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Artificial intelligence to predict 
in‑hospital mortality using novel 
anatomical injury score
Wu Seong Kang1,9, Heewon Chung2,9, Hoon Ko2,9, Nan Yeol Kim6,9, Do Wan Kim3, Jayun Cho4, 
Hongjin Shim5, Jin Goo Kim6, Ji Young Jang7, Kyung Won Kim8 & Jinseok Lee2*

The aim of the study is to develop artificial intelligence (AI) algorithm based on a deep learning model 
to predict mortality using abbreviate injury score (AIS). The performance of the conventional anatomic 
injury severity score (ISS) system in predicting in‑hospital mortality is still limited. AIS data of 42,933 
patients registered in the Korean trauma data bank from four Korean regional trauma centers were 
enrolled. After excluding patients who were younger than 19 years old and those who died within six 
hours from arrival, we included 37,762 patients, of which 36,493 (96.6%) survived and 1269 (3.4%) 
deceased. To enhance the AI model performance, we reduced the AIS codes to 46 input values by 
organizing them according to the organ location (Region‑46). The total AIS and six categories of 
the anatomic region in the ISS system (Region‑6) were used to compare the input features. The AI 
models were compared with the conventional ISS and new ISS (NISS) systems. We evaluated the 
performance pertaining to the 12 combinations of the features and models. The highest accuracy 
(85.05%) corresponded to Region‑46 with DNN, followed by that of Region‑6 with DNN (83.62%), 
AIS with DNN (81.27%), ISS‑16 (80.50%), NISS‑16 (79.18%), NISS‑25 (77.09%), and ISS‑25 (70.82%). 
The highest AUROC (0.9084) corresponded to Region‑46 with DNN, followed by that of Region‑6 with 
DNN (0.9013), AIS with DNN (0.8819), ISS (0.8709), and NISS (0.8681). The proposed deep learning 
scheme with feature combination exhibited high accuracy metrics such as the balanced accuracy and 
AUROC than the conventional ISS and NISS systems. We expect that our trial would be a cornerstone 
of more complex combination model.

Traumatic injuries have long been scaled to assess the severity of patients and especially to predict mortality. 
To quantify the severity of such injuries, various metrics using anatomic and physiologic elements have been 
established based on conventional statistical tools such as logistic regression (LR)1–7. Since the 1970s, the injury 
severities have been classified through an anatomical-based coding system named the abbreviated injury scale 
(AIS). The AIS classifies individual injuries by body region from one to six. The system has been constantly 
revised and improved, and the latest revision (AIS 2005—Update 2008 and AIS 2015), including 1999 injury 
descriptors, was recently  announced1.

The most popular model to assess the trauma severity is the injury severity score (ISS), which pertains to the 
sum of the squares of the three highest AIS  scores2. Similarly, the new ISS (NISS), which is designated to replace 
the ISS, pertains to the squares of the three highest AIS scores regardless of the body  region3–5. Using the ISS 
and NISS, mortality has been predicted based on a certain score; however, the associated mortality prediction 
accuracy is low for patients with multiple injuries in different  areas6,7.

As a more complex combination model including the physiological status, the trauma and ISS (TRISS) has 
been widely  used8. In addition, other combination models, such as A Severity Characterization of Trauma 
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(ASCOT)9, the Harborview Assessment for Risk of Mortality (HARM)10, the Trauma Risk Adjustment Model 
(TRAM)11, and the Kampala Trauma Score (KTS)12 were developed. However, these scoring systems are overly 
complex to be applied in actual practice. Thus, the anatomic injury scoring systems based on ISS and NISS 
are still widely used despite their low prediction accuracy, and it is necessary to develop a simple and accurate 
prediction method.

Recently, artificial intelligence (AI) technologies have been applied in various medical domains to predict 
the patients’ outcome with a high  accuracy13–15. However, in the trauma field, an effective AI prediction model 
has not been established yet. Therefore, this study was aimed at developing an AI model to accurately predict 
mortality as an alternative to ISS and NISS.

Methods
Patients and datasets. This study was approved by the four institutional review boards of Wonkwang 
University Hospital (WKUH), Chonnam National University Hospital (CNUH), Wonju Severance Christian 
Hospital (WSCH), and Gachon University Gil Hospital (GUGH). Informed consent was waived. All methods 
were performed in accordance with the relevant guidelines and regulations. These four hospitals include the 
regional trauma centers of South Korea, corresponding to the level-1 trauma centers in the United States. In each 
regional trauma center, three or more dedicated trauma coordinators and surgeons review the medical records 
of the trauma patients to be input to the Korean trauma data bank (KTDB). To be registered in the KTDB as a 
trauma patient, the following eligibility criteria must be satisfied: (1) discharged with hopelessness, died in the 
trauma bay, or transferred to other hospitals, and (2) admitted in a trauma  center16. However, among the patients 
satisfying the above conditions, patients with only a superficial injury, first-degree burn and corrosive injury, 
frostbite, or intoxications are not registered in the KTDB. For this study, we considered the following inclusion 
criteria: (1) trauma patients registered in the KTDB, (2) adult patients aged over 19, (3) patients who stayed more 
than 6 h in the trauma center.

In the KTDB, the AIS 2005—Update 2008 data of 42,933  patients17 registered in four trauma centers (WKUH 
[from Jan 2017 to Dec 2019], CNUH [from Jan 2014 to Dec 2019], WSCH [from Jan 2014 to Dec 2019], and 
GUGH [from Jan 2014 to Dec 2019]) are available. We excluded the data of patients aged less than 19 (n = 4562) 
or those who spent less than 6 h in the hospital (n = 648). The patient information, including age, gender and 
the AIS scores, is summarized in Table 1. Among the included 37,762 patients, 36,493 (96.6%) survived (aver-
age age: 57.0 ± 17.80) and 1269 (3.4%) deceased (average age: 64.66 ± 16.42). More details of the age and gender 
according to the four trauma centers are summarized in Supplementary Table 1.

The data of 37,762 patients were considered and divided into the training and testing cohort in a 9:1 ratio in 
a stratified fashion according to the trauma center and survival status. As presented in Table 2 and Fig. 1a, the 
training and testing datasets included 33,986 (32,844 survived and 1142 deceased) and 3776 (3649 survived and 
127 deceased) patients, respectively. The testing dataset was used only to evaluate the performance.

New trauma severity features. The original AIS codes have 1999 injury codes, which are excessively 
complex to be used as input features in AI models and may lead to model overfitting. Consequently, we estab-
lished new anatomical categories named Region-46 and Region-6 by reducing the AIS codes into 46 categories 
and six categories, respectively, based on the organ locations.

To generate Region-46, we reduced the 1999 AIS codes to 46 features through organization according to the 
organ location, clinical significance, and frequency. The complete list of Region-46 is presented in Supplementary 
Table 1. In the head region, we categorized the codes by the cerebellum, cerebellum epidural, intracerebellar, 
cerebellum subdural, cerebrum, cerebrum epidural, intracerebral, cerebrum subdural, skull, and head. The rela-
tively less important and less frequent injuries were categorized as head or skull. In the face region, no frequently 
occurring code represented a severe injury, and thus, all the corresponding codes were categorized as the face. In 
the neck region, we categorized the codes by the neck vessel, neck esophagus, neck trachea, and cervical spine. 
The other corresponding codes were categorized as the neck. In the thorax region, we categorized the codes by 
the thorax vessel, bronchus, diaphragm, thorax esophagus, heart, lung, pericardium, thorax trachea, rib, and 
thoracic spine. The other codes were categorized as the thorax. In the abdomen region, we categorized the codes 
by the abdomen vessel, bladder, colon, duodenum, small bowel, kidney, liver, mesentery, omentum, pancreas, 
rectum, spleen, stomach, and lumbar spine. The other codes were categorized as the abdomen. In the upper 
extremity region, all the codes were categorized as upper extremity because the scores of all the codes were low 
overall. In the lower extremity region, the pelvis was the most clinically significant organ, and the other injuries 
were less significant. Thus, we categorized the codes as the pelvis and lower extremity. In the external region, the 
AIS scoring codes were low, and thus, all the codes were categorized as external. In Supplementary Table 2, we 
also presented the example of how AIS codes were converted to Region-46 codes for a novice coder with trauma 
knowledge to understand the process.

When using the Region-46 categories as input features, each input feature was the sum of the squares of the 
AIS scores for the same feature. For instance, if two AIS scores (valued 2 and 3) corresponded to the neck among 
the Region-46, the AI model input for the neck feature was 22 + 32 = 13 . In this manner, each patient data point 
pertained to 46 feature values used for the AI model input layer to predict mortality.

Region-6 was considerably simpler than Region-46, as it scored the body regions identical to the six regions 
of the ISS (head/neck, face, thorax, abdomen, extremity, and external). ISS takes the highest AIS severity 
code in each of the three most severely injured body regions. Each three AIS score is squared and added (i.e. 
ISS =  52 +  42 +  22).
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Table 1.  Patient information of age, gender, and the AIS scores (0–6) for six body regions: head/neck, face, 
thorax, abdomen, extremity, and external, according to the survived and deceased groups.

Characteristics

Total Survived Deceased

p-valuen = 37,762 n = 36,493 (96.6%) n = 1269 (3.4%)

Age 57.26 ± 17.81 57.00 ± 17.80 64.65 ± 16.42  < 0.001

Sex

 Male 24,734 23,868 (96.5%) 866 (3.5%)
 < 0.001

 Female 13,028 12,625 (96.9%) 403 (3.1%)

AIS (head/neck)

 0 25,810 25,454 356

 < 0.001

 1 1282 1280 2

 2 3369 3312 57

 3 3589 3439 150

 4 1970 1713 257

 5 1721 1274 447

 6 21 21 0

AIS (face)

 0 32,344 31,294 1050

 < 0.001

 1 2480 2407 73

 2 2790 2678 112

 3 132 106 26

 4 16 8 8

 5 0 0 0

 6 0 0 0

AIS (thorax)

 0 29,421 28,634 787

 < 0.001

 1 581 564 17

 2 2325 2242 83

 3 4760 4475 285

 4 565 484 81

 5 109 94 15

 6 1 0 1

AIS (abdomen)

 0 31,640 30,720 920

 < 0.001

 1 369 365 4

 2 3421 3266 155

 3 1690 1603 87

 4 598 515 83

 5 44 24 20

 6 0 0 0

AIS (extremity)

 0 18,262 17,478 784

 < 0.001

 1 2707 2702 5

 2 10,337 10,126 211

 3 5951 5765 186

 4 384 349 35

 5 121 73 48

 6 0 0 0

AIS (external)

 0 25,448 24,572 876

0.1407

 1 11,345 10,988 357

 2 795 772 23

 3 82 74 8

 4 28 27 1

 5 55 52 3

 6 9 8 1
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Training and cross‑validation of the DNN models. To develop the AI models for mortality predic-
tion, a five-layer DNN was adopted. We developed three DNN models with variable input features, as follows: 
(1) DNN (Region-46) with 46 input features, (2) DNN (AIS) with the original 1999 AIS codes, and (3) DNN 
(Region-6) with six body regions.

Furthermore, up to five hidden layers were examined, along with each layer depth (node) up to the previ-
ous layer depth (node). For the fully connected layers (FCs), the dropout rate was varied from 0 to 0.5 in 0.1 
increments. The last FC layer was fed to a sigmoid layer, providing the probabilities for the patient mortality. We 
implemented and trained the models using TensorFlow and Keras. Moreover, model training was realized using 
the ADAM optimizer and a binary cross-entropy cost function with a learning rate of 0.0001 and batch size of 
64 on an NVIDIA GeForce GTX 1080 Ti GPU.

For the hyperparameter search and cross-validation, a grid search with a 10-repeated tenfold cross-validation 
was performed. Among the 10 folds, a single fold was retained as the validation data, and the remaining nine 
folds were used as the training data. Specifically, the training data (n = 33,986) were randomly shuffled for each 
trauma center and partitioned into 10 equal folds in a stratified manner: Each fold included 3284 survived and 
114 deceased data. The process was repeated 10 times, with each of the 10 folds used once as the validation data. 
Because the amount of survived data overwhelmed the deceased data, we randomly downsampled the survived 
data. By matching the amount of data in the two groups, the model bias toward survived data could be minimized.

Considering the cross-validation analysis results, the five-layer DNN was selected. The architecture of DNN 
(Region-46) is illustrated in Fig. 1b. The proposed five-layer DNN included an input layer, three FC layers, and 
an output layer. The input layer containing 46 features was fed to three FC layers in series, consisting of 64, 32, 
and 1 node(s) with a leaky rectified linear unit. To alleviate the overfitting issue, dropout and L2 regularization 
were applied in the last two FC layers. For the second and third FC layers, the dropout rates were 0.5 and 0.3, 
respectively, and regularization parameters were 0.001. The last FC layer was fed to a sigmoid layer.

By repeating this stratified tenfold cross-validation process 10 times, 100 models from the five-layer DNN 
were derived. Based on these models, we ensembled the results by averaging the final outputs associated with 
the mortality probabilities.

Performance evaluation of AI models. The prediction performance of the DNN models was evaluated 
using the isolated testing dataset (n = 3776) and by applying the sensitivity, specificity, accuracy, and balanced 
accuracy metrics, defined as

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false negative, respectively. 
The balanced accuracy was used to account for the considerable imbalance between the survived and deceased 
groups (29:1).

(1)Sensitivity =
TP

TP + FN
,

(2)Specificity =
TN

TN + FP
,

(3)Accuracy =
TP + TN

TP + TN + FP + FN
,

(4)Balanced Accuracy =
Sensitivity + Specificity

2
,

Table 2.  Summary of training, validation, and testing datasets.

Data source Group Training Testing Total

WKUH
Survival 3722 413 4135

Mortality 159 18 177

JNUH
Survival 8827 981 9808

Mortality 394 44 438

WSCH
Survival 12,278 1364 13,642

Mortality 328 36 364

GUGH
Survival 8017 891 8908

Mortality 261 29 290

Total

Survival 32,844 3649 36,493

Mortality 1142 127 1269

Total 33,986 3776 37,762
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Next, we compared the performance of the proposed DNN model and other external AI models such as 
LR, random forest (RF), and support vector machine (SVM). The models were separately trained to perform 

Figure 1.  Overview of training and validation of the AI models to predict the in-hospital mortality in trauma 
patients: (a) Process flow of the AI model development, and (b) DNN (Region-46) architecture with a five-layer 
deep neural network consisting of an input layer, three fully connected (FC) layers, and output layer.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23534  | https://doi.org/10.1038/s41598-021-03024-1

www.nature.com/scientificreports/

cross-validation and determine the optimal hyperparameters.
Finally, we compared the results from the conventional ISS and NISS techniques, as follows:

1. ISS-16: mortality declared if ISS ≥ 16

2. ISS-25: mortality declared if ISS ≥ 25

3. NISS-16: mortality declared if NISS ≥ 16

4. NISS-25: mortality declared if NISS ≥ 25

Results
For all 37,762 patients, we counted the number of patients associated with each of the Region-46 features and 
summarized the counted numbers in Supplementary Table 3. The number of patients associated with lower 
extremity (n = 12,280) was the highest, followed by upper extremity (n = 11,548), face (n = 8310), head (n = 7200), 
rib (n = 6147) and thorax (n = 4763). Note that each patient may belong to multiple features due to multiple 
injuries.

Training and cross‑validation of the DNN models. The results of the cross-validation accuracy with 
the metrics of sensitivity, specificity, accuracy and balanced accuracy are presented in Supplementary Table 4. 
The highest balanced accuracy (84.61%) corresponded to the proposed model, DNN (Region-46), followed by 
that of the DNN (Region-6) (83.32%) and DNN (AIS) (80.64%). DNN (AIS) achieved a smaller balanced accu-
racy than that of DNN (Region-46) and DNN (Region-6), indicating that overfitting may have occurred, as 
expected; 1999 input features are too many to learn patterns based on 33,986 training data.

Validation of DNN models in the testing dataset. The prediction performances of the DNN models 
evaluated using the independent testing dataset (n = 3776) are summarized in Table 3. The highest balanced 
accuracy (85.05%) corresponded to DNN (Region-46), followed by that of DNN (Region-6) (83.62%) and DNN 
(AIS) (81.27%). The highest area under receiver operating characteristic (AUROC) corresponded to DNN 
(Region-46) (0.9084), followed by that of DNN (Region-6) (0.9013) and DNN (AIS) (0.8819). Thus, we chose 
DNN (Region-46) as the proposed AI model to predict the in-hospital mortality of trauma patients. Notably, 
DNN (Region-46) demonstrated a high prediction performance in terms of sensitivity (83.46%), specificity 
(86.63%), and accuracy (86.52%).

Comparison with other prediction models. The prediction performances of the external AI models 
(LR, RF, and SVM models) and traditional prediction models (ISS-16, ISS-25, NISS-16, and NISS-25) are pre-
sented in Table 3. Details of the performance comparison according to the four trauma centers are summarized 
in Supplementary Table 5.

The highest balanced accuracy pertained to DNN (Region-46) (85.05%) and that of the other AI models 
ranged from 79.40 to 83.62%. Among the input features based on the DNN, the highest AUROC values pertained 
to Region-46 (0.9084), followed by those of Region-6 (0.9013), and AIS (0.8819); the corresponding values of ISS 
and NISS were 0.8709 and 0.8681, respectively (Fig. 2a). Among the different AI models based on Region-46, 
the highest AUROC corresponded to DNN (Region-46), followed by that of the LR (0.9013), RF (0.8853) and 
SVM (0.8829) (Fig. 2b).

Table 3.  Comparison of the prediction performances of the prediction models on the test dataset.

Model TN FP FN TP Sensitivity (%) Specificity (%) Accuracy (%)
Balanced accuracy 
(%) AUROC

LR (AIS) 3200 449 32 95 74.80 87.70 87.26 81.25 0.8770

RF (AIS) 2720 929 20 107 84.25 74.54 74.87 79.40 0.8598

SVM (AIS) 3032 617 21 106 83.46 83.01 83.10 83.28 0.8943

DNN (AIS) 3230 419 33 94 74.02 88.52 88.03 81.27 0.8819

LR (Region-6) 3059 590 25 102 80.32 83.83 83.72 82.07 0.8819

RF (Region-6) 3090 559 24 103 81.10 84.68 84.56 82.89 0.8867

SVM (Region-6) 3009 640 23 104 81.89 82.46 82.44 82.18 0.8712

DNN (Region-6) 3028 621 20 107 84.25 82.98 83.02 83.62 0.8871

LR (Region-46) 3109 540 24 103 81.10 85.20 85.06 83.15 0.9013

RF (Region-46) 3054 595 23 104 81.89 83.69 83.63 82.79 0.8853

SVM (Region-46) 3091 558 23 104 81.89 84.71 84.61 83.30 0.8829

DNN (Region-46) 3161 488 21 106 83.46 86.63 86.52 85.05 0.9084

ISS-16 2944 705 25 102 80.31 80.68 80.67 80.50 0.8709

ISS-25 3387 262 65 62 48.82 92.82 91.34 70.82

NISS-16 2618 1031 17 110 86.61 71.75 72.25 79.18 0.8681

NISS-25 3241 408 44 83 65.35 88.82 88.03 77.09
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Notably, the traditional prediction models based on the ISS and NISS exhibited a lower prediction perfor-
mance (balanced accuracy ranging from 70.82 to 80.50) than AI models based on LR, RF, SVM, and DNN (bal-
anced accuracy ranging from 79.40 to 85.05).

Discussion
We proposed a DNN model with 46 features, DNN (Region-46) as the AI prediction model to predict the 
in-hospital mortality of trauma patients, based on a comparison with DNN (AIS), DNN (Region-6), other AI 
models based on the LR, RF, and SVM methods, and traditional prediction models based on the ISS and NISS. In 
the independent testing datasets, DNN (Region-46) outperformed the ISS-16 as follows: sensitivity (83.46% vs. 
80.32%), specificity (86.63% vs. 80.68%), accuracy (86.52% vs. 80.67%), balanced accuracy (85.05% vs. 80.50%), 
and AUROC (0.9084 vs. 0.8709).

The AIS-based ISS has been widely used to evaluate the severity of trauma patients since its introduction 
in the  1970s1,2,18. Most subsequent systems such as the  NISS19, exponential ISS (EISS)20, and anatomic pro-
file score (APS)21 could not supplant the ISS4. Nevertheless, the ISS system based on the AIS involves several 
 limitations22,23. First, a major severe injury may be underestimated because only the single highest score is 
selected in the same region. Second, the severity may differ if a different combination of injuries has the same 
ISS. Third, the ISS and mortality do not have a linear association, and a negative relationship may also occur 
in certain ranges. Finally, the AIS has the same weighting for different organs even though all organs have a 
different prognosis.

These limitations of the ISS can be alleviated by using AI  models24. The DNN model can assign different 
weights to each input data. Thus, we fragmented the conventional ISS system and used the AI methodology 
to overcome the problem of nonlinearity and weights for each AIS score. In this study, a key challenge was to 
decide the predictors and features, as the input variables significantly affect the results of machine  learning20.

A key advantage of DNN (Region-46) is that it was trained with a large training cohort (n = 37,762) with 
highly comprehensive data involving a reasonable number of AIS score data points. The Ministry of Health and 
Welfare established up to 17 regional trauma centers in Korea (by 2021). All the regional trauma centers were 
mandated to register severe trauma patients in the KTBD. Numerous variables, including the demographics, 
pre-hospital and in-hospital information, time factors, clinical characteristics, vital signs, trauma scores, and final 
outcome information, were recorded. Therefore, the quantity and quality of the KTDB data were  satisfactory25.

In general, the DNN involves high computational complexity, although it operates more effectively and flexibly 
than the RF, LR, and SVM, owing to the learning of the nonlinear problem. Nevertheless, owing to the simplified 
input features, DNN (Region-46) required only 59.52 s for training and 2.19 ms for instance testing, indicating 
its suitability for practical mortality prediction. Moreover, DNN (Region-6) provided accurate prediction results, 
requiring only 50.39 s for training and 2.11 ms for instance testing. Thus, if Region-46 is not promptly available, 
DNN (Region-6) can be used as an alternative method.

The original AIS codes have 1999 injury codes, which are overly complex to be used as input features in AI 
models and may lead to model overfitting in the current training dataset involving 37,762 patients. The number 
of features considerably influences the performance of deep learning. The presence of excessively few or many 
features does not ensure high performance. In general, many data points are required for numerous features. 
Consequently, we established a new anatomical category, Region-46, by fragmenting the individual AIS codes 
and aggregating them into 46 anatomic regions. Our proposed Region-46 (46 input variables) could provide 

Figure 2.  Receiver operating characteristic curves: (a) ISS, NISS, DNN (AIS), DNN (Region-6) and DNN 
(Region-46), and (b) four models of logistic regression (LR), random forest (RF), support vector machine 
(SVM) and DNN based on Region-46: LR (Region-46), RF (Region-46), SVM (Region-46) and DNN 
(Region-46), respectively.
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more accurate prediction results using more subdivided features than ISS (six input variables). In addition, it 
minimizes the overfitting issues using reasonably fewer features than AIS (1999 input variables). The better 
performance of the Region-46-based AI model was possible because 1999 AIS codes were with a sparse matrix, 
which contains very few non-zero values.

Another advantage of Region-46 is that we derived it from the conventional AIS coding system. It indicates 
that the Region-46-based AI model enables us to train the model accurately within the existing coding system, 
without significant changes in the system such as the coding method. Nevertheless, the advantages of Region-46 
are based on the assumption that there is no massive data. It is obvious that we can train AI models more accu-
rately using more features from 1999 AIS codes if we have massive data. We postulate that a considerably larger 
dataset is required to utilize 1999 AIS codes as input features without overfitting. Thus, future research will 
proceed in the direction of increasing the number of features by collecting more data, and the ultimate goal is 
to use all 1999 AIS codes.

In addition to the data sample size, this study involves several limitations to be solved. First, this study is 
retrospective, although the database was collected prospectively. In this study, we performed a retrospective 
study to investigate the potential of AI models based on our proposed new anatomical injury score. We believe 
that new prospective studies will be able to minimize the biases and establish the clinical impact of the predic-
tion model. In addition, the prospective study should be able to update AI models in real-time in more regional 
trauma centers. For future work, we plan to develop a framework that can use real-time data in connection with 
all the regional trauma centers in Korea, which will improve the model for better generalization. Second, we 
excluded the patients who died within six hours from arrival because we assumed that the patients were likely 
not comprehensively evaluated owing to the insufficient time. This aspect may contribute to selection bias. Thus, 
our future work would include the patients irrespective of the time of death, which may provide a more robust 
AI model to predict the severity of trauma patients. Third, the input data did not include the physiologic and 
demographic parameters such as blood pressure, heart rate, mental status, respiration, age, sex, and comorbidi-
ties, while likely leading to an inherently limited accuracy. However, we noted the inherent potential of solely 
AIS code analysis that would be a basis of the future complex models. In particular, this study highlights the 
substantial scope for improvement in terms of the injury scale. Compared to ISS, more complex combination 
models such as  TRISS8,  ASCOT9,  HARM10,  TRAM11, and  KTS12 use physiologic and demographic parameters to 
improve the performance. Although these complex combination models have not provided sufficient accuracy to 
replace the ISS, they have the potential to provide personalized prediction information of trauma severity. Thus, 
in our future work, we will extend our model to include the physiologic and demographic parameters towards 
personalized severity prediction. Finally, in this study, we considered mortality as an indicator of the severity 
of trauma patients as a conventional scoring system focused on mortality. However, regarding survivors, we 
also should be able to predict other outcomes such as morbidity, prevention effectiveness, or burden of cost. By 
developing new indicators that predict these outcomes, we could provide guidelines for entire trauma system 
including heath care provider, agencies, and institutions.

In conclusion, we developed a five-layer DNN model with an input layer involving 46 new trauma severity 
features (Region-46), which exhibited a higher prediction performance than the conventional ISS and NISS 
systems. To the best of our knowledge, this study represents the first attempt to employ AI prediction models 
using anatomic injury severity information. Furthermore, this study emphasizes the need for reinvention of a new 
injury severity scoring system. We expect that this research can provide reference to incorporate AI techniques 
in trauma care and improve our understanding of the determinants of injury severity. We believe our endeavor 
will contribute to reducing the societal burden of injury.

Data availability
Data are available from the corresponding author upon reasonable request. The data are not publicly available 
due to restrictions from KTDB policy.

Code availability
Code is available at https:// github. com/ Heewo nChun g92/ AIS. The code was written in python 3.6 and Tensorflow 
2.0. The files named Code_Train.py and Code_Predict.py are for training and testing the model, respectively. 
The file named Dataset_mini.mat is for the automatic conversion program from AIS codes to Region-46 codes.
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