
Bax is essential for mitochondrion-mediated apoptosis but not for
cell death caused by photodynamic therapy
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The role of Bax in the release of cytochrome c from mitochondria and the induction of apoptosis has been demonstrated in many
systems. Using immunocytochemical staining, we observed that photodynamic therapy (PDT) with the photosensitiser Pc 4 induced
Bax translocation from the cytosol to mitochondria, and the release of cytochrome c from mitochondria as early signalling for the
intrinsic pathway of apoptosis in human breast cancer MCF-7c3 cells. To test the role of Bax in apoptosis, MCF-7c3 cells were treated
with Bax antisense oligonucleotides, which resulted in as much as a 50% inhibition of PDT-induced apoptosis. In the second approach,
Bax-negative human prostate cancer DU-145 cells were studied. Following PDT, the hallmarks of apoptosis, including the release of
cytochrome c from mitochondria, loss of mitochondrial membrane potential, caspase activation, and chromatin condensation and
fragmentation, were completely blocked in these cells. Restoration of Bax expression in DU-145 cells restored apoptosis, indicating
that the resistance of DU-145 cells to PDT-induced apoptosis is due to the lack of Bax rather than to another defect in the apoptotic
machinery. However, despite the inhibition of apoptosis, the Bax-negative DU-145 cells were as photosensitive as Bax-replete MCF-
7c3 cells, as determined by clonogenic assay. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to Bax activation.
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Apoptosis, or programmed cell death, is a genetically regulated
cellular suicide mechanism essential for multicellular organisms to
remove damaged or unwanted cells and maintain tissue home-
ostasis (Ellis et al, 1991; Kroemer et al, 1997). Apoptosis can also
be induced by external stimuli. The process includes an ordered
cascade of enzymatic events leading to the production of unique
morphological and biochemical features. Among the most
important regulators of the process are members of the Bcl-2
family of proteins (Gross et al, 1999; Antonsson and Martinou,
2000; Tsujimoto and Shimizu, 2000). While members such as Bcl-2
and Bcl-xL suppress apoptosis, other members such as Bax, Bak
and Bid promote it. Among proapoptotic Bcl-2 family members,
Bax is perhaps the best-studied protein. In healthy cells, Bax is
located in the cytoplasm, but during apoptosis, it translocates to
the mitochondria. This process is probably a consequence of the
exposure of its C-terminal membrane-seeking domain that is
facilitated by unknown cytosolic factors or by an increase in
cellular pH (Wolter et al, 1997; Khaled et al, 1999; Nomura et al,
1999). Whereas in the cytosol Bax exists as monomers, the
mitochondrion-inserted Bax is present as dimers and higher
oligomers (Eskes et al, 2000). The membrane insertion and
oligomerisation of Bax is essential for the release of cytochrome c
and apoptosis, as evidenced by the blockage of apoptosis in Bax
mutants that have lost the capacity for mitochondrion insertion
due to deletion of the mitochondrion-targeting C-terminus
(Nechushtan et al, 1999). In addition, overexpression of Bax

protein in mammalian cells results in the induction of apoptosis
through the release of cytochrome c and activation of caspases
(Rosse et al, 1998; Finucane et al, 1999; Gross et al, 1999), and
purified Bax protein is capable of triggering the release of
cytochrome c from isolated mitochondria (Xiang et al, 1996;
Vander Heiden et al, 1997; Eskes et al, 1998; Jurgensmeier et al,
1998; Marzo et al, 1998; Narita et al, 1998). Although the
mechanism by which Bax triggers cytochrome c release is not
clear, studies in cell-free systems have shown that Bax interacts
either with the mitochondrial permeability transition (PT) pore
components, the voltage-dependent anion channel (Shimizu et al,
1999) and the adenine nucleotide translocator (Marzo et al, 1998),
or with cardiolipin of the outer membrane (Kuwana et al, 2002) to
form megachannels that allow the passage of cytochrome c.

Since the coding sequence of the Bax gene contains a G8 track, it
is particularly vulnerable to mutation in cells that are defective in
DNA mismatch repair (Zhang et al, 2000). The loss of Bax renders
cells resistant to some cytotoxic agents (Zhang et al, 2000) and
blocks apoptosis mediated by the mitochondrial pathway (LeBlanc
et al, 2002; Nutt et al, 2002). It also favours tumorigenesis (Ionov
et al, 2000). On the other hand, in mouse embryonic fibroblasts
(MEFs), the additional loss of the closely related proapoptotic
protein Bak is required to block apoptotic cell death caused by a
variety of death-inducing stimuli, including BH3-only proapopto-
tic proteins Bid, Bim or Bad (Wei et al, 2001; Zong et al, 2001).

Photodynamic therapy (PDT) is a novel treatment for cancer
and other abnormal tissues that employs a photosensitiser and
visible light to produce singlet oxygen and other reactive oxygen
species (Weishaupt et al, 1976; Moan and Berg, 1992) that lead to
subcellular damage at sites where the photosensitiser accumulatesReceived 20 May 2003; revised 28 July 2003; accepted 5 August 2003
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(Peng et al, 1996). PDT is an efficient inducer of apoptosis, with
the initiating reactions dependent upon the preferential sites of
photosensitiser localisation. Many of the commonly employed
photosensitisers accumulate in the mitochondria. Like the protein
kinase inhibitor staurosporine (STS), PDT with mitochondrion-
damaging photosensitisers induces rapid apoptosis through
activation of the mitochondrial pathway of apoptosis. This
includes cytochrome c release, caspase activation, PARP cleavage,
chromatin condensation and DNA fragmentation (Granville et al,
1998, 1999b; He et al, 1998; Kessel and Luo, 1998; Kim et al, 1999;
Varnes et al, 1999; Chiu et al, 2001; Chiu and Oleinick, 2001;
reviewed in Oleinick et al (2002)). The induction of apoptosis has
also been observed in many tumours at early times following PDT
at doses leading to tumour eradication (Zaidi et al, 1993; reviewed
in Oleinick et al (2002)).

Bax undergoes a conformational change (exposure of an epitope
detected by the 6A7 antibody) as well as translocation from cytosol
to mitochondria immediately or shortly after PDT (Carthy et al,
1999; Granville et al, 1999b). The PDT-induced release of the
mitochondrial apoptogenic proteins cytochrome c and Smac/
DIABLO depends on Bax and is blocked in Bax-deficient human
prostate cancer DU-145 cells (Usuda et al, 2002). Interestingly,
stable overexpression of Bcl-2 can lead to the upregulation of Bax
and increased sensitivity to PDT (Kim et al, 1999; Srivastava et al,
2001). However, other investigators have not found elevated Bax
expression in cells stably transfected with Bcl-2 (He et al, 1996;
Granville et al, 1999a).

Here, we report studies of the role of Bax in apoptosis and cell
killing caused by PDT. Our data show that Bax is essential for the
mitochondrial pathway of apoptosis induced either by PDT or STS.
In its absence, downstream events of the mitochondrial pathway,
including cytochrome c release, loss of mitochondrial membrane
potential, caspase activation and chromatin condensation and
fragmentation, are blocked. However, since cells deficient in Bax
remain as photosensitive as Bax-proficient cells, we conclude that
the commitment to cell death is likely determined before the step
of Bax activation and cytochrome c release or independent of
them.

MATERIALS AND METHODS

Cell culture and photodynamic treatment

The human prostate cancer cell line DU-145 was grown in
Dulbecco’s modified Eagle’s medium, and the human breast cancer
cell line MCF-7c3 was cultured in RPMI 1640 medium. Both media
were supplemented with 10% fetal bovine serum, 2 mM L-glutamine
and antibiotics. MCF-7c3 cells express a stably transfected human
procaspase-3 (Xue et al, 2001b). The phthalocyanine photosensi-
tiser Pc 4 (HOSiPcOSi(CH3)2(CH2)3N(CH3)2) was supplied by Dr
Malcolm E Kenney of the Department of Chemistry, CWRU, and
used as a 0.5 mM stock solution in dimethyl formamide. An aliquot
of Pc 4 was added to the culture medium to give a final
concentration of 200 nM, 16 –18 h before light exposure. The light
source was a light-emitting diode array (EFOS, Mississauga,
Ontario, Canada; lmax 670– 675 nm). Both MCF-7c3 and DU-145
cells were irradiated with a fluence of 200 mJ cm�2 at a fluence rate
of 1.0 mW cm�2. This dose of PDT causes about 90% killing of
these cells, as determined by clonogenic assay. Irradiation was
carried out at room temperature and was followed by incubation of
the cultures in the dark for various periods of time before harvest.

Determination of cell viability

Two methods were used to monitor cell viability. In the propidium
iodide exclusion assay, cells were stained with 10 mg ml�1

propidium iodide and 5 mg ml�1 Hoechst 33342 in PBS and

examined by fluorescence microscopy. For determination of the
loss of clonogenicity, cells were collected from the monolayers with
trypsin immediately after PDT and plated for colony formation
(Xue et al, 2001b).

Nuclear staining for detection of apoptotic cells

Cells grown on coverslips were fixed in PBS containing 3.7%
formaldehyde. Cellular DNA was stained with 1– 5 mg ml�1

Hoechst 33342 and examined by fluorescence microscopy.
Apoptotic cells were identified by characteristic features of their
nuclei: condensation, margination and fragmentation of the
chromatin. At least 200 cells were counted from each sample,
and the yield of apoptotic cells was expressed as the percentage of
the total population. Since detached cells, which are enriched in
apoptotic cells, were not included in this measurement, the
estimated percentage of apoptosis determined here is a minimal
estimation of the true apoptosis levels.

Fluorescence immunocytochemistry

Cells grown on coverslips were stained as described (Chiu et al,
2001; Chiu and Oleinick, 2001) with minor modifications. After
fixation in 3% formaldehyde for 30 min on ice, cells were treated
with 0.1% Triton X-100 in PBS for 10 min at room temperature.
After blocking in IFA buffer (PBS containing 1% bovine serum
albumin, 0.1% Tween 20), the coverslips were incubated with the
primary antibody in IFA buffer followed by incubation in IFA
buffer containing 0.5 mg ml�1 Hoechst 33342 and the secondary
antibody conjugated to Texas red (Vector Laboratories). All
incubations were for 1 h at room temperature. Following thorough
washing, the coverslips were mounted on slides with mounting
medium (Kirkegaard & Perry Laboratories) and examined with a
Leitz fluorescence microscope. Images were photographed with a
Spot RT digital camera. The antibodies used in this study were
mouse anti-cytochrome c (1 : 300 dilution, clone 6H2.B4, PharMin-
gen) and rabbit anti-Bax (N1-20, Santa Cruz, 1 : 800 dilution).

Measurement of mitochondrial membrane potential

Changes in DCm were monitored by the uptake of JC-1, as
previously described (Chiu and Oleinick, 2001). JC-1 (5,50,6,60-
tetrachloro-1,10,3,30-tetraethylbenzimidazolyl-carbocyanine io-
dide) was supplied by Molecular Probes and dissolved in DMSO
to produce a 1 mg ml�1 stock solution. Different aliquots of the
cells were incubated at 371C in culture medium containing
10 mg ml�1 JC-1 for different 30-min periods starting immediately
after light exposure until 2.5 h after PDT; that is, period 1, 0–
30 min post-PDT; period 2, 30– 60 min post-PDT, etc. Samples
were washed once with PBS and examined for red–orange
fluorescence (580 nm).

Measurement of caspase 3 activity

Samples were prepared and assayed for caspase-3-like activity as
described (Varnes et al, 1999). Briefly, approximately 2� 106 cells
were collected by scraping with a rubber policeman and suspended
in 120ml lysis buffer (20 mM HEPES, 10 mM KCl, 0.5% Triton X-
100, 1 mM EDTA, 1 mM EGTA, 1 mM phenylmethylsulphonyl
fluoride, 100 mM pepstatin and 100mM leupeptin A, pH 7.4).
Following sonication, aliquots containing 50 mg protein were
incubated with 50 mM DEVD-AMC (BIOMOL) in 60 ml of reaction
buffer (25 mM HEPES, 10% sucrose, 0.1% CHAPS, 1 mM EGTA,
1 mM EDTA, 5 mM dithiothreitol, 1 mM phenylmethylsulphonyl
fluoride, 100 mM pepstatin, 100mM leupeptin, pH 7.4) for 1 h at
371C. The released fluorescence was measured in a Perkin-Elmer
LS50 fluorometer (lex, 380 nm; lem, 460 nm).
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Cell transfection and Bax antisense (AS) treatment

DU-145 cells were grown in six-well plates at 3–5� 105 cells well�1

and were transfected with plasmid pcDNA3.Bax (a generous
gift from Dr Minh Lam, CWRU Comprehensive Cancer Center)
using Lipofectamine reagent (Life Technologies) according to
the manufacturer’s protocol. At 16– 20 h after transfection,
the medium was removed and replaced with a fresh
medium containing Pc 4, and incubation was continued for
an additional 2 h before irradiation. For Bax AS treatment,
MCF-7c3 cells were grown either in six-well plates or in 60-mm
Petri dishes; cells were transfected with 1 mM Bax AS or
scrambled phosphorothioate oligonucleotides using
Lipofectamine. The transfected cultures were maintained for up
to 4 days.

The 20-mer Bax AS and scrambled DNA oligonucleotides
with a phosphorothioate backbone were synthesised and
purified by high-pressure liquid chromatography (BIOSOURCE
International, Camarillo, CA, USA). The 30-oligonucleotides
were biotinylated to facilitate the monitoring of intracellular
uptake. The sequences employed were as follows: AS 1: 50-TGCTC-
CCGGACCCGTCCAT-30 (Gillardon et al, 1996); scrambled 1:
50-TCATCGCTGGTAGAACACCT-30; AS 2: 50-TCGATCCTGGAT-
GAAACCCT-30 (Dibbert et al, 1999); scrambled 2: 50-TGGTCCC-
GCTCCCGCCACAT-30.

Flow cytometry

Cells collected from cultures by trypsinisation were fixed with 1%
formaldehyde (in PBS) for 15 min on ice. After permeabilisation
with 0.1% Triton X-100, the cells were washed once with PBS and
stained with propidium iodide (25 mg ml�1) for 30 min before
subjecting them to flow cytometric analysis. The stained samples
were analysed on an EPICS ESP flow cytometer (Coulter Corp.)
using the embedded instrument software.

Western blot analysis

Cells were lysed, sonicated and boiled in protein gel buffer (50 mM

Tris-HCl, pH 6.8, 1% SDS, 1% mercaptoethanol and 5% glycerol).
The protein content of the lysate was measured using the BCA
protein assay reagent (Pierce) and aliquots of 20 mg protein were
analysed on 12% SDS–PAGE gels. After transferring protein onto
PVDF membranes, the proteins were probed with polyclonal anti-
Bax (N-20, Santa Cruz) or anti-Bak (G-23, Santa Cruz). The
immune complexes were detected by enhanced chemilumines-
cence system (Amersham).

RESULTS

Bax is translocated from the cytosol to mitochondria
during PDT-induced apoptosis of MCF-7c3 cells

Pc 4-PDT, at a dose resulting in about 90% loss of clonogenicity
(LD90 dose), induces rapid apoptosis in many cell lines through
the activation of the mitochondrial (intrinsic) pathway (He et al,
1998; Chiu et al, 2002; Chiu and Oleinick, 2001; Lam et al, 2001;
Usuda et al, 2002; Xue et al, 2001b). In many systems, Bax is
required for the release of the mitochondrial intermembrane
proteins and the induction of apoptosis (Finucane et al, 1999;
Kim et al, 2001; Li et al, 2001). To assess the role of Bax in
this pathway in the case of Pc 4-PDT, we first studied the
relationship between Bax activation (translocation from cytosol to
mitochondria) and an early step of the pathway, cytochrome c
release, by immunocytochemistry in MCF-7c3 cells following a
PDT dose of 200 nM Pc 4 and 200 mJ cm�1 (LD90 dose). Figure 1A
displays cytochrome c staining from untreated and PDT-treated
apoptotic cells. Similar to our previous reports (Chiu et al, 2001;

Chiu and Oleinick, 2001; Lam et al, 2001; Xue et al, 2003b),
before PDT cytochrome c was confined to mitochondria, as
shown by the perinuclear, punctate staining pattern, but 5 h after
PDT, the staining pattern was diffuse throughout the cell, as a
result of the release of cytochrome c from the mitochondria into
the cytosol. PDT-treated cells also showed features of apoptotic
morphology at this time. In contrast, Bax staining showed the
inverse sequence (Figure 1B), that is, a diffuse pattern for control
cells and a punctate pattern for apoptotic cells, consistent with the
translocation of Bax from the cytosol to mitochondria during
apoptosis, as demonstrated previously during apoptosis induced
by a variety of stimuli (e.g., Wolter et al, 1997). A time-course
study showed that the onset of Bax translocation and cytochrome c
release occurs at 1 h after PDT, and the processes go to completion
within the next 1– 2 h. Since the maximal activation of caspase and
nuclear apoptosis do not occur until 4 h after PDT in these cells,
when cytochrome c has been completely released from the
mitochondria (Xue et al, 2001b), the observations of Figure 1B
indicate that translocation of Bax is an early event of PDT-induced
apoptosis.

No PDT PDT

Cyto C

Nuclei

A

B No PDT PDT

Nuclei

Bax

Figure 1 Redistribution of cytochrome c and Bax during PDT-induced
apoptosis in MCF-7c3 cells. Fluorescence micrographs of immunocyto-
chemically stained cytochrome c (A) or Bax (B) from untreated cells (left)
or from cells 3 or 5 h after PDT (right). Nuclear DNA was stained with
Hoechst 33342.

PDT kills cells in the absence of Bax and apoptosis

S-M Chiu et al

1592

British Journal of Cancer (2003) 89(8), 1590 – 1597 & 2003 Cancer Research UK

E
x
p

e
rim

e
n

ta
l

T
h

e
ra

p
e
u

tic
s



Suppression of Bax expression with Bax AS
oligonucleotides suppresses apoptosis induced by
PDT or STS

To determine the role of Bax in PDT-induced apoptosis, MCF-7c3
cells were treated with Bax AS to suppress Bax expression. Two
Bax AS oligonucleotide sequences, previously reported to suppress
Bax expression (Gillardon et al, 1996; Dibbert et al, 1999), were
used. Since no significant difference was found between the two
sequences with regard to the suppression of either Bax protein
level or apoptosis, the results were pooled, and in later
experiments only AS 1 was used. Although greater than 90% of
cells exposed to the transfection procedure were positive for
uptake of the AS oligonucleotides, as monitored by the staining of
biotin-tagged AS oligonucleotides, only partial suppression of Bax
expression was found upon Western blot analysis (Figure 2A). The
decrease in Bax expression by AS, however, was time-dependent,
with the maximum suppression occurring B72 h after transfec-
tion. Increasing the AS oligonucleotide concentration from 1 to
5 mM did not enhance suppression (data not shown). However,
despite incomplete suppression of Bax protein by the Bax-AS,
apoptosis induced by either PDT or 1 mM STS was clearly inhibited
(Figure 2B,C). There was a rough correlation between the
inhibition of apoptosis and decrease in cellular Bax; that is, both
measures were maximal 3 days after transfection, at which time the
level of apoptosis was half that of cells exposed to PDT or STS in
the absence of AS. The suppression of apoptosis by AS was
specific, since treatment with scrambled oligonucleotides caused
no significant effect on either Bax expression or apoptosis

induction. It is interesting that the suppression of PDT- or STS-
induced apoptosis in AS-treated cells was accompanied by the
appearance of a large number of cells with abnormal nuclear
morphology (Figure 2D). The abnormal nuclei were smaller and
more brightly stained by Hoechst 33342 than normal interphase
nuclei, perhaps resulting from partial shrinkage of the cells.
Abnormal nuclei with similar morphology were also found in Bax-
negative DU-145 cells after these treatments (see below).

PDT-induced apoptosis is blocked in Bax-negative DU-145
cells

To determine whether Bax is the sole proapoptotic Bcl-2 family
protein essential for PDT-induced apoptosis, the Bax-negative
human prostate cancer cell line DU-145 was studied. The absence
of Bax in these cells was confirmed by Western blot analysis (data
not shown). When the cells were treated with an LD90 dose of PDT
(200 nM Pc 4 and 200 mJ cm�2 red light), cell shrinkage was
observed within 1 h of treatment. However, Hoechst 33342-stained
nuclei from cells collected 5–20 h following PDT were charac-
terised by the absence of the normal features of apoptosis, such as
chromatin condensation, margination or fragmentation
(Figure 3A). Instead, the nuclei displayed a unique crescent shape
that appears to result from the folding and collapse of the nuclear
contents. The blockage of PDT-induced apoptosis in these Bax-
deficient cells was further supported by the failure to detect a
significant increase in the fraction of cells with sub-G1 DNA
content by flow cytometry (Figure 3B). A similar blockage of
apoptosis was found in DU-145 cells 6 h following treatment with
1 mM STS (data not shown). In contrast, more than 20% of the Bax-
replete MCF-7c3 cells contained a sub-G1 level of DNA after the
same treatment with 1 mM STS (Figure 3B).

Pc 4-PDT caused neither the release of cytochrome c from
mitochondria nor the loss of mitochondrial membrane
potential in DU-145 cells

Since the translocation of Bax from the cytosol to mitochondria
has been demonstrated to be essential for the release of
cytochrome c in response to a variety of apoptotic stimuli, we
next examined the redistribution of cytochrome c following Pc 4-
PDT in DU-145 cells. As shown in Figure 3A, immunocytochemical
staining of cytochrome c from untreated cells reveals a perinuclear
and punctate pattern, as described for MCF-7c3 cells. The stained
cytochrome c of PDT-treated cells maintains the same punctate
pattern at 3 h, but becomes aggregated and clustered in a few
cellular sites at later hours as cell shrinkage occurs (Figure 3A).
The cytochrome c staining pattern is markedly different from the
diffuse pattern that results from the redistribution of cytochrome c
from the mitochondria to the cytoplasm shown above, indicating
that cytochrome c was retained in the mitochondria of DU-145
cells. Smac, another protein of the mitochondrial intermembrane
space, is also known to be released from mitochondria during
apoptosis; release of Smac leads to caspase activation through
suppression of caspase inhibitors, such as XIAP (Du et al, 2000).
Like cytochrome c, Smac remained associated with mitochondria
following treatment of DU-145 cells with Pc 4-PDT (Usuda et al,
2002).

The dissipation of the mitochondrial membrane potential
(DCm) following PDT was monitored by the uptake of the
potential-sensitive indicator dye JC-1. Despite cell shrinkage, as
well as clustering and alteration in the cellular distribution of
mitochondria, there was no significant decrease in the uptake of
JC-1 by DU-145 cell mitochondria for up to 3 h following PDT
(Figure 3C). However, because the uptake of JC-1 was monitored
by recording the amount of dye accumulated in 30-min periods,
the possibility of a transient depression of uptake without a
significant effect on overall uptake cannot be ruled out. Moreover,
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Figure 2 Suppression of Bax expression protects MCF-7c3 cells from
PDT-induced apoptosis. (A) Western blot analysis of the levels of Bax after
treatment with Bax AS for 2 or 3 days. (B, C) Levels of apoptosis induced
by 1 mM STS (B) or PDT (C) in MCF-7c3 cells transfected with Bax-AS or
scrambled sequences. At 1–4 days after transfection, cells were exposed
to PDT or STS, and 6 h later, cells were stained with Hoechst 33342 and
apoptotic cells were counted. (D) Nuclear morphology of Bax AS-treated
MCF-7c3 cells 6 h after STS treatment.
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consistent with the lack of cytochrome c release and apoptosis
following PDT or STS, these treatments failed to induce activation
of caspase-3-like proteases (DEVDase) in DU-145 cells (data not
shown).

Expression of Bax in DU-145 cells restores apoptosis

DU-145 cells are known to be mismatch repair defective (Chen
et al, 2001), so that in addition to loss of Bax, mutations in one or
more additional components of the apoptosis pathway may also be
present. To evaluate the importance of Bax deficiency, the cells
were transfected with an expression plasmid encoding the Bax-GFP
fusion protein. At 20 h after the transfection, 2478% of the cells
were positive for GFP expression, and 1373% of them contained
less than the G1 DNA content, as detected by flow cytometry. The
production of a high level of Bax in the transfected cells was
confirmed by Western blot analysis (Figure 4A). Transfection also
caused about 10% of the cells to detach from the monolayer during
the incubation, of which 45712% displayed morphological
features of apoptosis (Figure 4B) as well as sub-G1 DNA content
(data not shown). Furthermore, immunocytochemical staining of
Bax revealed that while the majority of attached cells contained no
Bax, many of the detached apoptotic cells stained intensely for Bax
in a manner that was perinuclear and punctate, an indication of the
presence of a high level of Bax and its association with
mitochondria (Figure 4B). Thus, the intrinsic apoptotic machinery
is intact in DU-145 cells, and apoptosis can be restored in these
cells by the expression of Bax. Attempts to select stable Bax-
transfected cells, however, were not successful, probably because
the high level of Bax expression causes apoptosis in all of the
transfected cells.

Bax-negative DU-145 cells were sensitive to PDT

Since Bax-negative DU-145 cells are resistant to apoptosis after
PDT, and Bax-deficient cells have been shown to be resistant to
agents such as indomethacin and sulindac (Zhang et al, 2000), we
tested whether these cells are resistant to killing by PDT. Figure 5
presents the results of the measurement of cell viability by the
ability to exclude propidium iodide. It shows that the fraction of
cells that has lost plasma membrane integrity increased with time
after PDT, and by 24 h 450% of the cells had lost viability. The
overall cell killing was monitored by clonogenic assay, and our
previous data on Bax-replete MCF-7c3 cells are included for
comparison (Table 1). As shown in the table, 95% of the treated
DU-145 cells were unable to form colonies after the same PDT dose
that caused 87% loss of clonogenicity of Bax-replete MCF-7c3 cells.
Therefore, the mutation that prevents Bax expression does not
render the cells more resistant to PDT. Table 1 also shows that DU-
145 cells are also sensitive to STS. However, they were some 28-
fold more resistant than MCF-7c3 cells to the same dose of STS.

DISCUSSION

The present report shows that the resistance of DU-145 cells to the
induction of apoptosis by PDT or STS is not due to a defect in the
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Figure 3 PDT fails to induce cytochrome c release, dissipation of
mitochondrial membrane potential and apoptosis in DU-145 cells. (A)
Fluorescence micrographs of immunocytochemically stained cytochrome c
in untreated cells or in cells 3–6 h after PDT. Nuclear DNA was stained
with Hoechst 33342. (B) Flow cytometric determination of the percentage
of DU-145 (top) or MCF-7c3 (bottom) cells with less than the G1 content
of DNA. DU-145 cells were either untreated (left) or exposed to PDT and
recovered 6 h later (right). MCF-7c3 cells were either untreated (left) or
exposed to 1 mM STS for 16 h (right). Cells were stained with propidium
iodide and analysed by flow cytometry. The percentage of apoptotic cells
with a sub-G1 DNA content (Gate D) is given. (C) Fluorescence
micrographs of DU-145 cells stained with JC-1 for 30 min at various
intervals after PDT.
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intrinsic apoptotic machinery, but rather due to the absence of the
proapoptotic Bcl-2 homologue Bax, since apoptosis is restored by
the expression of Bax in these cells. This conclusion is consistent
with a recent finding by Li et al (2001) that the overexpression of
Bax mediated by an adenovirus vector in DU-145 cells leads to
apoptotic cell death, as demonstrated by the release of cytochrome
c, activation of caspases-3, -9 and -7 and DNA fragmentation.
These data, together with the findings of the early translocation of
Bax from the cytosol to mitochondria following PDT in Bax-replete
MCF-7c3 cells, as well as the suppression of apoptosis in these cells
upon treatment with Bax-AS, clearly establish that Bax is the sole
proapoptotic Bcl-2 family member essential for apoptosis in these
human cancer cells in response to the two test inducers. A similar
stringent requirement for Bax to activate the intrinsic pathway of
apoptosis has been demonstrated for human colon cancer HCT116
cells (Zhang et al, 2000; LeBlanc et al, 2002). In contrast, Bax does
not appear to be required for the extrinsic pathway of apoptosis,
since death receptor activating agents are able to induce apoptosis
in Bax-negative DU-145 (Chatterjee et al, 2001). This situation is in
stark contrast to requirements for apoptosis in murine embryonic
fibroblasts, in which Bax and its close homologue Bak have
redundant functions, because both genes must be deleted for
apoptosis to be blocked (Wei et al, 2001).

In the absence of Bax, the downstream events of the
mitochondrial pathway of apoptosis, such as the release of
cytochrome c, dissipation of the mitochondrial membrane
potential, caspase activation, and chromatin condensation and
fragmentation, are completely blocked after PDT. Thus, the
present data confirm that PDT induces apoptosis through this
signalling pathway. However, although mitochondria have been
shown to be a prime target of PDT with certain photosensitisers
(Kessel and Luo, 1998), and PDT causes photodamage to
mitochondrion-bound proteins, in particular Bcl-2 (Xue et al,

2001a) and Bcl-xL (Xue et al, 2003a), and to mitochondrial and
endoplasmic reticulum membrane structure (Grebenova et al,
2003), the present data suggest that the photodamage is
insufficient to cause the release of cytochrome c spontaneously
through the outer mitochondrial membrane. The release needs the
participation of Bax. This finding is consistent with the conclusion
(Zong et al, 2001) that Bax or Bak is needed as an effector of
apoptosis, even when antiapoptotic Bcl-2 proteins are neutralised
by the overexpression of BH-3 peptide. The requirement that Bax
must be activated and migrate to the mitochondria for the release
of cytochrome c would predict (a) a delay in the cytochrome c
release process after PDT, as we previously observed in mouse
lymphoma LY-R cells and in human tumour A431 and MCF-7 cells
(Chiu et al, 2001; Chiu and Oleinick, 2001; Lam et al, 2001; Xue
et al, 2001b) and (b) temperature dependence of the processes of
Bax migration and cytochrome c release (Kessel and Castelli,
2001). In contrast, the prediction is inconsistent with earlier
reports of an immediate release of cytochrome c following PDT
(Granville et al, 1998; Kessel and Luo, 1998).
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Figure 4 Expression of Bax in DU-145 cells restores apoptosis. (A)
Western blot analysis of the levels of Bax in DU-145 cells 20 h after
transfection with a plasmid encoding GFP-Bax or GFP. Blots were probed
with anti-Bax (left panel) or anti-GFP (right). (B) Immunocytochemical
detection of Bax expression (upper panels) and nuclear morphology (lower
panels) of DU-145 cells. Nontransfected cells were either untreated (left
panels) or PDT-treated and examined 6 h later (middle panels). Other cells
were examined 20 h after transfection with a Bax-expression plasmid.

Table 1 Clonogenic survival of MCF-7c3 and DU-145 cells after
treatment with PDT or STS

% Survival

Treatment DU-145 MCF-7c3

PDT 5.572.2 13.475.5a

Staurosporine 12.872.2 0.4570.01b

Cells were treated with either PDT (200 nM Pc 4 and 200 mJ cm�2) or with 1 mM STS
(6 h) and then plated for colony formation. Each datum is the mean7s.d. of results
from triplicates of at least two independent experiments. aData from Xue et al
(2001b). bData from Xue et al (2003a).
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In spite of the resistance of Bax-negative DU-145 cells to
apoptosis induction by PDT or STS, the cells remain as sensitive to
killing by PDT as are Bax-replete MCF-7c3 cells, as judged by the
loss of clonogenicity. The results indicate that the commitment to
cell death is independent of the execution of apoptosis. A similar
result was obtained with caspase-3-deficient MCF-7v cells, wherein
stable expression of caspase-3 (MCF-7c3) restored apoptosis
capability and enhanced the rate of cell death, but had no
significant influence on overall cell killing by PDT, as determined
by clonogenic assay (Xue et al, 2001b). Since the release of
cytochrome c after PDT proceeds normally in MCF-7 cells, whether
or not they contain functional caspase-3, the observation supports
the proposal (Green and Amarante-Mendes, 1998) that the step of
cytochrome c release is the point-of-no-return for cell death.
Furthermore, our previous study on apoptotic cell death induced
by PDT in mouse lymphoma cells showed a good correlation in
dose response between the fraction of cells killed by apoptosis and
the fraction of cells that release cytochrome c after PDT (Chiu et al,
2001). The release of cytochrome c can either trigger caspase
activation or cause mitochondrial dysfunction. Either way will
eventually lead to cell death. The present observation of cell killing
in the absence of cytochrome c release in Bax-negative cells
suggests that this hypothesis needs modification. We propose that

the commitment to cell death occurs at or before Bax activation,
which includes its migration and integration to the mitochondria.

Bax mutation is common in tumours, because (a) the Bax gene
contains a G8 mononucleotide track and hence is prone to
mutation, particularly in cells defective in mismatch repair, and
(b) the inactivation of Bax confers on the cells a survival advantage
and promotes tumour progression (Ionov et al, 2000). Indeed,
more than half of colon tumours of the MMR type contain Bax
mutations (Rampino et al, 1997). Moreover, patients with Bax
mutations also have a poor prognosis (Ionov et al, 2000).
Interestingly, our data show that Bax-negative DU-145 cells are
more resistant to STS than are the Bax-replete MCF-7c3 cells,
whereas cell killing by PDT is not compromised by the absence of
Bax (Table 1). This observation suggests that PDT may have an
advantage over other therapies in the treatment of tumours with
Bax mutations.
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