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Simple Summary: The present study investigated the emergence, antimicrobial susceptibility pro-
files, serotypes, and genotypes of Salmonella enterica from hatcheries and their upstream breeder
farms to determine the occurrence of antimicrobial-resistant (AMR) Salmonella enterica contamination
in hatcheries and its dissemination in an integrated broiler chicken operation. The hatcheries showed
a high prevalence of Salmonella isolates with high antimicrobial resistance and no susceptible isolate.
The AMR isolates from hatcheries originating from breeder farms could disseminate to the final retail
market along the broiler chicken supply chain. Hatcheries play a more important role than breeder
farms in the occurrence and spread of Salmonella in the broiler production chain. The emergence of
AMR Salmonella in hatcheries may be due to the horizontal spread of resistant isolates rather than
the first contamination of susceptible Salmonella and acquisition of resistance. Therefore, Salmonella
control in hatcheries, particularly its horizontal transmission, is important.

Abstract: Positive identification rates of Salmonella enterica in hatcheries and upstream breeder farms
were 16.4% (36/220) and 3.0% (6/200), respectively. Among the Salmonella serovars identified in the
hatcheries, S. enterica ser. Albany (17/36, 47.2%) was the most prevalent, followed by the serovars S.
enterica ser. Montevideo (11/36, 30.6%) and S. enterica ser. Senftenberg (5/36, 13.9%), which were
also predominant. Thirty-six isolates showed resistance to at least one antimicrobial tested, of which
52.8% (n = 19) were multidrug resistant (MDR). Thirty-three isolates (enrofloxacin, MIC ≥ 0.25)
showed point mutations in the gyrA and parC genes. One isolate, S. enterica ser. Virchow, carrying the
blaCTX-M-15 gene from the breeder farm was ceftiofur resistant. Pulsed-field gel electrophoresis (PFGE)
showed that 52.0% S. enterica ser. Montevideo and 29.6% S. enterica ser. Albany isolates sourced
from the downstream of hatcheries along the broiler chicken supply chain carried the same PFGE
types as those of the hatcheries. Thus, the hatcheries showed a high prevalence of Salmonella isolates
with high antimicrobial resistance and no susceptible isolate. The AMR isolates from hatcheries
originating from breeder farms could disseminate to the final retail market along the broiler chicken
supply chain. The emergence of AMR Salmonella in hatcheries may be due to the horizontal spread of
resistant isolates. Therefore, Salmonella control in hatcheries, particularly its horizontal transmission,
is important.

Keywords: Salmonella enterica; antimicrobial resistance; hatchery; integrated broiler chicken opera-
tion; transmission
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1. Introduction

Salmonellosis, caused by Salmonella enterica (S. enterica), is among the most frequently
reported foodborne bacterial diseases [1]. Contaminated poultry and its products are
a major source of motile Salmonellae causing salmonellosis in human worldwide [2,3].
In South Korea, Salmonella is the leading (23%) cause of bacterial foodborne poisoning.
The annual production of chicken meat, the second-largest source of animal protein, was
957,000 metric tons in 2019, indicating an increase of about 1.6% since 2018 [4,5]. Among
them, broilers represented 77% of slaughtered chickens in 2018. Contamination of poultry
may occur throughout the broiler production chain, and the potential risk for contamination
at each stage has been identified [6].

Humans are likely to be exposed to antimicrobial-resistant (AMR) Salmonella, which
results from the use of antimicrobials in animals, through contaminated food, thus, leading
in a health threat [7]. In recent years, increases in the emergence and spread of AMR
Salmonella, particularly multidrug-resistant (MDR) Salmonella, in humans and animals have
been reported worldwide, making it a global challenge [8–10]. Therefore, fluoroquinolones
(FQs) and third generation cephalosporins (3GC) have become critically important for
treating salmonellosis in humans [11]. Thus, Salmonella resistant to FQs and 3GC frequently
arise in animals with easy dissemination across the food chain [12]. The dissemination
of AMR Salmonella through the food chain, particularly through chickens, has important
implications for the failure of salmonellosis treatment, thus, creating an increased risk to
public health by the spread of AMR Salmonella via chickens [13].

It is essential to inhibit microorganisms in the broiler chicken supply chain to produce
hygienic chicken meat. Epidemiological studies have clearly shown the transmission
pathway of S. enterica and its serovars associated with poultry and the challenges posed
by their virulence and antimicrobial resistance profiles [14]. Consequently, this pathogen
has become one of the main targets for the implementation of control strategies along the
poultry production chain. Breeding flocks, hatcheries, rearing farms, and slaughter plants
are all recognized as critical focal points for managing the risk associated with salmonellae.
A hatchery plays an important role in collecting hatching eggs from the upper breeder
farm and selling newly hatched chicks to a commercial broiler farm. Some Salmonella
serovars can persist in hatcheries longer than others, probably due to their ability to form
biofilms [15]. Hazard Analysis and Critical Control Point (HACCP) has been applied to
poultry farms (including broiler and breeder farms) and chicken slaughterhouses in Korea.
However, it has not been applied to hatcheries, thus, warranting a systematic investigation
and evaluation of hatchery hygiene, which has not yet been performed [16].

Salmonella can be introduced into hatcheries by horizontal and vertical transmission
routes. The newly hatched chicks are more susceptible to Salmonella infection than older
birds; as their intestinal flora and immune system are immature, they may become infected
with a challenge of 10–100 Salmonella cells [17]. A high prevalence of Salmonella in one-day-
old chickens from hatcheries has been previously reported [18]. Salmonella contamination
in a hatchery can produce poor-quality chicks, resulting in a decreased feed conversion
rate, increased mortality, and poor flock uniformity [16]. Moreover, the prevalence of
Salmonella in hatcheries is related to Salmonella prevalence in derived meat products during
processing [19]. Prevention of Salmonella contamination in chicken products requires
detailed knowledge of the major sources of contamination. The critical role of a hatchery
in disseminating Salmonella to commercial broiler farms and possibly exposing breeder
flocks to contamination on egg trays, trolleys, and vehicles has also been previously
reported [20–22]. Most of these works have focused on the potential for cross-contamination
and infection caused by Salmonella in chicks during incubation. Considering that most
integrated companies show vertical integration in Korea with numerous potential sources
of Salmonella contaminants in this system, Salmonella control in integrated broiler chicken
operations is complicated [23].

It is necessary to investigate the occurrence and antimicrobial resistance of Salmonella
in the poultry production chain as it may aid the optimization of HACCP strategies and
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reduce the incidence of salmonellosis in humans. In recent years, several reports de-
scribing Salmonella prevalence in the integrated broiler supply chain in Korea have been
published [19,24–26]. However, studies focusing on the dissemination or tracing of the
AMR Salmonella along an integrated broiler chicken operation are limited. The dissemi-
nation of AMR Salmonella in the broiler farm, slaughterhouse, and its downstream retail
markets has been previously described, possibly contributing to the original dissemination
of AMR Salmonella to retail chicken meat [6,27]. The high prevalence of AMR Salmonella
colonized in newly hatched chicks in broiler farms has emphasized upstream breeder
farm and hatchery as the sources of AMR Salmonella in broiler chickens. The purposes
of the present study were to identify AMR Salmonella occurrence in hatcheries and their
upstream breeder farms and reveal the dissemination in a vertically integrated broiler
chicken operation in South Korea.

2. Materials and Methods
2.1. Sample Collection

There were no vulnerable populations involved, and no endangered species were
used in the experiments. No chickens were killed; cloacal swab samples were taken by a
veterinarian with prior consent of the farm managers. The present study did not require
ethical approval.

From September 2015 to August 2016, 420 fresh samples were collected from
44 hatcheries and their upstream 25 breeder farms. The sampling was done in two parts
as follows:

(i) A total of 220 cloacal swab test samples were collected from 44 hatcheries. Twenty-five
cloacal swab samples were randomly collected from the entire area of each hatchery,
and samples from five chicks were pooled into one test sample (S, n = 5).

(ii) A total of 200 test samples, including 125 cloacal swab samples and 75 litter samples,
were collected from 25 breeder farms. Twenty-five cloacal swab samples and fifteen
litter samples were randomly collected from the entire areas of each breeder farm,
and five samples obtained from the similar area were pooled into one test sample.
Finally, cloacal swabs (S, n = 5) and litter (L, n = 3) were collected from each farm.

2.2. Isolation and Identification of Salmonella

Samples were collected in sterile plastic conical tubes (50 mL; SPL Life Sciences Co.,
Ltd., Seoul, Korea) and stored under refrigeration in the laboratory until analysis, which
was performed within 48 h of arrival. Salmonellae were isolated using previously described
standard methods [28]. The DNA of Salmonella-positive colonies, extracted by the boiling
method, was further tested by polymerase chain reaction (PCR) using the Salmonella-
specific gene (invA) [29]. All strains were serotyped per the Kauffmann–White scheme
using slide agglutination with O and H antigen-specific sera (BD Difco, Sparks, MD, USA
and Denka Seiken Co., Ltd., Tokyo, Japan) [30].

2.3. Antimicrobial Susceptibility Test

The minimum inhibitory concentrations (MICs) of the 16 antimicrobials were deter-
mined using the KRNV4F Sensititre panel (TREK Diagnostic Systems, Incheon, Korea).
The MIC of enrofloxacin was determined using the agar dilution method. Escherichia coli
(ATCC 25922) was used as the quality control strain. The susceptibility breakpoints of most
antimicrobials were interpreted based on the Clinical and Laboratory Standard Institute
(CLSI) guidelines [31], whereas those of the antimicrobials used for the animals, including
ceftiofur, enrofloxacin, and florfenicol, were interpreted based on the CLSI standards docu-
ment VET-01 [32]. The CLSI criteria were not available for streptomycin or neomycin, for
which we used other references [7,33] (see Supplementary Materials, Table S1). Salmonella
isolates, resistant to at least three antimicrobial classes, were considered to be MDR.
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2.4. Molecular Characterization of Resistance

For determining the molecular characterization of quinolone resistance genes, the
quinolone-resistant isolates were further detected on plasmid-mediated quinolone resis-
tance (PMQR) genes by PCR and sequencing. These genes included qnrA, qnrB, qnrS,
qnrD, qepA, oqxA, and aac(6′)-lb-cr and mutations in the quinolone-resistance determining
region (QRDR), gyrA, and parC genes, as previously described [34]. Positive controls
were used in all PCR reactions. PCR products were purified using the QIAquick Gel
Extraction kit (Qiagen, Hilden, Germany) and were further sequenced directly (SolGent
Co., Ltd., Daejeon, Korea) for sequence analysis and aligned using the BLAST program
(www.ncbi.nlm.nih.gov/BLAST/). The inferred amino acid sequences of the QRDR-
encoding genes were compared with the corresponding regions of the reference strain S.
Typhimurium LT2 (GenBank accession no. AE006468).

For detecting the molecular characterization of resistance to 3GC, isolates exhibit-
ing extended-spectrum β-lactamase/ampicillin-class C (ESBL/AmpC) phenotypes were
further screened by PCR, as previously described [35].

2.5. Pulsed-Field Gel Electrophoresis and BioNumerics Analysis

The Salmonella isolates (n = 38) selected from the hatcheries and upstream breeder
farms were genotyped using pulsed-field gel electrophoresis (PFGE) following the pro-
tocols of the Centers for Disease Control and Prevention available on PulseNet (www.
pulsenetinternational.org) with certain modifications, as described previously [28]. Among
them, S. enterica ser. Albany (n = 17), S. enterica ser. Montevideo (n = 9), and S. enterica ser.
Virchow (n = 2) were selected to further compare the genotypic relatedness of isolates with
relevant serovars (S. enterica ser. Montevideo, n = 100; S. enterica ser. Albany, n = 71; and S.
enterica ser. Virchow, n = 25) from downstream of the integrated broiler chicken operation,
including broiler farms, slaughterhouse, and retail markets (in our previous studies) [6,27].

2.6. Statistical Analysis

The Chi-square test was used to test for significant differences in the rates of Salmonella
isolation among hatcheries and breeder farms and p-values less than 0.05 were considered
to be statistically significant. The software SPSS (version 19.0; IBM Co., Armonk, NY, USA)
was used for statistical analysis.

3. Results
3.1. Prevalence and Serovars of Salmonella

A total of 36 isolates (16.4%) from the samples obtained from hatcheries and six isolates
(3.0%) obtained from their upstream breeder farms were positive for Salmonella (Table S2).
There was a significant difference (p < 0.05) in isolation rates among the breeder farm and
hatchery; however, there were no significant differences in isolation rates among the cloacal
swabs samples (1/125, 0.8%) and the litter samples (5/75, 6.7%) in the breeder farms. Three
of 25 (12.0%) breeder farms were positive for S. enterica; eighteen of 44 hatcheries (40.9%)
were positive for Salmonella. The prevalence of S. enterica per hatchery and in breeder
farms is shown in Table S3. Five serovars were identified among the 42 Salmonella-positive
isolates (Table 1). The most common serotype recovered from the hatcheries was S. enterica
ser. Albany (17 isolates, 47.2%), followed by S. enterica ser. Montevideo (11 isolates, 30.6%)
and S. enterica ser. Senftenberg (five isolates, 13.9%). Only one isolate with S. enterica
ser. Omuna was detected, and two isolates (5.6%) marked as “untypable” could not be
assigned to specific serotypes. The serotypes recovered from breeder farms were S. enterica
ser. Montevideo (3 isolates, 50%) and S. enterica ser. Virchow (three isolates, 50%).

www.ncbi.nlm.nih.gov/BLAST/
www.pulsenetinternational.org
www.pulsenetinternational.org
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Table 1. Serotype distribution of Salmonella enterica in hatcheries and their upstream breeder farms.

Serovar (Serogroup)
Sampling Site, n a (%)

Hatchery Breeder Farm Total

Albany (C2–C3) 17 (47.2) 0 17 (40.5)
Montevideo (C1) 11 (30.6) 3 (50.0) 14 (33.3)
Senftenberg (E4) 5 (13.9) 0 5 (11.9)

Virchow (C1) 0 3 (50.0) 3 (7.1)
Omuna (C1) 1 (2.8) 0 1 (2.4)
Untypable 2 (5.6) 0 2 (4.8)

Total 36 6 42
a n, number of isolates.

3.2. Antimicrobial Susceptibility Analysis

All 36 isolates from hatcheries were resistant to at least one antimicrobial; 19 of these
isolates (52.8%) were MDR (Table 2). Among these 19 MDR isolates were all isolates of
S. enterica ser. Albany (n = 17) and the only isolate of S. enterica ser. Omuna (n = 1) and
untypable (n = 1); no isolate of S. enterica ser. Senftenberg or S. enterica ser. Montevideo was
MDR. Isolates of S. enterica ser. Albany with resistance to NAL (17/17, 100.0%), TET (17/17,
100.0%), AMP (17/17, 100.0%), SXT (17/17, 100.0%), and CHL (17/17, 100.0%) were the
most prevalent, followed by those resistant to STR (11/17, 64.7%) and FFN (3/17, 17.6%).
Isolates of S. enterica ser. Montevideo with resistance to NAL (11/11, 100.0%) were the
most prevalent, followed by the one resistant to SXT (1/11, 9.1%). Isolates of S. enterica
ser. Senftenberg with resistance to NAL (5/5, 100.0%) were the most prevalent. Among all
isolates from hatcheries, 50.0% (18/36) and 47.2% (17/36) showed intermediate resistance
to CIP and enrofloxacin (ENR), respectively. All 36 isolates from the hatcheries were sus-
ceptible to the four antimicrobials NEO, GEN, CEP, and XNL. Six antimicrobial resistance
profiles were observed among Salmonella isolates from the hatcheries; the antimicrobial
resistance profile NAL (13/36, 36.1%) was the most prevalent antimicrobial resistance
profile, followed by NAL-STR-TET-SXT-AMP-CHL (12/36, 33.3%) (Table 3). The isolates
of S. enterica ser. Albany were all resistant to ≥5 antimicrobials. Antimicrobial resistance
profiles of NAL-STR-TET-SXT-AMP-CHL (n = 11), NAL-TET-SXT-AMP-CHL (n = 3), and
NAL-TET-SXT-AMP-CHL-FFN (n = 3) were confirmed. Five of six isolates from breeder
farms were MDR.

Table 2. Antimicrobial resistance of Salmonella enterica isolated from hatcheries and their upstream breeder farms a.

Serovar n
No. (%) of Isolates Resistant to Antimicrobials

NAL CIP ENR NEO GEN STR TET AMC CEP FOX XNL AMP SXT COL FFN CHL MDR

Hatchery

Albany 17 17 (100.0) 0 0 0 0 11 (64.7) 17 (100.0) 0 0 0 0 17 (100.0) 17 (100.0) 0 3 (17.6) 17 (100.0) 17 (100.0)
Montevideo 11 11 (100.0) 0 0 0 0 0 0 0 0 0 0 0 1 (9.1) 0 0 0 0
Senftenberg 5 5 (100.0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Omuna 1 1 (100.0) 0 0 0 0 1 (100.0) 1 (100.0) 0 0 0 0 1 (100.0) 1 (100.0) 0 0 1 (100.0) 1 (100.0)
Untypable 2 1 (50.0) 0 0 0 0 0 0 0 0 1 (50.0) 0 1 (50.0) 1 (50.0) 1 (50.0) 0 0 1 (50.0)
Subtotal 36 35 (97.2) 0 0 0 0 15 (41.7) 18 (50.0) 0 0 1 (2.8) 0 19 (52.8) 20 (55.6) 1 (2.8) 3 (8.3) 18 (50.0) 19 (52.8)

Breeder farm

Montevideo 3 3 (100.0) 0 0 3 (100.0) 0 3 (100.0) 3 (100.0) 0 0 0 0 0 0 0 0 0 3 (100.0)
Virchow 3 2 (66.7) 0 0 3 (100.0) 0 2 (66.7) 3 (100.0) 0 0 0 2 (66.7) 2 (66.7) 0 0 0 0 2 (66.7)
Subtotal 6 5 (83.3) 0 0 6 (100.0) 0 5 (83.3) 6 (100.0) 0 0 0 2 (33.3) 2 (33.3) 0 0 0 0 5 (83.3)

Total 42 40 (95.2) 0 0 6 (14.3) 0 17 (40.5) 24 (57.1) 0 0 1 (2.4) 2 (4.8) 21 (50.0) 23 (54.8) 1 (2.4) 3 (7.1) 18 (42.9) 24 (57.1)

a NAL, nalidixic acid; CIP, ciprofloxacin; ENR, enrofloxacin; NEO, neomycin; GEN, gentamicin; STR, streptomycin; TET, tetracycline; AMC,
amoxicillin/clavulanic acid; CEP, cephalexin; FOX, cefoxitin; XNL, ceftiofur; AMP, ampicillin; SXT, trimethoprim/sulfamethoxazole; COL,
colistin; FFN, florfenicol; CHL, chloramphenicol; MDR, multiple drug resistance; n, number of isolates.
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Table 3. Antimicrobial resistance profile of Salmonella isolates from hatcheries and their upstream breeder farm.

No. Antimicrobial Resistance Profile a
Hatchery (n b = 36) Breeder Farm (n = 6)

n (%) Serovars (n) n (%) Serovars (n)

1 NAL 13 (36.1) Montevideo (7), Senftenberg (5), untypable (1) 0 -
2 NAL-STR-TET-SXT-AMP-CHL 12 (33.3) Albany (11), Omuna (1) 0 -
3 NAL-SXT 4 (11.1) Montevideo (4) 0 -
4 NAL-TET-SXT-AMP-CHL 3 (8.3) Albany (3) 0 -
5 NAL-TET-SXT-AMP-CHL-FFN 3 (8.3) Albany (3) 0 -
6 SXT-AMP-FOX-COL 1 (2.7) Untypable (1) 0 -
7 NAL-NEO-STR-TET 0 - 3 (50.0) Montevideo (3)
8 NAL-NEO-STR-TET-AMP-XNL 0 - 1 (16.7) Virchow (1)
9 NEO-STR-TET 0 - 1 (16.7) Virchow (1)

10 NAL-NEO-TET-AMP-XNL 0 - 1 (16.7) Virchow (1)

NAL, nalidixic acid; NEO, neomycin; STR, streptomycin; TET, tetracycline; FOX, cefoxitin; XNL, ceftiofur; AMP, ampicillin; SXT, trimetho-
prim/sulfamethoxazole; COL, colistin; FFN, florfenicol; CHL, chloramphenicol; n, number of isolates.

3.3. Quinolone-Resistance Determining Region (QRDR) Mutations, Plasmid-Mediated
QuinoloneRresistance (PMQR), and Extended-Spectrum β-Lactamase (ESBL)-Producing Isolates

The prevalence of PMQR and QRDR mutations among Salmonella isolates (ENR, MIC
≥ 0.25) is shown in Table 4. PMQR genes were not observed in any test isolate; all test
isolates from hatcheries (n = 33) showed single point mutations in gyrA and parC genes.
Point mutations with Ser-83-Tyr, Ser-83-Phe, and Asp-87-Gly were found in the gyrA gene;
point mutations with Tyr-57-Ser and Tyr-57-Thy were found in the parC gene. Of the two
Salmonella isolates from breeder farm with resistance to XNL (MICs≥ 8), one isolate carried
an ESBL gene, which was blaCTX-M-15.

Table 4. Prevalence of plasmid-mediated quinolone resistance (PMQR) and quinolone-resistance determining region
(QRDR) mutations among Salmonella (enrofloxacin (ENR), minimum inhibitory concentrations (MIC) ≥ 0.25) isolated from
hatcheries and their upstream breeder farms.

Patterns
ENR MIC
(µg/mL) PMQR

QRDR Mutations

gyrA parC No. of Isolates

Ser-83-Tyr Ser-83-Phe Ser-87-Gly Tyr-57-Ser Tyr-57-Thy Hatchery Breeder Farm Total

P1 0.25−0.50 � � � � � � 15 3 18
P2 0.25−0.50 � � � � � � 9 1 10
P3 0.25−0.50 � � � � � � 8 0 8
P4 0.25 � � � � � � 1 0 1
P5 0.50 � � � � � � 0 1 1

n, % 0 1 (2.6) 18 (47.4) 18 (47.4) 37 (97.4) 1 (2.6) 33 5 38

n, indicates the number of isolates; % indicates the percentage; �/�, indicate the presence/absence, respectively, of designated gene and
mutation in each Salmonella isolate tested.

3.4. Correlations among Salmonella Isolates from Hatcheries and Downstream Stages along an
Integrated Broiler Chicken Operation Based on Genotypic Characteristics

A total of 38 selected isolates were subdivided into 17 PFGE types with 100% similarity
(Figure 1). Different serotypes were detected on the same farms. S. enterica ser. Montevideo
and S. enterica ser. Virchow isolates were identified from farm BY, S. enterica ser. Albany
and S. enterica ser. Montevideo from farm SJ, and S. enterica ser. Omuna and S. enterica
ser. Albany isolates from farm JZ. Isolates, including 17 S. enterica ser. Albany and 13 S.
enterica ser. Montevideo, were classified into five and six PFGE types, respectively, based
on characterization with PFGE using the restriction enzyme XbaI. Among these, one PFGE
type (M1) was shared among breeder farms and hatchery isolates. Isolates of the same
PFGE type were observed in different hatchery farms (type M3 in farms HS and HNL; type
M5 in farms HNL and JHG; type M6 in farms YW, HSH, SJ, and ZE; type S in farms NSZY
and XH; type A1 in farms YWG and HS; type A2 in farms YY, SJ, and ZH; type A3 in farms
HNL and NS; type A4 in farms YWG, HS, and HNL; and type A5 in farms ZH, YJ, NS, and
JZ). Conversely, isolates of different PFGE types were observed in the same farms (types
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M3, M5, A3, and A4 in farm HNL; types A1 and A4 in farms YWG and HS; and types A2
and A5 in farm ZH).

Figure 1. Dendrograms of the pulsed-field gel electrophoresis (PFGE) types of the 38 selected Salmonella isolates recovered
from the hatchery and upstream breeder farms. These isolates and their association with source and antimicrobial resistance
profiles are shown. Backgrounds with the same-colored bars (orange) indicate samples with the same PFGE patterns and
antimicrobial resistance profiles; bold and non-bold indicate samples with different source.

The 224 isolates of S. enterica (S. enterica ser. Montevideo, n = 109; S. enterica ser. Albany,
n = 88; and S. enterica ser. Virchow, n = 27) from the integrated broiler chicken operation
can be divided into 50 PFGE types, including 30, 11, and 9 PFGE types in S. enterica
ser. Montevideo, S. enterica ser. Albany, and S. enterica ser. Virchow isolates, respectively
(Figure S1). The distribution of PFGE types of Salmonella isolates from different stages along
the chicken production chain is shown in Table 5. Eleven PFGE types of Salmonella isolates
from hatcheries were detected. Among these, two (18.2%) PFGE types (SM-3 and SM-7)
were found consistent with upstream breeder farms and eight (72.7%) PFGE types (SM-3,
SM-7, SM-11, SM-12, and SM-13; SA-9, SA-10, and SA-11) were consistent with downstream
stages, including broiler farms (SM-3, SM-7, SM-11, SM-12, and SM-13), slaughterhouses
(SM-7, SM-12, SA-10, and SA-11), and retail markets (SM-7, SM-12, SA-9, SA-10, and SA-11).
Among these PFGE types, SM-7 was found in isolates from breeder farms, hatcheries,
broiler farms, slaughterhouses, and retail markets (Figure S1a). Furthermore, the types
SA-10 and SA-11 were also found in isolates from hatcheries, slaughterhouses, and retail
markets (Figure S1b); no identical PFGE type was found in isolates of S. enterica ser. Virchow
from breeder farms and the downstream stages (Figure S1c). The 52 (52.0%, 52/100) S.
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enterica ser. Montevideo isolates procured from the downstream of the hatchery stage
carried the same PFGE types as those of the hatchery, and the most prevalent PFGE types
were SM-7 and SM-12, accounting for 25.0% (25/100) and 14.0% (14/100) of the isolates,
respectively. Similarly, the 21 (29.6%, 21/71) S. enterica ser. Albany isolates procured
from the downstream of the hatchery stage carried the same PFGE types as those of the
hatchery, and the second most prevalent PFGE type SA-11 accounted for 19.7% (14/71) of
the isolates (Table 6 and Figure S2). The prevalence of overlapped PFGE types in S. enterica
ser. Montevideo (52/100, 52.0%) is significantly higher (p = 0.003) than that of in S. enterica
ser. Albany (21/71, 29.6%); the prevalence of the most prevalent overlapped PFGE types
in each serotype (SM-7 of S. enterica ser. Montevideo and SA-11 of S. enterica ser. Albany,
respectively) is significantly higher than that of non-overlapped PFGE types (SM-6 (or
SM-15, 22, 26, 28) and SA-4, respectively) (Table S4).

Table 5. The distribution of PFGE type of Salmonella isolates from different stages along the chicken production chain.

Serovar PFGE Type
Sampling Site

Breeder Farm Hatchery Broiler Farm Slaughterhouse Retail Market

Montevideo SM 3 b, 7 3, 7, 11, 12, 13, 14 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17,
18, 20, 24, 25, 26, 27, 28, 29, 30 1, 2, 4, 7, 8, 10, 12, 21, 23 7, 12, 19, 22

Albany SA - a 6, 8, 9, 10, 11 - 1, 2, 3, 4, 5, 7, 10, 11 1, 2, 4, 5, 9, 10, 11

Virchow SV 8, 9 - 2 2, 3, 4, 6, 7 1, 2, 4, 5
a No isolate of the target serotype; b number indicating the PFGE type, as shown in Figure S1.

Table 6. The prevalence of Salmonella isolates from downstream of the hatchery stage along the integrated broiler chicken
operation, with overlapped PFGE types with the hatchery stage *.

Serovar Overlap or Not PFGE Type
Downstream (Broiler Farm, Slaughterhouse, Retail Market)

Number of Isolates/per PFGE Type Percentage (%)

Montevideo Overlap SM-7 25 25.0
SM-12 14 14.0
SM-13 5 5.0

SM-3, 11 4 4.0
Subtotal 52 52.0

Non-overlap SM-6, 15, 22, 26, 28 4 4.0
SM-27 3 3.0

SM-1, 5, 10, 16, 19, 23, 29 2 2.0
SM-2, 4, 8, 9, 17, 18, 20, 21, 24, 25, 30 1 1.0

Subtotal 48 48.0
Total 100 100.0

Albany Overlap SA-11 14 19.7
SA-10 4 5.6
SA-9 3 4.2

Subtotal 21 29.6
Non-overlap SA-4 24 33.8

SA-7 9 12.7
SA-1 8 11.3
SA-5 4 5.6
SA-2 3 4.2
SA-3 2 2.8

Subtotal 50 70.4
Total 71 100.0

Virchow Non-overlap SV-2 11 44.0
SV-4 6 24.0
SV-1 4 16.0

SV-3, 5, 6, 7 1 4.0
Total 25 100.0

* This table was converted to a Venn diagram to illustrate the distribution of PFGE types in Figure S2.

4. Discussions

In the present study, the prevalence of S. enterica (16.4%) was higher in hatcheries
than in its upstream breeder farm (3.0%), despite fumigation being routinely used during
hatching (Table S2) [16]. The prevalence of Salmonella in hatcheries varied widely from
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operation to operation (6.78–44.9%) and may have been associated with differences in
hygiene and sanitation levels of each operation and the different detection methods used in
each study [25,36,37]. Herein, the Salmonella isolation rate from breeder farms was relatively
lower (3.0%) than in previous studies in Korea (14.7–19.0%) and China (10.53–18.15%);
however, even infected breeder flocks have been shown to cause widespread Salmonella
contamination [18,25]. The comparison of our Salmonella isolation rates in cloacal swabs
(1/125, 0.8%) and litter (5/75, 6.7%) samples from breeder farms with previous studies (0%
and 40%, respectively) indicates that different sample types may also be a factor influencing
the prevalence of Salmonella [24,38].

In total, S. enterica ser. Albany was the dominant serovar in hatcheries (Table 1). These re-
sults are consistent with our previous study on isolating AMR Salmonella isolates from chicken
slaughterhouses and retail markets [6]. Similarly, studies conducted on the prevalence of
Salmonella in poultries in Vietnam, Malaysia, and Myanmar showed that the predominant
serovar was S. enterica ser. Albany (34.1%, 35.4%, and 38%, respectively) [39–41]. Contrary to
our results, S. enterica ser. Hadar was the most frequently reported serovar in integrated
broiler operations in Korea; the Salmonella serotype most often isolated from the hatchery
was S. enterica ser. Senftenberg [16,19,25]. S. enterica ser. Albany, one of the prominent
serovars in poultry that has been infecting animals and humans for several decades, may be
an emerging serotype in Korea in the future [42,43]. Consistent with our results, S. enterica
ser. Montevideo, S. enterica ser. Senftenberg, and S. enterica ser. Virchow were the most
frequently reported serovars in the poultry industry in Korea [25,26,44]. S. Enteritidis has
typically been the most common serotype responsible for Salmonella infections in poultry
in Korea for several decades; however, this prevalence has decreased, and this serovar
has been gradually replaced by other emerging serovars. Therefore, the predominant
Salmonella serovar varies from company to company and time to time.

Antimicrobial resistance of Salmonella is a globally emerging problem of public health
concern. In the present study, no susceptible isolate was found in any of the 42 isolates.
Among the 16 antimicrobial agents tested, the highest resistance rate observed in the
hatchery was to NAL (97.2%), followed by SXT (55.6%), AMP (52.8%), TET (50.0%), and
CHL (50.0%), which is consistent with previous reports (Table 2) [6,45]. Antimicrobial
resistance was detected even in isolates from hatcheries that were not treated with an-
timicrobials. One potential explanation is that those AMR isolates came from upstream
breeder farms. Quinolones, ampicillin, and tetracyclines have been widely used for therapy,
prophylaxis, and growth promotion by breeders, while sulfonamides have been used in
human and veterinary medicine for 40 years [46,47]. Another potential explanation is that
the hatcheries are contaminated with AMR Salmonella in the internal environment of the
hatchery or the external natural environment [48]. Contrary to the increasing incidence of
FQ-resistant Salmonella reported worldwide, we did not find FQ resistance in the present
study. However, a marked resistance to NAL reported herein could be a matter of con-
cern because NAL resistance has been associated with a decrease in susceptibility to FQs,
which are used to treat salmonellosis in humans. The present study indicated that MDR
Salmonella contamination was more widespread in the hatchery (19/36, 52.8%) (Table 2)
than suggested by another report [49]. Among MDR isolates, we observed resistance to
3GC and COL, which are critically important in treating salmonellosis in humans [11]. For
example, two S. enterica ser. Virchow isolates from breeder farms were resistant to XNL,
with the antimicrobial resistance profiles NAL-NEO-STR-TET-AMP-XNL and NAL-NEO-
TET-AMP-XNL (Table 3); one isolate (untypable) from the hatchery was resistant to COL,
with the antimicrobial resistance profile SXT-AMP-FOX-COL. Colistin, as an antimicrobial
substance, was used against Gram-negative bacteria. The use of colistin has been limited
due to systemic toxicity. However, it has been re-introduced as a last-line option in the
treatment of human infections [50]. The resistance can be transmitted to humans through
the food chain. Eventually, it can lead to microbial cross-resistance and pose a threat to
human health. Therefore, it is mandatory to monitor the dissemination of resistance to
colistin [51].
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Although PMQR has been studied and increasingly reported, QRDR mutations seem
to represent the main mechanism of quinolone resistance in animal isolates [52]. More-
over, PMQR was commonly detected in Enterobacteriaceae, particularly in E. coli, and the
prevalence of PMQRs in Salmonella remains extremely low [53]. This finding was consistent
with our observations that the global level of FQ non-susceptibility may be mainly due to
QRDR chromosomal mutations (Table 4). Our results indicated that missense mutations
frequently occurred in the QRDR of gyrA and parC, which are considered to be the major
quinolone resistance determinants in Salmonella [54]. In the present study, we identified
QRDR point mutations in the gyrA and parC genes in all selected Salmonella isolates from
hatcheries, a finding inconsistent with previous studies showing one-point mutation only
in the gyrA gene as the main pattern [55–57]. The results imply that resistance to FQs is
continuously evolving with time. The results also show that antimicrobial pressure, rather
than the horizontal transmission of antimicrobial resistance genes in chickens, leads to the
appearance of antimicrobial resistance; clonal dissemination seems to be a key contributing
factor for increasing resistance to FQs among Salmonella in hatcheries, where antimicrobials
are not applicable [58]. This finding indicates the potential risk that Salmonella isolates with
mutations in gyrA and parC could naturally be maintained during hatching, even with no
antimicrobial pressure. The Salmonella isolates with QRDR may be directly transmitted to
the downstream broiler farms through their carrying by day-old chicks [59]. Our results
also showed that one resistance gene (blaCTX-M-15), which encodes resistance to ESBL, was
identified in S. enterica ser. Virchow, one of the most frequently identified serotypes in
2015–2016 [6]. There was a potential risk of ESBL-producing Salmonella isolates being
transmitted to humans through contaminated poultry products [60].

Currently, PFGE is an easy and effective method to assess relatedness among Salmonella
isolates from different sources [6,27]. The clonal relationship among isolates from hatcheries
and their upstream breeder farms at the chromosome level was accessed using PFGE
(Figure 1). There was frequent Salmonella cross-contamination among hatcheries and
among hatcheries and upstream breeder farms. An identical PFGE type (M1) was shared
between isolates from a hatchery and its upstream breeder farm isolates, suggesting that
Salmonella contamination in hatcheries could be achieved by a direct vertical top-down
transmission [36]. Isolates from different hatcheries shared the same PFGE types, indicating
Salmonella cross-transmission among the hatcheries, possibly due to the sharing of the same
source of eggs or trucks within the same operation [24].

To further determine and compare the genotypic relatedness of isolates from the
integrated broiler chicken operation, selected isolates of the three most prevalent serotypes
from breeder farms, hatcheries, broiler farms, slaughterhouses, and retail markets were
analyzed by PFGE (Figure S1). A highly consistent PFGE pattern (SM-7) from different
sources revealed that the AMR S. enterica clones could disseminate through the broiler
chicken supply chain (Table 6 and Figure S2). The SM-7, not the main PFGE type in
hatcheries, could be disseminated to the downstream stage (broiler farm) even throughout
the broiler supply chain, suggesting that S. enterica ser. Montevideo could persist and
is difficult to eliminate from the environment, probably due to its biofilm-producing
ability [61,62]. Herein, 52% of the S. enterica ser. Montevideo and 29.6% of the S. enterica
ser. Albany isolates from the downstream of the hatchery carried the same PFGE types
as those of the hatchery, indicating that Salmonella contamination in hatcheries was an
important source of Salmonella contamination in the integrated broiler chicken operation
(Table 6 and Figure S2). From Table S4, it can be concluded that biocontrol of Salmonella
contamination in hatcheries is important; and control of S. enterica ser. Montevideo isolates
from hatcheries are more necessary.

The routes of Salmonella cross-contamination within the hatchery and between the
hatchery and its upstream breeder farm were complicated. Salmonella was detected in
the hatchery and its upstream breeder farm (represented by S. enterica ser. Montevideo)
(Table 5). Two PFGE types (SM-3 and SM-7) were consistent with upstream breeder farms,
indicating that vertical transfer of infection from breeding birds to progeny is an important



Animals 2021, 11, 154 11 of 14

aspect of the epidemiology of S. enterica infection within the poultry industry [24,63]. More
importantly, emerging serotypes and genotypes were detected in the hatchery. The hatchery
samples were contaminated with non-original Salmonella with a serotype different from
those in the breeder farm (represented by S. enterica ser. Albany); the hatchery samples
were contaminated with non-original Salmonella with PFGE types different from those in
the breeder farm (represented by SM-11, SM-12, SM-13, and SM-14). Salmonella was absent
in upstream breeder farms but present in the hatchery, suggesting that contamination can
happen during hatching. Therefore, apart from the original Salmonella contamination in
upstream breeder farms, there is at least one more route of Salmonella contamination in
the hatchery. There are many ways in which Salmonella can enter these extensive and
integrated operations and be recirculated and amplified by various routes [26]. In some
cases, clonal horizontal transmission in the hatchery and on the farm during the rearing
period is of greater importance and leads to the isolation of a greater variety of Salmonella
serovars [64]. For instance, several risk factors for horizontal transmission have been
identified, such as inadequate cleaning and disinfection of hatching houses, which leads to
contamination of the downstream hatching eggs and a poor level of hygiene [64]. Usually,
Salmonella infection does not interfere with hatchability, but during hatching, the organisms
are widely spread in the hatcher via ducts and the fluff that is disseminated by forced
ventilation [63,65]. The higher prevalence of Salmonella in a hatchery than in a relatively
clean place indicates that intervention strategies must target this stage to prevent Salmonella
from entering the downstream broiler farm. This approach requires that Salmonella should
be detected quickly and accurately at the hatching stage before entering the broiler farm.
Our study had the limitation that we did not provide direct evidence to prove the horizontal
transmission of Salmonella in the hatchery. Further studies focusing on the investigation of
the horizontal transmission routes of Salmonella in hatcheries are needed.

5. Conclusions

Our study found a high prevalence of Salmonella at the hatchery stage, high antimi-
crobial resistance, and no susceptible isolates. The AMR isolates could disseminate to the
downstream stage, even to the final retail market, along the broiler chicken supply chain.
Compared with breeder farms, Salmonellae in the hatchery play a more important role
in their emergence and spread in the broiler production chain. The emergence of AMR
Salmonella in the hatchery may be due to the horizontal spread of resistant isolates rather
than the first contamination of Salmonella, and then the acquisition of resistance. Therefore,
the presence of AMR Salmonella on day-old chicks in the hatchery is very likely to reduce
the effectiveness of the biosafety prevention and control of Salmonella in the rearing farm.
The broiler farm, with a high possibility to explore antimicrobials, could provide new
or higher resistant isolates in the next stage along the broiler production chain. Using
Salmonella-free chicks would be an effective way to control AMR Salmonella emergence and
transmission in broiler chickens. Furthermore, the national surveillance program should
be implemented in hatcheries for monitoring AMR Salmonella in chickens.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/1/154/s1, Figure S1: Dendrograms of the PFGE types of the selected S. enterica ser. Montevideo
(a), S. enterica ser. Albany (b), and S. enterica ser. Virchow (c) isolates recovered from an integrated
broiler chicken operation, Figure S2: The prevalence of Salmonella isolates from downstream of the
hatchery step along the integrated broiler chicken operation, with overlap of the PFGE type with
hatchery (see the details in Table 6). Backgrounds with the same-colored bars (orange) indicate
samples with the same PFGE patterns and antimicrobial resistance profiles, Table S1: Antimicrobials
and the range of concentration tested, Table S2: Prevalence of Salmonella enterica in hatcheries and
their upstream breeder farms, Table S3: Prevalence of Salmonella enterica per hatcheries and breeder
farms, Table S4: The prevalence of Salmonella isolates from downstream of the hatchery with overlap
the PFGE types with the hatchery stage.
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