, 1.25, 2.5, 2.5, and 2.5 Units, respectively) and

intraperitoneal (i.p.) injections on postnatal days 21 and 25 (5

Units each). Mice were sacrificed on day 27 after the last PEG-

ADA injection (postnatal day 43). Ada/IL-6-/- mice were subjected

to ADA enzyme therapy until postnatal day 25 and sacrificed on

day 27 after treatment (postnatal day 43).

IL-6 Neutralization
IL-6 neutralizing and isotype antibodies were provided by UCB

Celltech Inc. (Slough, UK). Subcutaneous injection with IL-6

antibody (30 mg/kg) or isotype antibody (30 mg/kg) were initiated

on postnatal day 26 and subsequent injections were given on day

31 and 37. Treatment groups included Ada-/- or Ada+ mice

receiving an IL-6 antibody, isotype antibody, PBS (vehicle), or no

treatment. All mice were littermates, and both males and females

were included in these experiments.

Bronchoalveolar Lavage (BAL), Cellular Differentials, and
Histology

Mice were anesthetized with avertin. The trachea was

cannulated and the lungs were lavaged four times with 0.3 ml of

PBS (0.95–1 ml lavage fluid recovered). Total cell counts were

determined using a hemocytometer, and aliquots were cytospun

onto microscope slides and stained with Diff-Quick (Dade

Behring) for cellular differentials. After lavage, the lungs were

infused with 10% buffered formalin at 25 cm of H2O pressure and

fixed overnight at 4uC. Fixed lung samples were dehydrated and

embedded in paraffin, and sections (5 mm) were collected on

microscope slides and stained with H&E (Shandon-Lipshaw) or

Masson’s Trichome (EM Science) according to the manufacturer’s

instructions. Adenosine levels were quantified in BAL fluid using

HPLC as described [31].

Immunohistochemistry
Immunohistochemistry was performed on 5 mm sections cut

from formalin-fixed, paraffin-embedded lungs. Sections were

rehydrated through graded ethanols to water, endogenous

peroxidases were quenched with 3% hydrogen peroxide, antigen

retrieval was performed (Dako), and endogenous avidin and biotin

was blocked with a Biotin-Blocking System (Dako). Slides were

incubated with primary antibodies for mouse IL-6 (1:200 dilution,

1 hr room temperature, Abcam), phospho-STAT-3 (1:100 dilu-

tion, 4uC overnight, Abcam), or a-sma (1:1000 dilution, 4uC
overnight, mouse monoclonal, Sigma-Aldrich). All sections were

incubated with ABC Elite Streptavidin reagents and appropriate

secondary antibodies. Sections were developed with 3,39-diami-

nobenzidine (Sigma-Aldrich) and counterstained with methyl

green or hematoxylin. For a-sma staining, slides were processed

with the Mouse on Mouse Kit and the Vector Red Alkaline

Phosphatase Substrate Kit (Vector Laboratories).

Western Blot Analysis
Lungs were homogenized and lysed on ice with protein lysis

buffer (1 M Tris (pH7.4), 1 M NaCl, 1% Triton X-100) freshly

supplemented with 1X protease inhibitor mixture (Roche

Diagnostics). A 50 mg portion of total protein was electrophoresed
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on 10% SDS PAGE gels and transferred overnight at 4uC to

Immobilon-P polyvinylidene difluoride (Millipore), and Western

blotting was performed. For primary antibody detection, a rabbit

polyclonal anti-mouse was used against phospho-STAT-3 (Abcam

1:500), STAT-3 (Abcam 1:500), and a-actin (Sigma 1:5,000).

Secondary HRP-conjugated antibodies (eBioscience) were applied

for 1 hr at room temperature (for P-STAT-3, STAT-3 in 1:1,000;

and for a-actin in 1:10,000). Signals were detected by chemilu-

minesce (Pierce Chemical).

Collagen Quantification
The Sircol Collagen Assay (Biocolor Assays) was used to

measure soluble collagen in BAL fluid according to the

manufacturer’s instructions.

Mucus Quantification
Treatments with an IL-6 antibody (30 mg/kg) or isotype

antibody (30 mg/kg) were initiated on postnatal day 18. Mice were

sacrificed on day 21 and lung sections were stained with periodic

acid-Schiff (PAS) as described [27]. Mucus index scores were

determined using ImagePro Plus as previously described [27].

Ashcroft Score
H&E-stained lung sections were used to determine the Ashcroft

score as previously described [28,32] on 6 mice per group using 20

fields per section in a blinded manner.

Analysis of mRNA by Quantitative RT-PCR
Mice were anesthetized, and the lungs were rapidly removed

and frozen in liquid nitrogen. Total RNA was isolated from frozen

whole-lung tissue using TRIzol reagent (Invitrogen). RNA samples

were then DNase treated and subjected to quantitative real-time

RT-PCR. The primers, probes, and procedures for real-time RT-

PCR were described previously [16,28,33]. Specific transcript

levels for IL-6, CXCL-1, CCL2, osteopontin (OPN), IL-17,

CXCL-2, TNF-a, TIMP-1, MMP-9, MMP-12, fibronectin, and

a1-procollagen were determined by normalization to 18S rRNA

and presented as mean normalized transcript levels using the

comparative Ct method (2DDCt) [34].

Immunofluorescence
Sections were rehydrated and fixed with acetone and methanol.

Endogenous fluorescence was quenched with NaBH4. Slides were

incubated with primary antibody to fibronectin (1:400 dilution,

1 hr room temperature, rabbit polyclonal, Sigma-Aldrich) fol-

lowed by secondary antibody (1:1000 dilution, 1 hr room

temperature, donkey anti-rabbit IgG Alexa fluor 555-red,

Invitrogen). Sections were covered with Vectashield anti-fade

medium with DAPI (VectorLabs).

Measurement of Vascular Permeability
Organ vascular permeability was quantified by i.p. administra-

tion of Evans blue dye (0.2 mL of 0.5% in PBS). Four hrs later, the

circulation was perfused with PBS and the heart and lung were

harvested. Organ Evans blue concentrations were quantified after

formamide extraction (55uC overnight) by measuring absorbance

at 610 nm with subtraction of reference absorbance at 450 nm.

Evans blue dye contents were determined by comparison to a

standard curve generated from dye dilutions.

Determination of Alveolar Air-space Size
Alveolar air-space size was determined in pressure infused lungs

by measuring mean chord lengths on H&E-stained lung sections

[27]. Representative images were digitized, and a grid consisting of

53 black lines at 10.5 mm intervals was overlaid on the image. This

line grid was subtracted from the lung images using Image-Pro

Plus image analysis software (version 2.0; MediaCybernetics), and

the resultant lines were measured and averaged to give the mean

chord length of the alveolar air-spaces. The final mean chord

lengths represent averages from 10 nonoverlapping images of each

lung specimen. All quantitative studies were performed blinded

with regard to animal genotype.

In vitro Stimulation of Primary Alveolar Macrophages
Primary alveolar macrophages were isolated from the BAL fluid

of Ada+ and Ada-/- mice. BAL fluid was centrifuged at 1,000 rpm

for 10 min and cell pellets were resuspended in cell culture media

(RPMI1640 containing 10% FBS and 10,000 U/ml penicillin/

streptomycin). Total cells were counted using a hemocytometer

and portioned into aliquots of 2.56105 cells/dish. Cells were

allowed to adhere for 4 hrs at 37uC, 5% CO2. Cells were rinsed

twice with RPMI1640 without FBS to remove non-adherent

lymphocytes and neutrophils. Cells were then treated with either

media alone, NECA (10 mM; Tocris Bioscience), ATP (100 mM),

and deoxyATP (100 mM). For A2BR antagonism, cells were pre-

incubated with MRS1754 (1 mM; Tocris Bioscience) for 30 min

followed by either treatment with NECA or ATP. After incubation

for 12 hrs at 37uC, 5% CO2, culture supernatants were collected

and IL-6 levels were quantified using a mouse IL-6 ELISA kit (BD

Biosciences).

Statistics
Values are expressed as mean 6SEM. As appropriate, groups

were compared by analysis of variance; follow-up comparisons

between groups were conducted using 2-tailed Student’s t test. A P

value of #0.05 was considered to be significant.

Results

Elevated IL-6 and STAT-3 Activation in the Lungs of Ada-/-

Mice
Ada-/- mice accumulate adenosine in their lungs in conjunction

with progressive inflammation, alveolar air-space destruction and

fibrosis [27,28] making them a good model for examining

adenosine-dependent features of chronic lung disease [9]. Previous

studies have shown that IL-6 levels are elevated in the lungs of

Ada-/- mice [16]; however, it is not known if these increases are

dependent on adenosine elevations. To further characterize IL-6

elevations in association with adenosine elevations in this model,

quantitative RT-PCR on whole-lung RNA extracts (Figure 1A)

and IL-6 protein measurements in BAL fluid (Figure 1B) were

determined at a stage when adenosine elevations, pulmonary

inflammation, air-space destruction and fibrosis were prominent

[16]. Results demonstrated increases in IL-6 transcripts and

protein that were diminished following ADA enzyme replacement

therapy to lower adenosine levels [28] (Figure 1A and 1B).

Immunolocalization revealed alveolar macrophages and bronchial

airway epithelial cells as the major sites of adenosine driven IL-6

production (Figure 1C). Consistent with this, primary macrophag-

es isolated from the lungs of ADA-deficient mice released

substantially more IL-6 in short term culture compared to

macrophages isolated from the lungs of control mice (Figure

S1A). Together, these studies demonstrate adenosine dependent

expression of IL-6 during chronic stages of pulmonary disease in

the ADA-deficient model.

Previous studies have demonstrated that engagement of the

A2BR can promote the release of IL-6 from alveolar macrophages

IL-6 in Adenosine Mediated Lung Disease
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isolated from the lungs of patients with chronic lung disease [15]. To

determine if signaling through the A2BR also promotes IL-6 release

from alveolar macrophages from ADA-deficient mice, primary

alveolar macrophages were isolated from the lavage and were

stimulated with the nonselective adenosine receptor agonist NECA.

NECA exposure lead to a significant increase in IL-6 release in short

term culture and this increase was prevented by pretreatment with

the A2BR antagonist MRS-1754 (Figure S1B). Interestingly, ATP

also promoted the release of IL-6 from alveolar macrophages;

however, this release was also blocked by pretreatment with MRS-

1754 suggesting that it is the breakdown of ATP to adenosine that is

mediating this response as opposed to engagement of P2 receptors.

Treatment with dATP did not increase the release of IL-6.

Together, these results suggest that engagement of the A2BR is

likely responsible increasing IL-6 release from alveolar macrophages

in the lungs of ADA-deficient mice.

IL-6 Neutralization Decreases Pulmonary Inflammation in
Ada-/- Mice

Therapeutic approaches utilizing IL-6 neutralizing antibodies

are currently in use for the treatment of inflammatory and

autoimmune diseases [35]. To begin to assess the effectiveness of

this approach in chronic lung disease, Ada-/- mice were treated

with IL-6 neutralizing antibodies (Figure S2A). Exposure levels of

the anti-IL-6 antibody used were consistent amongst animals and

reached plasma levels of approximately 300 mg/ml (Figure S2B).

Treatment with IL-6 neutralizing antibodies was associated with

decreased histopathology (Figure 2A). Consistent with this, there

was a significant reduction in inflammatory cells recovered from

the BAL fluid on postnatal day 43 (Figure 2B) with differentials

revealing reduced numbers of macrophages (Figure 2C), lympho-

cytes, eosinophils, and neutrophils (Figure 2D). Interestingly,

treatment with IL-6 neutralizing antibodies also led to slight

reductions in adenosine levels (Figure S3), which may reflect

decreases in inflammation and damage in these mice. These

findings demonstrate that treatment with IL-6 neutralizing

antibodies can attenuate adenosine driven pulmonary inflamma-

tion.

Maintenance of pulmonary vascular barrier function plays an

important role in the regulation of pulmonary inflammation [36]

and the loss of pulmonary barrier function has been associated

with the inflammation seen in Ada-/- mice [37]. To determine the

Figure 1. IL-6 expression in the lungs of Ada-/- mice and mice given ADA replacement therapy to lower adenosine levels. IL-6
expression was assessed in lung sections, BAL fluid, and whole lungs from postnatal day 18–20 Ada+ or Ada-/- mice, and postnatal day 21 Ada-/- mice
72 hours after treatment with ADA enzyme therapy (PEG-ADA). (A) IL-6 transcript levels were measured in whole-lung RNA extracts using quantitative
RT-PCR. Data are presented as the percentage of b-actin 6SEM, n$4. (B) IL-6 protein levels were quantified in BAL fluid using ELISA. Values are
presented as pg/mg of protein 6SEM, n$4. (C) Immunohistochemical localization of IL-6 in alveolar macrophages (blue arrows) and bronchial
epithelial cells (red arrows). Images are representative of 4 animals from each group. Scale bars: 10 mm. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/-

vs Ada-/- 6PEG-ADA.
doi:10.1371/journal.pone.0022667.g001
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impact of IL-6 neutralization on the loss of vascular barrier

function, mice were injected with Evans blue dye 4 hrs before

sacrifice on day 43 and organ levels of dye were quantified. Results

demonstrated significant loss of pulmonary vascular permeability

in the lungs of Ada-/- mice (Figure S4). Moreover, this loss of

vascular permeability was significantly attenuated following

treatment with IL-6 neutralizing antibodies. These findings suggest

that IL-6 regulates the loss of pulmonary barrier function in the

lungs of Ada-/- mice.

In further pursuit of mechanisms by which IL-6 neutralization

could impact inflammation in the lungs of Ada-/- mice we

examined levels of key inflammatory mediators. Results revealed

that the reduced pulmonary inflammation following IL-6 neutral-

ization was associated with reductions in inflammatory mediators

known to be IL-6 targets including CXCL1, MCP-1, OPN, IL-17,

and MIP-2 (Figure 3A-E). In contrast, TNF-a (Figure 3F) and

TGF-b (data not shown) were elevated in the lungs of Ada-/- mice;

however, their expression was not reduced following IL-6

neutralization. These findings suggest that IL-6 influences the

expression of inflammatory mediators that contribute to inflam-

mation in the lungs of Ada-/- mice.

Decreased Pulmonary Fibrosis in Ada-/- Mice Treated With
IL-6 Neutralizing Antibodies

We next sought to determine if treatment with IL-6 neutralizing

antibodies had an effect on the pulmonary fibrosis seen in Ada-/-

mice [16,28]. Treatment of Ada-/- mice with IL-6 neutralizing

antibodies resulted in reduced lung collagen production as

determined by decreased a1-procollagen transcripts (Figure 4A).

Similarly, there were decreased levels of soluble collagen in the

lungs of Ada-/- mice treated with IL-6 neutralizing antibodies

(Figure 4B). In addition, there was decreased production and

deposition of fibronectin following IL-6 neutralization (Figure S5).

Moreover, myofibroblast accumulation in the distal airways was

largely prevented following IL-6 neutralization (Figure 4C), and

overall Ashcroft morphological fibrosis scores were improved

(Figure 4D). Collectively, these findings indicate that treatment

with IL-6 neutralizing antibodies attenuates pulmonary fibrosis in

Ada-/- mice.

IL-6 Neutralization Inhibits Alveolar Air-space
Enlargement and Mucus Metaplasia in Ada-/- Mice

Air-space enlargement is another adenosine driven pathological

feature noted in the lungs of Ada-/- mice [27]. We next investigated

the consequences of IL-6 neutralization on this feature and found

that air-space enlargement was largely prevented following the

treatment with IL-6 neutralizing antibodies (Figure 5A). Ada-/-

mice exhibit increased expression of tissue inhibitor of metallo-

proteinase-1 (TIMP-1), matrix metalloproteinase (MMP)-9, and

MMP-12 [16]. Examination of these mediators following treat-

ment with IL-6 neutralizing antibodies revealed diminished

expression of TIMP-1 and MMP-9 while MMP-12 levels

remained elevated (Figure 5B-D). These results suggest that IL-6

contributes to emphysema in this model by influencing the

expression of regulators of air-space destruction.

The last adenosine-driven phenotype that we examined was

mucus cell metaplasia [27]. This was done by staining mucus

containing cells in the bronchial airways with PAS and then using

Figure 2. Pulmonary inflammation following the treatment of Ada-/- mice with IL-6 neutralizing antibodies. Mice were given
subcutaneous injections of anti-IL-6 antibodies (30 mg/kg) as described in the methods. (A) Lungs from postnatal day 43 Ada+ mice treated with IL-6
antibody (left), treatment with the isotype antibody or vehicle PBS revealed no effect, Ada-/- mice treated with the isotype antibody (middle) or Anti-
IL-6 (right). Images are representative of 11 animals from each group. Scale bars = 200 mm. (B) Total BAL inflammatory cells numbers. Cellular
differentials for (C) macrophages, (D) lymphocytes, eosinophils, and neutrophils. Data are presented as mean cell counts 6SEM, n$11. *, p#0.05 Ada+

vs Ada-/- and #, p#0.05 Ada-/- vs Ada-/- + Anti-IL-6.
doi:10.1371/journal.pone.0022667.g002
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Figure 3. Pro-inflammatory mediators in Ada-/- mice treated with IL-6 neutralizing antibodies. Transcript levels of various pro-
inflammatory cytokines and chemokines were measured in whole-lung RNA extracts from postnatal day 43 mice using quantitative RT-PCR. Shown
are levels of (A) CXCL-1, (B) MCP-1, (C) OPN, (D) IL-17, (E) MIP-2, and (F) TNF-a. Transcripts were measured in parallel with 18S rRNA and values are
presented as mean normalized transcript levels (D2ct) 6SEM, n$4. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs Ada-/- + Anti-IL-6.
doi:10.1371/journal.pone.0022667.g003

IL-6 in Adenosine Mediated Lung Disease
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morphometry to quantify the degree of mucus in these cells.

Results demonstrated that treatment with IL-6 neutralizing

antibodies attenuated mucus cell metaplasia in the lungs of

Ada-/- mice (Figure S6).

Ada/IL-6 Double Knockout Mice Exhibit Decreased
Pulmonary Inflammation, Fibrosis and Air-space
Destruction

Our results suggest that treatment of Ada-/- mice with IL-6

neutralizing antibodies leads to attenuation of many of the

pulmonary phenotypes seen in this model. To gain addition

insight into the role of IL-6 in this model we generated Ada/IL-6

double knockout mice and examined key pulmonary phenotypes

[16,27]. Lung histopathology demonstrated reduced pulmonary

injury in Ada/IL-6 double-knockout mice (Figure 6A) together with

a reduction in pulmonary inflammation, including decreased levels

of macrophages, lymphocytes, eosinophils and neutrophils

(Figure 6B-D). Examination of metrics of pulmonary fibrosis

revealed reduced collagen production (Figure 6E), diminished

myofibroblast accumulation (Figure 6F), and reduced Ashcroft

fibrotic scores (Figure 6G). In addition, alveolar air-space

enlargement, was significantly diminished by the genetic removal

of IL-6 (Figure 7). Collectively, these results demonstrate that

genetic removal of IL-6 in Ada-/- mice leads to attenuated

pulmonary inflammation, fibrosis and air-space destruction,

further implicating IL-6 signaling in mediating aspects of

adenosine driven chronic lung disease.

Adenosine and IL-6 Mediate STAT-3 Activation in Airway
Epithelial Cells

IL-6 activates transcription in part through a pathway that leads

to the phosphorylation of the transcription factor STAT-3, which

when activated translocates to the nucleus to activate target genes

[23]. To determine if STAT-3 was activated in the lungs of Ada-/-

mice in an adenosine driven manner we monitored the levels of

phosphorylated STAT-3 (P-STAT-3) using Western blot analysis.

Our results demonstrated increased P-STAT-3 in lung homoge-

nates from Ada-/- mice, which were diminished following PEG-

ADA treatment to lower adenosine levels (Figure 8A). These

findings suggest that STAT-3 is activated in an adenosine driven

manner in the lungs of Ada-/- mice. We next examined the

contribution of IL-6 to the activation of STAT-3 in this model by

Figure 4. Attenuation of pulmonary fibrosis following IL-6 neutralization. (A) Decreased collagen production. Whole-lung a1-procollagen
transcript levels were measured in RNA extracts from day 43 lungs using quantitative RT-PCR. Transcripts were measured in parallel with 18S rRNA
and values are presented as mean normalized transcript levels (D2ct) 6SEM, n = 6. (B) Soluble collagen levels were measured using the Sircol assay
and data presented as mean mg collagen/ml BAL fluid 6SEM, n$8. (C) Lung sections were stained with an antibody against a-sma to visualize
myofibroblasts (pink). Images are representative of 6 animals from each group. Scale bars: 100 mm. (D) Ashcroft scores were used as a morphometric
approach to quantify overall fibrosis in the lungs, n = 6 per group. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs Ada-/- + Anti-IL-6.
doi:10.1371/journal.pone.0022667.g004
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monitoring P-STAT-3 in the lungs of mice treated with IL-6

neutralizing antibodies or following genetic removal of IL-6.

Results demonstrated a substantial reduction of STAT-3 activa-

tion in the lungs of Ada-/- mice treated with IL-6 neutralizing

antibodies (Figure 8B) or following the genetic removal of IL-6

(Figure 8C). These results indicate that IL-6 is the dominant

activator of STAT-3 in the lungs of Ada-/- mice.

Next, we performed immunolocalization experiments in lung

sections to localize STAT-3 activation. We found that alveolar

airway epithelial cells were the major cell type exhibiting nuclear

P-STAT-3 in the lungs of Ada-/- mice (Figure 8D). Moreover,

evidence of STAT-3 activation in alveolar airway epithelial cells

was dramatically attenuated in Ada-/- mice treated with IL-6

neutralizing antibodies. Similar results were noted in the lungs of

Ada-/- mice treated with ADA enzyme therapy to lower adenosine

levels or in Ada/IL-6 double knockout mice (data not shown).

These findings suggest that alveolar airway epithelial cells are a

major target of adenosine and IL-6 mediated STAT-3 activation

in the lungs of Ada-/- mice.

Discussion

Generation of adenosine following cellular damage is an

important component of the injury response where it plays active

roles in processes that protect cells and tissues, limit inflammation

and promote wound healing [6,8,9]. However, excessive adeno-

sine production and signaling have been implicated in the

amplification of remodeling responses that occur in chronic lung

diseases such as COPD and IPF [9]. The mechanisms by which

adenosine promotes chronic tissue remodeling are not well

understood. In the current study, we show that the pro-fibrotic

mediator IL-6 is produced by alveolar macrophages in the airways

of ADA-deficient mice that develop features of chronic lung

disease in response to elevations in adenosine [27]. Furthermore,

Figure 5. Alveolar air-space enlargement in Ada-/- mice following treatment with IL-6 neutralizing antibodies. Quantitative analysis of
alveolar air-space size was calculated using Image-Pro analysis software on lung sections collected from mice on postnatal day 43. (A) Alveolar air-
space size presented as mean chord lengths in mm 6SEM, n$11. Alterations in mediators associated with alveolar airway space enlargement.
Transcript levels of TIMP-1 (B), MMP-9 (C), and MMP-12 (E) were measured in whole-lung RNA extracts from postnatal day 43 mice using quantitative
RT-PCR. Transcripts were measured in parallel with 18S rRNA and values are presented as mean normalized transcript levels (D2ct) 6SEM, n$4.
(*, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs Ada-/- + Anti-IL-6.
doi:10.1371/journal.pone.0022667.g005
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we demonstrate that pharmacologic inhibition or genetic removal

of IL-6 attenuates pulmonary inflammation, fibrosis and air-space

destruction in this model of adenosine driven lung disease. In

addition, STAT-3 was found to be activated in the lungs of ADA-

deficient mice in conjunction with IL-6 elevations, and blocking

IL-6 signaling led to diminished STAT-3 activation, implicating

this pathway in the regulation of IL-6 induced pathologies in this

model. These findings identify a novel mechanism by which

adenosine can promote amplification pathways that lead to disease

progression. Furthermore, these findings suggest that IL-6

neutralizing antibodies might be useful in the treatment of chronic

lung diseases such as COPD and IPF.

IL-6 production in the lungs of ADA-deficient mice was found

to be abundant in alveolar macrophages and we demonstrated

that antagonism of the A2BR could block IL-6 release from these

cells in vitro. These findings are consistent with observations

that engagement of the A2BR can promote IL-6 production and

release from alveolar macrophages isolated from the lungs of

patients with COPD and IPF [15], and human lung fibroblasts

[17]. Furthermore, these findings are consistent with recent

experiments from our lab demonstrating reduced IL-6 produc-

tion in alveolar macrophages in the lungs of A2BR knockout

mice exposed to bleomycin [37]. Collectively, these findings

support the model that elevations in adenosine promote IL-6

production from alveolar macrophages through engagement of

the A2BR in chronic lung disease. However, it is important to

note that different observations have been made regarding

A2BR mediated IL-6 production in acute lung injury models

[38,39,40]. Eckel and colleagues demonstrated that genetic

removal of the A2BR was associated with increased IL-6

production in models of acute lung injury [39]. These

discrepancies may be attributed to secondary effects associated

with enhanced inflammation in acute lung injury models in

which the A2BR has been completely deleted or to differences in

cell types that are present in acute or chronic lung disease

models. Understanding the cellular source and mechanism of

IL-6 production in specific lung disorders will be essential to

deciphering the effects of A2BR based therapies.

Figure 6. Pulmonary phenotypes following genetic removal of IL-6 in Ada-/- mice. (A) Lungs from postnatal day 43 Ada+, Ada-/-, and Ada/IL-
6 double knockout mice. Images are representative of 8 animals from each group. Scale bars: 200 mm. (B) Total cell numbers in BAL fluid were
counted using a hemocytometer. BAL cells were cytospun and stained with Diff-Quick, allowing for quantification of macrophages (C) and
lymphocytes, eosinophils, and neutrophils (D). Data are presented as mean cell counts 6SEM, n$8. (E) Soluble collagen levels were measured using
the Sircol Assay. Data are presented as mean mg collagen/ml BAL fluid 6SEM, n$8. (F) Lung sections were stained with an antibody against a-sma to
visualize myofibroblasts (pink). Images are representative of 6 animals from each group. Scale bars = 100 mm. (G) Ashcroft scores were used as a
morphometric approach to quantify overall fibrosis in the lungs, n = 6. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs. Ada/IL-6-/-.
doi:10.1371/journal.pone.0022667.g006
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A major finding of this study was that treatment with IL-6

neutralizing antibodies or the genetic removal of IL-6 could

decrease inflammation in the lungs of ADA-deficient mice. This

occurred in conjunction with reduced expression of inflammatory

mediators such as CXCL-1, MCP-1, MIP-2, OPN and IL-17. We

chose to examine these particular mediators because of published

evidence that IL-6 can regulate them in models of lung injury

[21,41,42,43,44]. Thus, reductions in these immunomodulatory

molecules could provide mechanistic insight into the diminished

inflammation seen following IL-6 blockade, placing IL-6 early in a

cascade of events contributing to adenosine-induced lung

inflammation. However, it is important to note that not all of

the mediators examined were completely reduced following IL-6

blockade suggesting their regulation may be more complex. In

addition to the reduction in mediator production, the loss of

barrier function in this model, which was also regulated by IL-6,

could contribute to the effects seen on inflammation. It is difficult

to decipher the contribution of these inflammatory responses to

the remodeling responses seen; however, macrophages and

neutrophils are known to produce mediators that contribute to

both fibrosis [1] and air-space destruction [45,46]. Thus, although

cause and effect cannot be established, our results suggest that

blocking IL-6 signaling during chronic stages of lung disease can

attenuate the production of key effector molecules and the loss of

barrier function, both of which likely impact the remodeling

processes seen.

Results from our study also demonstrate that IL-6 contributes

to pulmonary fibrosis in ADA-deficient mice. These are the first

studies to demonstrate the ability to halt the progression of

fibrosis using IL-6 neutralizing antibodies suggesting IL-6 as a

potential therapeutic target for treating pulmonary disorders

where fibrosis is abundant. In further support of this, IL-6 levels

have been shown to be elevated in various pulmonary disorders

associated with fibrosis, including IPF [47], asthma [48] and

COPD [49]. Moreover, in vitro studies have demonstrated pro-

fibrotic activities of IL-6 on fibroblasts and myofibroblasts

[17,50,51], which are considered major effector cells in

pulmonary fibrosis [1]. In addition, IL-6 deficiency attenuates

fibrosis following intra-tracheal bleomycin exposure [21]. Col-

lectively, these findings support a pro-fibrotic role for IL-6 in

chronic lung disease.

In addition to reduced fibrosis, we found that treatment with

IL-6 neutralizing antibodies or genetic removal of IL-6 decreased

alveolar air-space destruction in ADA-deficient mice. Alveolar

air-space destruction is a feature seen in COPD patients

exhibiting emphysema [45]. Moreover, IL-6 levels are elevated

in patients with COPD [49], where it is thought to influence

inflammatory responses that contribute to pulmonary hyperten-

sion associated with this disorder [52]. Our results suggest that

IL-6 may also play an active role in the regulation of air-space

destruction. This could be due to the regulation of inflammation,

or by influencing levels of proteases or anti-proteases involved in

the regulation of air-space integrity. For example, IL-6 has been

shown to regulate the expression of various MMPs [53] and

inhibitors of MMPs such as TIMP-1 [54]. These mediators are

implicated in emphysema [45,46], and we demonstrate that

treatment with IL-6 neutralizing antibodies is associated with

decreased expression of MMPs and TIMP-1. Additional studies

are needed to identify the specific pathways by which IL-6

influences air-space destruction.

In pursuit of cells that are activated by IL-6, we probed lung

sections from ADA-deficient mice for nuclear phospho-STAT-3

immunolocalization. Surprisingly, we found that the most

abundant STAT-3 activation was found in alveolar airway

epithelial cells. Moreover, this activation was lost upon

treatment with ADA enzyme therapy to lower lung adenosine

levels as well as by genetic or pharmacologic blockade of IL-6,

suggesting that adenosine mediated IL-6 production is the

major pathway responsible for STAT-3 activation in this model.

Injury of airway epithelial cells is thought to play a major role in

the pathogenesis of both COPD and IPF [1,45]. Apoptosis of

airway epithelial cells contributes to the loss of air-space

integrity in COPD [45] and persistent injury of these cells is

thought to contribute to the chronic remodeling and fibrogen-

esis seen in IPF [1]. Thus, activation of STAT-3 in airway

epithelial cells may regulate processes that contribute to distal

airway remodeling in these chronic lung diseases. The

consequences of adenosine and IL-6 driven STAT-3 activation

in airway epithelial cells are currently under investigation;

however, our findings identify this cell type as an important

target of this pathway during chronic stages of disease where

adenosine is elevated. Previous studies have demonstrated

activation of STAT-3 in airway epithelial cells where it was

found to play a protective role in acute lung injury processes by

regulating surfactant production [25,55,56,57]. Thus, the role

of IL-6 signaling may differ between acute and chronic stages of

lung disease. This concept has been observed in other disorders

including the progression of colon cancer, where it has been

proposed that classical IL-6 signaling predominates in acute

stages of disease, while IL-6 trans signaling becomes important

in chronic stages [58]. Understanding the mechanisms and

timing behind the protective and remodeling activities of IL-6

in various lung disorders will be important if IL-6 blocking

strategies are to be pursued for the treatment of these disorders.

In conclusion, our studies demonstrate that IL-6 is an

important mediator of inflammation and remodeling in a chronic

lung disease model driven by adenosine [9,15]. Adenosine and

IL-6 are also elevated in models and humans with chronic lung

disease [9,10,11,59] and we speculate that adenosine elevations in

chronic environments serve to elevate IL-6 levels that in turn

activate inflammatory cascades and promote remodeling pro-

cesses such as fibrosis and air-space destruction. Blocking IL-6

signaling during chronic stages of disease may thus provide

benefit in halting remodeling processes such as fibrosis and air-

space destruction.

Figure 7. Alveolar air-space size in Ada/IL-6 double knockout
mice. Quantitative analysis of alveolar air-space size was calculated using
Image-Pro analysis software on lung sections collected from mice on
postnatal day 43. Data are presented as mean chord lengths in mm 6SEM,
n$8. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs. Ada/IL-6-/-.
doi:10.1371/journal.pone.0022667.g007
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Supporting Information

Figure S1 Enhanced IL-6 release from alveolar macro-
phages is mediated by the A2BR. Primary alveolar macro-

phages were isolated from the lungs of ADA-competent (Ada+) or

ADA-deficient mice (Ada-/-) on postnatal day 18 and placed in

short term culture. (A) IL-6 levels measured in culture media after

12 hrs. Data are presented as mean pg/ml6SEM. n = 5.

*, p#0.05 Ada+ vs Ada-/- . (B) Cells were stimulated with NECA

(10 mM), ATP (100 mM) or dATP (100 mM) for 12 hrs. For A2BR

antagonism, cells were pretreated for 15 min with MRS-1754

(1 mM) before the addition of agonist. IL-6 levels in media were

Figure 8. STAT-3 activation in the lungs of Ada-/- mice. STAT-3 activation was measured in whole-lung extracts using western blot analysis with
a phospho-STAT-3 antibody. Total STAT-3 levels were also examined and a-actin levels were used as a loading control. Duplicate mice from each
condition are shown. Phospho-STAT-3 band intensity was quantified using Image J analysis and values are presented as the percentage of a-actin
6SEM, n$4. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs. treatment or genetic alteration. Conditions examined include (A) Ada+ and Ada-/- mice
treated with ADA enzyme therapy (PEG-ADA), (B) day 43 Ada+ and Ada-/- mice treated with IL-6 neutralizing antibodies, and (C) Ada+, Ada-/-, IL-6-/- and
Ada/IL-6-/- mice. (D) Immunohistochemical localization of P-STAT-3 in alveolar epithelial cells (blue arrows) of Ada-/- mice. P-STAT-3 was not detected
in lung sections from Ada+ mice and Ada-/- mice treated with Anti-IL-6. Images are representative of 4 animals from each group. Scale bars = 100 mm.
doi:10.1371/journal.pone.0022667.g008
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quantified using ELISA and data are presented as mean fold

increases 6SEM, n = 5. * p#0.01 compared to media alone; #
p#0.01 compared to NECA; # # p#0.05 compared to ATP.

(TIF)

Figure S2 Treatment with IL-6 neutralizing antibodies.
(A) Schematic diagram illustrating experimental design. Ada+ and

Ada-/- mice were identified at birth and placed on ADA enzyme

replacement therapy (PEG-ADA) until postnatal day 25. Mice

were treated subcutaneously with an IL-6 neutralizing antibody at

postnatal day 26, 31, and 37. Group controls included: no

treatment and isotype antibody. (B) Pharmacokinetic analysis

revealing IL-6 antibody exposure levels in the plasma. Data are

presented as mean mg/ml IL-6 antibody6SEM, n$11.

(TIF)

Figure S3 Lavage adenosine levels. Adenosine levels were

quantified in 100 ml aliquots of BAL fluid using HPLC. Values are

presented as mean adenosine concentrations (nM) 6SEM.

*, p#0.05 compared to Ada+.

(TIF)

Figure S4 Vascular barrier function following treat-
ment with IL-6 neutralizing antibodies. Ada+ and Ada-/-

mice were treated subcutaneously with IL-6 neutralizing antibod-

ies as described in the methods. On day 43, mice were injected

with Evans blue dye. 4 hrs later, mice were anesthetized, perfused

and lungs and hearts were removed. (A) Whole mounts

demonstrating increased Evans blue tissue uptake in the lungs of

Ada-/- mice and reduced uptake in Ada-/- treated with IL-6

neutralizing antibodies (Anti IL-6). Images are representative of 4

mice. (B) Organs were extracted in formamide and dye

concentrations were determined in lungs and hearts. Data are

presented as mean mg/lung 6SEM. n = 4. *, p#0.05 Ada+ vs

Ada-/- and #, p#0.05 Ada-/- vs Ada-/- + Anti-IL-6.

(TIF)

Figure S5 Decreased fibronectin in the lungs of Ada-/-

mice treated with IL-6 neutralizing antibodies. Analyses

were on postnatal day 43. (A) Whole-lung fibronectin transcript

levels were measured using quantitative RT-PCR. Data are

presented as mean normalized 18S rRNA transcript levels (D2ct)

6SEM, n$4. *, p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs

Ada-/- + Anti-IL-6. (B) Decreased fibronectin deposition visualized

by fibronectin immunofluorescence (red) blue represents dapi

stained nuclei. Images are representative of 8 animals from each

group. Scale bars: 200 mm.

(TIF)

Figure S6 Decreased mucus cell metaplasia following
treatment with IL-6 neutralizing antibodies. Ada+ and

Ada-/- mice were treated subcutaneously with an IL-6 neutralizing

antibodies as described in the methods. Lung sections from day 43

mice were subjected to periodic acid-Schiff (PAS) staining that

stained mucus pink. (A) Representative views of bronchial airways

from 6 mice in each group. (B) Image Pro software was used to

quantify the degree of periodic acid-Schiff staining in bronchial

epithelial cells and data are presented as a mean Mucus Index

6SEM. n = 6; p#0.05 Ada+ vs Ada-/- and #, p#0.05 Ada-/- vs

Ada-/- + Anti-IL-6.

(TIF)
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