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Abstract

Subtraction computed tomography (SCT) is a technique that uses software-based motion correction between an unenhanced and

an enhanced CT scan for obtaining the iodine distribution in the pulmonary parenchyma. This technique has been implemented in

clinical practice for the evaluation of lung perfusion in CT pulmonary angiography (CTPA) in patients with suspicion of acute

and chronic pulmonary embolism, with acceptable radiation dose. This paper discusses the technical principles, clinical inter-

pretation, benefits and limitations of arterial subtraction CTPA.

Key Points

* SCT uses motion correction and image subtraction between an unenhanced and an enhanced CT scan to obtain iodine
distribution in the pulmonary parenchyma.

* SCT could have an added value in detection of pulmonary embolism.

» SCT requires only software implementation, making it potentially more widely available for patient care than dual-energy CT.

Keywords Subtraction technique - Computed tomography scanner - Contrast media - Perfusion imaging - Pulmonary embolism

Abbreviations the sequelae of vascular obstruction, such as acute and chronic
CT Computed tomography pulmonary embolism (PE), but lately also as a potential tool to
CTPA  Computed tomography pulmonary angiography characterise inflammation and the malignancy potential of
DECT Dual-energy computed tomography lung lesions [1-3].

DLP Dose length product As early as 1964, nuclear medicine has been able to assess
MRI Magnetic resonance imaging pulmonary perfusion using isotopes that accumulate in the
PE Pulmonary embolism capillary bed [4]. Although all modern nuclear medicine
SCT Subtraction computed tomography methods can accurately quantify true perfusion in the pulmo-

nary parenchyma, they also have important drawbacks, such
as a low spatial resolution, issues with isotope availability,
production and handling, and high cost [5].

Magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) are more widely available, but are not capable of
imaging true substance exchange. Total intravascular move-
ment can be measured with MRI using arterial spin labelling
techniques. In addition, volume and speed of vascular contrast
54 Dagmar Grob distribution are measured with dynamic magnetic resonance
Dagmar.Grob @radboudume.nl angiography [6]. MRI does not use ionising radiation, and has

a better spatial resolution than nuclear imaging techniques, but
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University Medical Center, Geert Grooteplein 10, 6525 low signal-to-noise ratio, susceptibility and motion artefacts
GA Nijmegen, The Netherlands due to air and respiratory movement, and the low amount of

2 Department of Radiology and Nuclear Medicine, Meander Medical tissue in the lungs [2, 7]. Therefore, MRI is not used as a
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Introduction

Imaging techniques have been developed over the years to
study pulmonary perfusion, not only as a tool to investigate
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primary imaging tool of the pulmonary vasculature in most
hospitals. CT is far more widely accepted as the modality of
choice for evaluation of the lungs because of its higher spatial
and temporal resolution [8, 9] and its new ability to display
iodine distribution, reflecting pulmonary perfusion.

A CT technique commonly used in clinical practice for
assessing pulmonary perfusion is dual-energy CT (DECT). It
uses material decomposition of iodine from other materials to
visualise the regional pulmonary distribution of intravenous
contrast in the pulmonary vessels, including the capillaries
[10]. This is accomplished by almost simultaneously irradiating
the patient with two x-ray beams of different energy, or by using
spectral detectors and then processing the data to generate iodine
maps, at a radiation dose similar to or moderately higher than
CT pulmonary angiography (CTPA) [11]. This technique can
show PE-associated perfusion defects (PD) [12, 13] in concor-
dance with ventilation-perfusion single-photon emission com-
puted tomography (V/Q SPECT) findings [14], with increased
the sensitivity in detection of PE at CTPA [12, 15]. However,
DECT requires dedicated dual-energy hardware.

An alternative, yet far less widely implemented CT tech-
nique to evaluate pulmonary perfusion alongside CTPA is
subtraction CT (SCT), made possible by a post-processing
technique that does not require special hardware. This techni-
cal note will introduce the concept of SCT, along with its
clinical interpretation, benefits, limitations, and future
perspectives.

Technical principle

SCT involves the subtraction of an unenhanced, pre-injection
CT image from an enhanced, post-injection CT image to ob-
tain information on iodine distribution. Since every CT scan-
ner is capable of making an unenhanced and enhanced CT
scan, the technique would be more widely applicable than
DECT. SCT was introduced by Screaton in 2003 and
Wildberger in 2005 [16, 17]. Both studies showed clear visu-
alisation of perfusion defects due to vascular obstruction in
anesthetised animals, which guaranteed almost no motion be-
tween the two scans.

In phantom experiments with different iodine densities, SCT
showed a higher contrast-to-noise ratio between soft tissue and
iodine compared to DECT. In DECT, the signal difference be-
tween the low- and high-energy images is roughly linearly as-
sociated with the local iodine concentration. This implies that
the signal of the high-energy image is actually subtracted from
the low-energy image, reducing the signal in DECT compared
to SCT, where the iodine signal is fully exploited [18, 19].
However, subject motion between the two acquisitions in SCT
must be absent or compensated for to result in only the iodine
signal. This means that motion correction is the biggest chal-
lenge in SCT. With increasing performance and speed of

registration algorithms, achieving adequate motion correction
is now feasible (Fig. 1). In our practice, we use motion correc-
tion software for SCT (SURESubtraction Lung, Canon Medical
Systems) that employs an iterative, non-rigid registration frame-
work to register the unenhanced to the enhanced CT images
[20]. This means that both linear and non-linear voxel displace-
ments can be registered. Experiments with dynamic digital
phantoms demonstrated that this software can correct motion
adequately. Specifically, in simulated scans involving a caudo-
cranial diaphragm position difference of 20 mm between the
unenhanced and enhanced scans, the 75" percentile of the lung
voxel-to-voxel residual error distance was 1.6 mm [21]. This
seems sufficient for evaluating clinically relevant perfusion de-
fects caused by segmental and potentially first-order
subsegmental vascular obstructions, as perfusion defects caused
by subsegmental embolism are in the centimetre range [16], and
the median diaphragm difference between unenhanced and en-
hanced CT scans in our clinical practice is 5.7 mm in CTPA
scans.

Subtraction in clinical practice
Image acquisition

SCT has been added to CTPA for all adult patients with sus-
picion of PE at our institution for the last 3 years. CT exami-
nations are performed on a 320-multislice detector row CT
system (Aquilion ONE GENESIS and VISION, Canon
Medical Systems) according to the protocol in Table 1. In
order to avoid DECT-like artefacts, it is crucial that the tube
voltages for the enhanced and unenhanced scans are equal
[22]. Both the unenhanced and the enhanced scan are acquired
during a shallow breath-hold. To obtain an optimal CTPA
enhancement, 60 ml of intravenous contrast is
administered with an iodine concentration of at least 300
mg/ml and bolus triggering in the pulmonary artery, in order
to guarantee sufficient contrast circulation in the pulmonary
parenchyma.

Radiation dose

In our hospital, the median dose-length product (DLP) of this
protocol in patients scanned between August 2016 and
January 2017 (n = 354 patients) was 191 mGy:cm (mean
DLP: 266 mGy-cm) , with a median DLP of 59 mGy-cm
(mean: 74 mGy-cm) for the unenhanced scan and of 122
mGy-cm (mean: 183 mGy-cm) for the enhanced scans. The
effective dose was 2.8 mSv, which is calculated from the total
median DLP multiplied by 0.0146 mSv/(mGy-cm) [23]. This
is lower than the average dose of a CTPA scan (3—5 mSv) [8].
In 55 patients who underwent both DECT and SCT in a pro-
spective study, the whole subtraction protocol was executed
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Fig. 1 1-mm axial CTPA
reconstructions after subtraction
of an unenhanced CT from a
CTPA with a diaphragm
difference of 11 mm between the
scans. a With motion correction,
and (b) without motion correction

with a lower radiation dose than DECT, while subjectively
evaluated image quality was better [24].

Reconstruction

The subtraction software automatically selects the
unenhanced and enhanced scans, applies a mask to extract
only the lung areas and registers and deforms the lungs in
the unenhanced scan to their shape and position in the en-
hanced scan. After subtraction, it automatically generates 1-
mm greyscale iodine maps of the lungs with exclusion of the
large vessels and 5-mm heat scale colour maps as an overlay
on top of the CTPA images. These maps reflect true
Hounsfield unit density differences in the pulmonary paren-
chyma between the two scans, with a pre-set WW/WL of 100/
50 (Fig. 2). It is possible to reconstruct afterwards images at
their own preference thickness, for example, even thicker
slices, like 10 mm.

Interpretation

Subtraction perfusion maps can only be used complementary
to CTPA. Initial evaluation of the maps in three directions
facilitates appreciation of the normal ventro-dorsal gradient
of pulmonary blood volume in the supine patient [25], and
casier recognition of artefacts. In addition, this initial review
allows for a more accurate assessment of the shape of potential
perfusion inhomogeneities [26], which allows for differentia-
tion of the typical triangular shape of perfusion inhomogene-
ities due to vascular pathology or bronchopathy from pathol-
ogies such as emphysema (Fig. 3). To distinguish these enti-
ties, scrutiny of the CTPA is necessary to rule out PE, while
evaluation of the bronchial system and lung parenchyma is
necessary to rule out bronchial abnormalities or emphysema.
Because perfusion inhomogeneities due to vascular or bron-
chial disease affect structures larger than the secondary lob-
ules, which are within the centimetre range, reconstruction of
thick multiplanar reconstructions of 5—10 mm or are sufficient

Table 1 Example of an SCTPA

protocol Acquisition/injection

Specific settings

Pre-contrast CT

Exposure parameters: 100 kV, automatic exposure control (SD 35)

Scan parameters: cranio-caudal scan with 80 x 0.5 mm collimation, pitch 0.8
0.275 s rotation time, shallow breath-hold

Reconstruction: 1 mm sections with 0.8 mm increment,

3rd-generation iterative reconstruction (AIDR-3D enhanced)

Contrast injection

60 ml iodinated contrast (300 mg/ml) + 40 ml saline chaser @ 5 ml/s via a 20G needle

in the left arm

Bolus triggering

ROI placement on pulmonary trunk, level circa 1 cm below carina, absolute threshold:

220 HU. After reaching the threshold there is 5 s scan delay. The related software for
automatic bolus triggering is SURFStart

Post-contrast CT

Exposure parameters: 100 kV, automatic exposure control (SD 22.5)

Scan parameters: cranio-caudal scan with 80 x 0.5 mm collimation, pitch 0.8
0.275 s rotation time, shallow breath-hold

Reconstruction: 1 mm sections with 0.8 mm increment,

3rd-generation iterative reconstruction (AIDR-3D enhanced)
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Fig. 2 5-mm (a) axial and (b)
sagittal reconstructions of a
subtraction iodine map on top of
CTPA of normally-perfused lungs
in a supine position. Both
reconstructions show a normal
gravity-dependent gradient, in the
ventro-dorsal and the cranio-
caudal direction

for initial interpretation. One-millimetre-thick slices can be
used to assess smaller structures such as subsegmental PE,
but at the expense of the increased noise and a higher suscep-
tibility to the effects of inaccurate motion correction.

Artefacts

Beam-hardening artefacts may occur close to the high-density
contrast column next to the superior caval vein in cases where
a high-concentration of contrast material is still present in the
injection veins [13]. These artefacts are less severe than those
encountered in dual-source-based dual-energy techniques
(Fig. 4) [24]. The probable reason is that the two tubes image

the same structures with a time delay that is roughly a quarter
of the rotation time, which might be enough for substantial
variations in local contrast concentration in the inflow veins
[13].

The images need to be evaluated in axial reconstruction but
also in coronal or sagittal reconstructions to recognise arte-
facts. Motion artefacts can occur in SCT if lung volume and
position, diaphragm position or cardiac pulsation significantly
differ between the scans, even after registration. The type of
artefact predominantly occurs in the basal lung fields, slightly
above the diaphragm, and in the paracardiac region [21].
Presence of these artefacts can be assessed by checking dif-
ferences between the enhanced and unenhanced scans on

Fig.3 a, d 3-mm slices of a patient with bilateral lobar pulmonary
embolism and corresponding wedge-shaped perfusion defects in
both lungs (arrows). b 3-mm slices of CTPA in a lung window,
and, (e) a coronal view with iodine map of a patient with left
lower lobe bronchopathy with mucous plugging (arrow) and

corresponding perfusion defects (arrows). ¢, f 3-mm reconstruction
of CTPA and subtraction maps of a patient with predominant
centrilobular emphysema; the destroyed pulmonary parenchyma
does not show iodine uptake (arrows)
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Fig. 4 3-mm axial and coronal
slices of subtraction iodine maps
and dual-energy iodine maps,
both obtained from a dual-source
scanner. The arrows show typical
beam-hardening artifacts that are
more severe in dual-energy than
in subtraction iodine maps

Subtraction

coronal reconstructions and producing 10-mm MinIP from the
subtraction iodine maps. In case of severe motion correction
flaws, black lines parallel to the vasculature will appear. The
thicker the line, the worse the artefacts are.

Suboptimal contrast enhancement of the lung shows low-
density areas in the iodine maps that can hamper the diagnos-
tic evaluation. However, adapting the WW/WL of the
greyscale and colour heat map can help.

Discussion

SCT is a simple, inexpensive and fast method for imaging and
relative quantification of pulmonary perfusion at an accept-
able radiation dose. The technique has been implemented in
clinical practice in patients with suspicion of pulmonary em-
bolism for several years, while having potential for other clin-
ical applications that evaluate enhancement of the pulmonary
parenchyma.

Iodine maps created with SCT are similar to those created
with DECT. Artefact behavior is different, however; DECT
images suffer from motion artefacts if some of the anatomy in
the field of view moves during or between the high- or low-
energy scan. The latter effect is non-existent for energy-
discriminating detectors, and negligible for a rapid kV-
switching system, but could play a role in dual-source systems
or systems with dual rotation [18]. Motion artefacts in SCT
occur if the patient moves during one of the two scans or if the
inspirational difference between scans is major and is not ad-
equately addressed. Streak artefacts due to contrast inflow are
less severe with SCT compared to dual-source DECT [24].

@ Springer
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Dual-energy

SCT- and DECT-derived iodine maps reflect the iodine
enhancement at the moment of image acquisition. However,
absolute quantification of pulmonary perfusion parameters is
impossible to achieve from a single acquisition, be it SCT or
DECT, and requires sequential scanning (CT perfusion). This
is because the variability in contrast enhancement among pa-
tients is high when a single acquisition is evaluated. The pul-
monary contrast enhancement not only depends on the pres-
ence of pathology and contrast administration parameters, but
also on parameters such as respiratory cycle dynamics, cardiac
output, and bronchial physiology [27, 28]. In addition, the
enhancement pattern in the pulmonary parenchyma may
change with time after contrast arrival, especially if there is
bronchial arterial collateral supply to areas of the lung that are
hypo-perfused by the pulmonary artery [29]. A second scan in
the systemic arterial phase can help distinguish these two per-
fusion components. If sequential scanning were performed at
a reasonable dose, absolute quantification might be possible.
This might result in the ability to obtain functional (perfusion)
information of structures in the pulmonary parenchyma. Other
possibilities could be to characterise small structures or le-
sions, e.g. nodules, with the potential benefit of distinguishing
between benign and malignant nodules [30].

Improvements in SCT could be achieved by reducing mo-
tion artefacts due to cardiac motion, pulsation and breathing in
the pre- and post-contrast images using electrocardiogram
(ECG) synchronisation or advanced motion-correction tech-
niques. Improved registration of small vessels would provide
not only subtraction imaging of the lung parenchyma, but of
the vasculature itself [31]. This can be helpful for direct clot
detection (lack of iodine enhancement causes a defect in the
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vessel on iodine maps). Improved beam hardening would help
eliminate streak artefacts due to high contrast concentration in
inflow veins [32].

In conclusion, software-based motion correction com-
bined with temporal subtraction enables imaging of con-
trast enhancement in the lungs similar to DECT. The
technique is widely applicable at a radiation dose equiv-
alent to DECT. Similar to DECT, SCT depicts perfusion
abnormalities in patients with vascular, bronchial or oth-
er pathology. Future advances in pulmonary SCT in-
clude dynamic acquisition and reduction of motion arte-
facts in small structures.
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