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A B S T R A C T   

The early symptoms of cork spot disorder in ’Akizuki’ pear (Pyrus pyrifolia Nakai) are challenging to distinguish 
from those in healthy fruits, hindering early identification in production. In this study, samples of cork-browned 
’Akizuki’ pears, asymptomatic fruits and healthy fruits were examined to determine the content of relevant 
mineral elements. A micro near-infrared spectrometer collected spectral information, and various pretreatment 
methods were applied to the near-infrared spectral data. Support vector machine (SVM) modelling using the 
original data achieved the highest overall recognition accuracy of 84.65% and an F1 value of 84.06%. For 
identifying fruits without cork spot disease, Autokeras modelled data processed with the SG method, achieving 
the best accuracy of 90%. These findings establish a reliable basis for the early identification and diagnosis of 
cork spot disorder in ’Akizuki’ pear, enhancing pear production management.   

1. Introduction 

‘Akizuki’ pear (Pyrus pyrifolia Nakai) is a new mid-late maturing sand 
pear variety bred in Japan. Cork spot disorder is a fruit physiological 
disease caused by the weak adaptability of new cultivars to climate 
stress (Cui, Jiao, Wang, & Ma, 2020). The cork spot disorder reduces the 
commodity value of the fruit, reduces the quality of the fruit, and causes 
significant losses to the production of pears (Cui et al., 2020). According 
to the data, the cork spot disorder mainly occurs in the expansion period 
of the fruit. Vascular bundle dysfunction destroys the balance of water 
and nutrient transport in the fruit, resulting in changes in the pore 
structure of the pulp and an imbalance of mineral elements (Zhang & 
Cui, 2023). The related mineral elements are mainly calcium and boron 
(Cui et al., 2020) and some elements that can lead to calcium imbalance, 
such as K and Mg (Schönherr & Bukovac, 1973). The fruit of ’Akizuki’ 
pear with cork disease mainly showed two kinds of symptoms. One was 
that the peel was rounded and depressed, gradually extending down-
wards to cover the pulp, and spots were formed in the pulp, which was 
similar to the bitter core symptoms of apple. The other was that there 
was no disease on the surface of the peel, and brown and lignified round 
spots appeared in the pulp near the peel (Zhang & Cui, 2023). The 

judgment of the degree of illness is mainly based on subjective sensory 
experience, which makes it difficult to achieve qualitative evaluation. In 
the early stage, the asymptomatic fruit of ’Akizuki’ pear cork disease can 
be effectively identified, and corresponding measures can be taken in 
time to prevent the development of the disease. For mature pears, 
identifying asymptomatic diseased fruits is helpful for fruit grading. 
However, due to the concealment of this defect, there is currently no 
effective detection method. Therefore, it is urgent to achieve accurate, 
rapid and non-destructive methods for asymptomatic fruits of ’Akizuki’ 
pear with cork disease to improve the production level of the whole pear 
industry. Fig. 1. 

The color of the biological material give us the information about the 
health and quality of the agricultural product. Also, it is a criteria for 
marketing value of the agricultural product for consumers. Classification 
can be completed by computer vision technology (Bhargava & Bansal, 
2018), and plant diseases can be automatically classified and detected 
according to shape, texture and color (Zhang et al., 2021). In addition to 
disease identification, non-destructive methods can also be used to 
evaluate the quality and safety of agricultural products and foodstuffs 
(El-Mesery, Mao, & Abomohra, 2019) and to determine the oxidized 
areas and color changes in damaged apples using image analysis 

* Corresponding authors. 
E-mail addresses: hengwei@ahau.edu.cn (W. Heng), jinxiu123@ahau.edu.cn (X. Jin).   

1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Food Chemistry: X 

journal homepage: www.sciencedirect.com/journal/food-chemistry-x 

https://doi.org/10.1016/j.fochx.2023.100851 
Received 6 June 2023; Received in revised form 20 August 2023; Accepted 28 August 2023   

mailto:hengwei@ahau.edu.cn
mailto:jinxiu123@ahau.edu.cn
www.sciencedirect.com/science/journal/25901575
https://www.sciencedirect.com/journal/food-chemistry-x
https://doi.org/10.1016/j.fochx.2023.100851
https://doi.org/10.1016/j.fochx.2023.100851
https://doi.org/10.1016/j.fochx.2023.100851
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Food Chemistry: X 19 (2023) 100851

2

techniques. 
In the non-destructive testing of internal defects in fruits, many 

studies have been carried out using various technologies, including X- 
ray imaging (Qian, Wenqian, Qingyan, Jingzhu, & Jiangbo, 2022), 
thermal imaging and magnetic resonance imaging (MRI), visible-near 
infrared (Vis/NIR) spectroscopy is a more commonly used technology 
in the non-destructive testing of agricultural products. It has many ad-
vantages, such as good detection efficiency, accuracy, multicomponent 
simultaneous analysis and low cost (Xia, Xu, Li, Zhang, & Fan, 2019). 
Based on the differences in the frequency combinations and octave ab-
sorption intensities of C–H, N–H, and O–H groups in the spectra, 
combined with chemometric methods, internal physiological diseases of 
fruits can be identified (Anderson & Walsh, 2022). Near-infrared spec-
troscopy was used for early detection of strawberry anthracnose crown 
rot (Lu et al., 2017) and bitter pit disease in asymptomatic ’Fuji’ apples 
(Mogollón, Contreras, de Freitas, & Zoffoli, 2021). In the research of our 
team, Ba (Ba et al., 2022) used near-infrared spectroscopy to model and 
analyse the asymptomatic diagnosis of wheat kernel scab and accumu-
lated experience for other team members to use near-infrared spec-
troscopy for modelling and analysis. Therefore, in this paper, an 
identification model of ’Akizuki’ pear cork disease was established by 
near infrared spectroscopy, and the feasibility of near infrared spec-
troscopy for the diagnosis of early ’asymptomatic’ pear cork disease was 
discussed. 

Fast detection has high requirements for the execution efficiency of 
the model. To improve the performance of the model and achieve the 
purpose of practical application, it is necessary to remove redundancy, 
noise and collinear processing of the original spectral data. In this 
experiment, various preprocessing methods are used to correct the 
scattering, baseline variation, peak shift, noise and missing values 
(Mishra, Biancolillo, Roger, Marini, & Rutledge, 2020). Various pre-
processing methods have different degrees of impact on the data in 
different ways. Preprocessing methods always have the risk of losing 
relevant chemical information or changes related to the attributes of 
interest (Oliveri, Malegori, Simonetti, & Casale, 2019). However, the 
combination of different pretreatment methods can weaken or eliminate 
the influence of a single pretreatment method on spectral information. 
Therefore, this paper selects six preprocessing methods and two com-
mon preprocessing combinations to process the near-infrared spectrum 

to find a preprocessing method that can not only attenuate the noise and 
scattering in the data but also retain the spectral information to the 
greatest extent. 

For NIRS classification, some traditional classifiers are used, such as 
support vector machines (SVM) (Lu, Zheng, Hu, Lou, & Kong, 2011) and 
ensemble algorithms. In this paper, the random forest algorithm (RF) 
(Bin et al., 2016) and the polar gradient descent algorithm (Xia, Qin, 
Jumei, Yingying, & Bingyu, 2022) are selected as representatives of the 
ensemble algorithm. Traditional machine learning methods rely on 
human experience to design and specify parameters, which greatly 
affect the performance of the model. This paper applies the automatic 
reference model. The model is an automatic machine learning (AutoML) 
library Autokeras, which can automatically complete the model selec-
tion and hyperparameter adjustment process (Alaiad et al., 2023). 

In general, the purpose of this study was to determine a classification 
model to detect asymptomatic pears with ’Akizuki’ pear cork disease. 
The specific purpose is as follows: (1) Using near-infrared spectroscopy 
combined with different classification models to explore the detection 
ability of ’Akizuki’ pear cork disease.(2) The random forest (RF), 
eXtreme gradient boosting (XGBoost), adaptive boost (AdaBoost), 
gradient boosting decision tree (GBDT), Autokeras and support vector 
machine (SVM) modelling methods were established, and the classifi-
cation model of ’Akizuki’ pear cork disease was established. (3) The 
classification performance of each model was compared from the as-
pects of tolerance, stability, accuracy and complexity, and the best 
model for distinguishing diseased pears from healthy pears was 
determined. 

2. Materials and methods 

2.1. Samples 

In early September 2022, the experiment was carried out at the pear 
demonstration base of Youjia Agricultural Development Co., Ltd., Yeji 
District, Lu’an Anhui Province. After the reliability of the sample was 
determined by several experienced fruit growers, 85 diseased fruits and 
72 healthy fruits (control) of ’Akizuki’ pear were picked as test samples. 
The surface of the pear fruit was cleaned, wiped clean and then 
numbered for use. 

Fig. 1. Materials and Methods (a) The collection location of ’Akizuki’ pear and appearance of three types of pear fruit; (b) The process of acquiring the spectra.  
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2.2. Near-infrared spectrum instrument 

In this experiment, the instrument used to collect spectral data is a 
handheld portable miniature near-infrared spectrometer ’NIR-S-G1’ 
produced by Shenzhen Green Union Company. The spectral wavelength 
detection range is 900 nm – 1700 nm, the spectral acquisition points are 
228 bands, the spectral resolution is 3.89 nm, and the signal-to-noise 
ratio (SNR) is 5000:1. Before use, the app ’Instagram’ on the mobile 
phone was connected to the instrument through Bluetooth, and then the 
spectral data were collected. 

Before each measurement, the near-infrared spectrometer needs to 
be calibrated with a black and white board. The instrument is attached 
to the calibration whiteboard, and the light emitted is reflected back on 
the whiteboard. The reflected light is captured and recorded as the 
brightness value (W) of the whiteboard. We turn off the instrument’s 
emission light source, which is recorded on the blackboard brightness 
value (B). After calibration, the instrument was used to collect the 
spectral data of the pear surface. The light source window of the in-
strument is close to the brightness value (R) of the reflected light ob-
tained by the ’Akizuki’ pear sample. The spectral reflectance of the 
sample is calculated by formula (1). 

Refletance =
I − B

W − B
× 100% (1)  

2.3. Spectral data acquisition 

In the process of spectral acquisition, to make the measurement re-
sults as accurate as possible, we selected multiple spectral sampling 
points on the surface of the pear for acquisition and averaging, as shown 
in Fig. 1. An ellipse with a short axis of 6 cm and a long axis of 7 cm was 
delineated near the equator on the surface of the pear fruit by pencil, and 
the sample points were marked in the ellipse by a five-point sampling 
method. For healthy fruits, we delimited an elliptical area every 120 
degrees, and for diseased fruits, we delimited an ellipse on the surface of 
1–3 lesions and the asymptomatic surface. The scanning window of the 
front end of the micro handheld spectrometer is close to the designated 
range. The number of scans in each sample area was 5. Each data file is 
named according to the sample number. After the spectral data acqui-
sition is completed, all files are exported. The data in each document 
include wavelength, intensity spectrum, absorbance spectrum and 
reflectivity. The average value of the reflectivity spectral data scanned 
five times in each region is used as the original modelling spectral data. 

2.4. Detection of mineral elements in pear fruit 

After collecting spectral data from all pear samples, healthy fruits, 
diseased parts of diseased fruits and asymptomatic parts of diseased 
fruits were peeled and removed. The pulp was cut off manually and 
placed in a Kraft paper bag. The pulp was placed in kraft paper bags, 
dried at 70 degreesC until constant weight, mechanically pulverized, 
placed in self-sealing bags, labelled with a number, and stored for use. 
Three replicates were set up for each part. 

First, 0.1 g of dry sample powder was weighed into an ablution jar, 
and 2 ml of concentrated sulfuric acid and 8 ml of distilled water were 
added. Microwave digestion was carried out using a microwave diges-
tion apparatus (Milestone Ethos T) for 0.5 to 1 h.Then, inductively 
coupled plasma emission spectrometry (ICPES) was used to determine 
the contents of mineral elements in the fruits of autumn pear (Zhang, 
Nie, & Le, 2017). The detection basis was GB 5009.268-2016, and the 
main instrument used was an inductively coupled plasma emission 
spectrometer/B1126. 

2.5. Spectral processing method 

In the process of spectral data acquisition, there are inevitably some 

interference factors unrelated to spectral information acquisition, such 
as background noise of the experimental platform. This leads to some 
irrelevant information in the original spectral data. The research shows 
that data preprocessing helps to weaken the invalid information in the 
spectral curve, improve the utilization rate of the effective information 
of the spectrum, increase the signal-to-noise ratio of the near-infrared 
spectrum, and improve the accuracy and stability of the regression 
model established later. For this batch of data, this experiment uses the 
first derivative (FD), second derivative (SD), multiple scattering 
correction (MSC), standard normal variable (SNV), Savitzky Golay 
convolution smoothing (SG) and logarithmic transformation (LG) and 
the combination of two single preprocessing algorithms, SG + SNV and 
SG + MSC preprocessing methods. 

The derivatives (FD and SD) can eliminate spectral offset and base-
line effects (Yaqian, Xinyuan, Zhisheng, & Qiao. , 2016). Multivariate 
scattering correction (MSC) is based on the spectral array, which can 
eliminate the influence of the surface scattering of pears to a certain 
extent. The effect of the standard normal variate (SNV) is similar to that 
of the MSC, which helps to reduce the influence of factors such as pear 
fruit size and surface scattering on spectral diffuse reflection. The dif-
ference between the two is that MSC takes the average spectral reflec-
tance of a single band of all samples and then performs subsequent 
processing, while SNV takes the average of the full-band spectral 
reflectance of a single sample and then performs subsequent processing. 
SG mainly eliminates the noise generated by the outside world or 
equipment. The logarithmic transformation (LG) helps to reduce the 
absolute value of the spectral data, which is beneficial to the later 
calculation (Yujie et al., 2022). Through the comprehensive evaluation 
of the performance of each model with different evaluation indexes, the 
best pretreatment method is selected for analysis. Then, we compare the 
modelling results under different preprocessing methods. 

2.6. Modelling method 

In this paper, the algorithms selected for modelling are random forest 
(RF), extreme gradient boosting (XGBoost), adaptive boosting (Ada-
Boost), support vector machine (SVM), gradient boosting tree (GBDT) 
and neural network structure search (Autokeras). SVM is a widely used 
supervised classification learning algorithm (Mammone, Turchi, & 
Cristianini, 2009). The classification data are predicted by finding the 
maximum boundary in the feature space. SVM predicts nonlinear data 
based on empirical risk minimization and prevents overfitting by setting 
penalty parameter C and kernel function parameter gamma (Li, Sun, & 
Li, 2020). 

Autokeras is an efficient neural search with network morphism that 
uses Bayesian optimization to guide the search space through each 
optimal operation. Autokeras is an open source software library for 
automated machine learning that automatically searches for the archi-
tecture and hyperparameters of deep learning models. When using 
Autokeras to train models, there is almost no need to intervene. In this 
experiment, Autokeras is used for training data, including the following 
three aspects: search space, search strategy and evaluation index. The 
dataset of this experiment is smaller, and the network architecture is not 
complicated. 

Ensemble learning is a machine learning technique that combines 
basic models according to different ideas to achieve better results. More 
than one single machine learning algorithm is trained and combined to 
produce a final output. (Alazzam, Alsmadi, & Akour, 2017) The 
ensemble model mainly includes the ensemble bagging model, the serial 
ensemble boosting model and the structured ensemble stacking model. 

Random forest is an extended variant of bagging. Based on the 
bagging ensemble constructed by decision tree-based learners, RF 
further introduces random attribute selection into the training process of 
the decision tree. 

AdaBoost belongs to the Boosting algorithm in integrated learning 
(Freund & Schapire, 1997). AdaBoost is a special machine learning 
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method for training a series of weak classifiers. In the AdaBoost training 
process, the weights of training samples are updated adaptively after 
each enhancement iteration. The weight of training samples mis-
classified by the current component classifier is increased, and the 
weight of training samples correctly classified is reduced. Finally, the 
weak classifiers are linearly combined to form a strong classifier. 

To analyse the performance of different models, evaluation in-
dicators are introduced, including accuracy, precision (P), recall rate (R) 
and F1 value. The most commonly used evaluation index in classifica-
tion modelling is accuracy, but for models with uneven data distribu-
tion, the F1 value is better than accuracy and can be used to evaluate the 
goodness of fit of the model. Both accuracy and F1 value are considered 
when evaluating the model. 

This section briefly introduces the methods used. According to the KS 
(Watson & Galliher, 2001) algorithm, 714 samples were divided into a 
training set and a test set at a ratio of 7:3. The test set is used to evaluate 
the accuracy of the model, that is, the generalization ability. The third 
chapter mainly introduces the results and discussions of mineral element 
detection, spectral characteristics, preprocessing and modelling. 

All algorithms are implemented in PyCharm 2022.1.1 under Win-
dows 10, and the programming language is Python 3.9. 

3. Results and discussion 

3.1. Comparison of the main mineral element contents between healthy 
and diseased ‘Akizuki’ pear fruits 

The detection results of the main mineral elements in healthy pear 

fruit, diseased fruit and asymptomatic fruit are shown in Fig. 2. Through 
the analysis of the results, it can be found that there was a significant 
difference in the content of Ca in healthy fruits, diseased fruits and 
asymptomatic fruits. The content of K in asymptomatic fruit was 
significantly different from that in diseased fruit and healthy fruit, but 
there was no significant difference between diseased fruit and healthy 
fruit. The content of Mg in diseased fruit was significantly different from 
that in asymptomatic fruit and healthy fruit, but there was no significant 
difference between asymptomatic fruit and healthy fruit. The content of 
trace element B in diseased fruit was significantly different from that in 
asymptomatic fruit and healthy fruit, but there was no significant dif-
ference between asymptomatic fruit and healthy fruit. The K/Ca, Mg/Ca 
and K + Mg/Ca ratios of healthy fruit, diseased fruit and asymptomatic 
fruit were significantly different. 

During the course of the disease, the contents of Ca and B decreased 
gradually. After the formation of the lesion, the content of Ca was 
significantly higher than that of the diseased site. Ca/B is often used to 
determine whether the fruit is deficient in B in production. The Ca/B 
difference between healthy fruit, diseased fruit and asymptomatic fruit 
is extremely significant. 

The symptoms of pear cork disease are similar to those of apple bitter 
core, which has been confirmed to be related to calcium deficiency. The 
contents of K and Mg and their ratios to Ca are important indicators 
related to the occurrence of cork spots in other studies (Miqueloto, 
Amarante, Steffens, dos Santos, & Mitcham, 2014). Potassium (K) and 
magnesium (Mg) can antagonize the absorption or function of calcium 
on the cell membrane or compete for the binding sites of calcium on the 
cell membrane (Ho & White, 2005). The balance between calcium and 

Fig. 2. Comparison of mineral element content in different degrees of disease. (a) Comparison of Ca content; (b) Comparison of K content. (c) Comparison of Mg 
content; (d) Comparison of B content. (e) Comparison of K/Ca content; (f) Comparison of Mg/Ca content. (g) Comparison of (Mg + K)/Ca content; (h) Comparison of 
Ca/B content. 
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Fig. 3. Spectral reflectance of pear fruit (a) The original spectral reflectance of pear fruit; (b) The average spectral reflectance of pears with different degrees of 
disease. Preprocessed spectral curve:(c) spectrum with the FD method; (d) spectrum with the SD method; (e) spectrum with the LG method; (f) spectrum with the SG 
method; (g) spectrum with the MSC method; (h) spectrum with the SNV method; (i) spectrum with the SG + MSC method; (j) spectrum with the SG + SNV method. 
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other mineral elements may also be the cause of the disease. Ca mainly 
exists in the form of ions in plants, and Ca2+ in plant cells is mainly 
stored in cell walls and vacuoles (Woodbridge, 1971). Fruits with Ca2+

deficiency symptoms even showed higher total Ca content than normal 
fruits due to increased Ca2+ in vacuoles being stored or bound to the cell 
wall (de Freitas, do Amarante, Labavitch, & Mitcham, 2010). Calcium is 
the component of calcium pectinate in the intercellular layer of the cell 
wall. K is an essential macroelement in plants that affects the function of 
enzymes in plants and mainly exists in the form of K+ in plant cells 
(Ciavarella, Batten, & Blakeney, 1998). 

The differences in the content of mineral elements can be shown by 
spectral data. De Aldana reported that calcium pectate binds to plant 
cells and is sensitive in the NIR region (De Aldana, Criado, Ciudad, & 
Corona, 1995). Boron in crops mainly exists in the form of boric acid, 
which can be condensed with cis-diol to synthesize ester compounds. In 
plants, many compounds have adjacent cis-diol configurations, which 
can be condensed with boric acid to affect or mediate plant metabolism. 
As an inorganic acid, boric acid is difficult to directly reflect on the 
spectral curve. The content of B can be indirectly reflected by cis-diol. 
The wavelength at which K may have the strongest correlation with 
carbohydrates such as sucrose, starch and cellulose in plants can be 
detected by NIRS through carbohydrates and organic acids and can also 
be detected in cation-carbohydrate complexes (Cadet & Offmann, 
2006). Mg was significantly correlated with chlorophyll bands, and 
chlorophyll bands were found by Clark in NIRS (Clark, Mayland, & 
Lamb, 1987). 

3.2. Spectral characteristics and analysis 

In this experiment, the reflection spectrum was selected as the 
modelling spectral data. The original near-infrared (900–1700 nm) 
spectra of diseased, asymptomatic and diseased fruits are shown in 
Fig. 3. Fig. 3(a) is the original reflection spectrum of pear fruit, and Fig. 3 
(b) is the average reflection spectrum. The variation trend of the near- 
infrared spectra of healthy fruits, diseased fruits and asymptomatic 
fruits was consistent. There were significant differences in the range of 
900–1300 nm. The spectral curves between diseased fruits and asymp-
tomatic fruits in the range of 1400–1700 nm almost overlap, but the 
average spectral reflectance of the two is significantly different from that 
of healthy fruits. These average spectra reflect the effective chemical 
information of pears with different degrees of disease. This difference 
indicates that the chemical composition content of each disease degree 

is different. The spectral data meet the requirements of establishing an 
infrared species recognition model. 

Because the stretching vibrations of the overtones of O–H, C–H and 
N–H are related to the concentration of some internal compounds with 
these bands, stronger absorption peaks were found in the spectral range 
of 900–1000 nm (Zahra, Bahareh, Mansour, & Yousef, 2018). It can be 
seen from the average spectral curve that there are differences in some 
common peaks, such as 990 nm, 1450 nm, and 1490 nm. Study on the 
attribution of different peaks. The results showed that the second har-
monic absorption of O – H was observed at 990 nm, the first harmonic 
absorption of O – H was observed at 1450 nm, and the first harmonic 
absorption of O – H was observed at 1490 nm. The organic groups were 
starch, water and cellulose. The difference here may be related to the K 
content (Ciavarella et al., 1998). 

The internal components of ’Akizuki’ pear fruit may change after 
cork browning. This is mainly reflected in the starch, water and cellulose 
contents. The results showed that the pear belonged to the sugar accu-
mulation type in the middle. In the early and middle stages of fruit 
development, starch mainly accumulated. In the late stage of fruit 
development, starch was degraded into soluble sugar. Some studies have 
measured that the starch content of the diseased fruit of ’Akizuki’ pear is 
higher than that of the normal fruit, and there is a significant difference 
(Cui et al., 2020). This further illustrates that the reflectance of diseased 
fruit is higher than that of healthy fruit. 

There are two different peaks and valleys in the spectral bands at 
1300 and 1500 nm. Many studies have shown that the bands of C–C 
aromatic skeleton vibration at 1500 nm and the bands at 1300 nm 
represent C–C and C–O skeleton vibrations, which are highly corre-
lated with lignin content (Barton & Himmelsbach, 1993). The peak 
difference at approximately 1400 nm may be due to the difference in 
lignin content between diseased and healthy fruits (Cui et al., 2020). 

The wavelength is near 1490 nm, and the organic group reflected is 
cellulose. The cellulose content was significantly different between the 
diseased and normal fruits of ’Akizuki’ pear, and the content of diseased 
fruits was higher than that of healthy fruits (Jamshidi, Mohajerani, & 
Jamshidi, 2016). There was no significant difference in content between 
different parts of the diseased fruit. In the spectral curve, the diseased 
fruit and the asymptomatic fruit overlap, and the curve difference with 
the healthy fruit is obvious. The differences in moisture, starch, cellulose 
and mineral elements between the lesion site and the healthy site and 
the asymptomatic site of the pear fruit were reflected in the near- 
infrared spectrum. This further proves the feasibility of using near- 

Fig. 3. (continued). 
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infrared spectroscopy to classify ’Akizuki’ pear fruits. 
The original spectral data include the following three types: healthy 

fruit, asymptomatic fruit and diseased fruit, including 499 samples for 
the training set and 215 samples for the test set. In this experiment, 714 
spectral data points collected from 167 freshly picked ’Akizuki’ pear 
fruits were used as raw data. A total of 246 data points were labelled 
healthy fruits, 213 data points were labelled diseased fruits, and 255 
data points were labelled asymptomatic fruits. The collected data are 

divided into a training set and a test set at a ratio of 7:3, which is used for 
model training and correction. 

The micro near-infrared spectral data contain not only sample in-
formation but also noise and background information. To deeply analyse 
the spectral characteristics, the near-infrared spectral data are pre-
processed. Spectral preprocessing eliminates the spectral changes un-
related to the chemical composition, which is considered to be a basic 
procedure before multivariate calibration. Selecting a separate 

Table 1 
Classification results based on the RF, XGBoost, AdaBoost, GBDT, Autokeras and SVM models.  

Sodels Pre processing method Training set Testing set 

P R F1 Accuracy P R F1 Accuracy 

RF R 95.60% 95.07% 95.28% 95.39%  64.21%  63.34%  63.19%  63.26% 
FD 99.45% 99.31% 99.38% 99.40%  77.42%  75.14%  75.27%  74.88% 
SD 99.28% 99.11% 99.19% 99.20%  74.91%  72.23%  70.00%  70.23% 
SG 95.07% 94.47% 94.70% 94.79%  64.24%  63.27%  63.10%  63.20% 
LG 92.66% 91.73% 92.05% 92.18%  63.44%  62.43%  62.24%  62.33% 
MSC 97.45% 97.26% 97.34% 97.39%  66.20%  73.37%  72.58%  72.56% 
SNV 94.82% 94.71% 94.74% 94.79%  72.998%  72.04%  71.15%  71.16% 
SG + MSC 92.62% 92.54% 92.54% 92.59%  72.73%  72.11%  71.17%  71.16% 
SG + SNV 96.79% 96.71% 96.74% 96.79%  73.48%  72.45%  71.71%  71.63%  

XGBoost R 96.565% 95.75% 96.03% 96.19%  60.88%  60.22%  60.08%  60.47% 
FD 97.30% 96.78% 96.99% 96.99%  67.18%  65.03%  65.66%  65.12% 
SD 96.91% 96.88% 96.87% 96.79%  68.03%  67.59%  67.48%  66.98% 
SG 97.77% 97.35% 97.52% 97.60%  58.72%  56.60%  56.37%  57.21% 
LG 93.50% 92.11% 92.57% 92.59%  60.30%  59.51%  59.25%  60.00% 
MSC 96.80% 96.92% 96.85% 96.79%  74.29%  74.15%  73.54%  73.49% 
SNV 95.64% 95.71% 95.64% 95.59%  71.74%  71.36%  70.81%  70.70% 
SG + MSC 97.28% 97.31% 97.25% 97.19%  75.71%  75.18%  74.49%  74.42% 
SG + SNV 97.67% 97.66% 97.63% 97.60%  74.04%  73.46%  73.20%  73.02%  

AdaBoost R 78.96% 78.91% 78.92% 78.96%  59.86%  59.76%  59.69%  60.47% 
FD 93.48% 93.43% 93.43% 93.19%  80.73%  80.51%  80.59%  79.07% 
SD 93.38% 93.24% 93.23% 92.99%  71.41%  70.74%  70.80%  68.37% 
SG 92.36% 92.47% 92.39% 92.38%  57.88%  57.48%  57.44%  58.17% 
LG 78.96% 78.91% 78.92% 78.96%  59.86%  59.76%  59.69%  60.47% 
MSC 90.83% 90.92% 90.87% 90.78%  67.45%  65.73%  66.14%  65.58% 
SNV 90.78% 90.78% 90.71% 90.58%  69.21%  67.65%  68.12%  67.44% 
SG + MSC 87.79% 88.04% 87.76% 87.78%  68.98%  68.51%  68.35%  67.91% 
SG + SNV 89.21% 89.46% 89.22% 89.19%  70.11%  67.02%  67.26%  67.44%  

GBDT R 97.35% 97.13% 97.22% 97.19%  60.566%  60.53%  60.40%  60.47% 
FD 96.27% 96.14% 96.19% 96.19%  68.25%  67.22%  67.87%  67.44% 
SD 97.38% 97.49% 97.42% 97.39%  63.57%  64.10%  63.80%  63.26% 
SG 96.20% 95.58% 95.99% 95.99%  53.54%  53.62%  53.52%  53.95% 
LG 94.50% 94.04% 94.19% 94.19%  58.37%  58.22%  58.25%  58.60% 
MSC 96.07% 96.02% 96.02% 95.99%  66.93%  67.28%  67.09%  66.98% 
SNV 92.25% 92.25% 92.24% 92.18%  68.42%  68.89%  68.40%  68.37% 
SG + MSC 96.80% 96.84% 96.81% 96.79%  67.68%  68.30%  67.42%  67.44% 
SG + SNV 93.45% 93.37% 93.39% 93.39%  68.44%  69.16%  68.32%  68.37%  

Autokeras R 83.32% 80.78% 80.94% 80.96%  74.75%  71.78%  71.51%  72.09% 
FD 100% 100% 100% 100%  67.00%  68.33%  67.40%  66.98% 
SD 100% 100% 100% 100%  59.88%  63.79%  60.13%  60.00% 
SG 82.38% 80.83% 81.09% 80.96%  77.38%  76.55%  76.31%  77.21% 
LG 92.15% 91.93% 92.00% 91.98%  67.78%  68.07%  67.89%  68.37% 
MSC 96.31% 96.14% 96.21% 96.19%  79.80%  79.36%  79.55%  79.07% 
SNV 97.15% 96.99% 97.03% 978.51%  78.51%  78.30%  78.39%  77.67% 
SG + MSC 97.21% 97.22% 97.22% 97.19%  77.47%  78.07%  77.71%  77.21% 
SG + SNV 91.38% 91.23% 91.25% 91.18%  77.71%  78.07%  77.88%  77.21%  

SVM R 91.13% 89.95% 90.28% 90.18%  85.16%  84.71%  84.67%  84.65% 
FD 84.83% 82.70% 83.29% 83.37%  75.46%  73.80%  73.77%  73.49% 
SD 88.60% 88.27% 88.17% 88.18%  68.35%  69.14%  68.29%  68.84% 
SG 88.38% 87.06% 87.47% 87.37%  83.55%  82.63%  82.51%  82.33% 
LG 93.22% 92.41% 92.69% 92.59%  80.59%  80.43%  80.40%  80.47% 
MSC 92.60% 91.91% 92.18% 91.98%  84.14%  83.60%  83.53%  83.26% 
SNV 90.38% 89.79% 90.01% 89.78%  84.49%  83.69%  83.51%  83.26% 
SG + MSC 88.25% 87.61% 87.83% 87.58%  83.40%  82.92%  82.53%  82.33% 
SG + SNV 88.10% 87.41% 87.63% 87.37%  83.40%  82.92%  82.53%  82.33%  
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preprocessing method and a combination can reduce the interference of 
irrelevant information (Shi & Yu, 2017). FD, SD, SG, MSC, SNV, LG, SG 
+ MSC, and SG + SNV were performed on the spectral data. To prevent 
the difference in sample data observed after correction by different 
pretreatment methods, the results of the conversion spectra were 
compared. The results of the spectral data processed by the derivative 
method are shown in Fig. 3(c and d). Compared with the original 
spectrum, the spectral difference after derivative transformation is more 
obvious. This is because the derivative can randomly reduce the influ-
ence of noise, highlight the fine band shape and retain the relative band 
intensity information. It can be seen from the graph that the baseline 
shift phenomenon has been improved in the spectral data after deriva-
tive processing. The first derivative is used to eliminate the drift change 
of the spectral line, and the second derivative is used to remove the drift 
caused by different slopes. Fig. 3(e) shows the logarithmic conversion 
spectrum, which shows the opposite trend to the original spectrum due 
to the conversion of reflectivity to absorbance. The spectral curve pro-
cessed by the SG convolution smoothing method is shown in Fig. 3(f). 
Some irrelevant noises are removed on the basis of the original spectral 
data. Compared with the original image, the spectral curve is smoother. 
The spectral curves of MSC and SNV with pretreatment are shown in 
Fig. 3(g) and F. 5(h), respectively. The two processing methods have 
similar effects and belong to scattering processing, which can reduce the 
scattering effect during spectral data acquisition, improve the signal-to- 
noise ratio of spectral data, and correct the spectral baseline offset 
without affecting the spectral absorption data corresponding to the 
sample. The spectra treated by MSC and SNV are more compact than the 
original spectra. The MSC algorithm is mainly used to reduce the in-
fluence of uneven solid distribution and sample particle size on spectral 
variables, while SNV is mainly used to eliminate the influence of optical 
path change and surface scattering. The data after SG + SNV and SG +
MSC mixed processing methods are shown in Fig. 3(i and j). Both graphs 
contain the preprocessing results of SG and compare them with the 
original spectrum. SG removes some noise and makes the results more 
compact. 

This section analyses the correlation of the data preprocessing re-
sults. To evaluate the relative robustness of various preprocessing 
methods, the next step is modelling. The modelling results are shown in 
Section 3.3. 

3.3. Analysis of modelling results 

To analyse the micronear infrared spectrum, six modelling methods, 
including support vector machine (SVM), random forest (RF), extreme 
gradient boosting (XGBoost), gradient boosting tree (GBDT) adaptive 
boosting (AdaBoost) and neural network structure search (Autokeras), 
were selected. Different preprocessing methods are trained by cross 
validation, and 54 prediction models are established. In this test, K-fold 
cross validation requires human setup. Since several trials chose 5-fold 
cross-validation and achieved better experimental results(Tu et al., 
2021). Therefore 5-fold cross validation was chosen in this experiment. 
The results are shown in Table 1. 

According to the accuracy value of each model in Table 1, SVM is 
superior to RF, XGBoost, GBDT, AdaBoost and Autokeras in the classi-
fication and modelling of ’Akizuki’ pear cork disease. In addition, the 
best result obtained by SVM is based on the original data; the accuracy 
rate is 84.65%, and the F1 score is 84.69%. The model has high 
discriminant ability. Through GBDT modelling, the results of the SG 
processed data are the worst, with an accuracy rate of 53.95% and an F1 
score of 53.52%.  

(1) Support vector machines have many advantages in solving small- 
sample, nonlinear and high-dimensional pattern recognition 
problems and are widely used in classification and recognition. 
Considering the nonlinear correlation between the absorption 
and the real value of the sample, the RBF kernel function is 

selected. The grid search method combined with the tenfold cross 
validation method is used to optimize the parameters of the 
penalty factors C and gamma in the RBF kernel function. When C 
= 850 and gamma = 1.0, the classification effect of SVM is the 
best. The accuracy of the training set is 95.39%, and the accuracy 
of the test set is 84.65%.  

(2) RF and XGBoost are traditional ensemble learning algorithms, 
and XGBoost is an algorithm based on GBDT. RF modelling of the 
spectral data processed by the first derivative is carried out to 
obtain the best recognition effect. The accuracy of the training set 
is 99.40%, and the accuracy of the test set is 74.88%. For the 
spectral data processed by SG + MSC, XGBoost modelling is 
performed to obtain the best recognition effect. At this time, the 
accuracy of the training set is 97.19%, and the accuracy of the test 
set is 74.42%. The results obtained by modelling the data after LG 
processing are the worst results, and the accuracies of the test set 
are 62.33% and 60.00%, respectively.  

(3) AdaBoost is also an ensemble learning algorithm that can 
combine multiple weak learners to become a strong learner. The 
spectral data processed by the first derivative are modelled to 
obtain the best recognition effect. The accuracy of the training set 
is 93.19%, and the accuracy of the test set is 79.07%. However, 
the accuracy of the data modelling results processed by SG is the 
lowest, and the accuracy of the test set is only 58.17%. 

The low performance of traditional ensemble learning algorithms 
may be due to the relatively small number of real samples as the 
approximation target when generating samples. Therefore, compared 
with the real samples, their diversity is still relatively moderate. 

(4) Autokeras is an architecture for automated machine learning that 
provides an automatic search for deep learning models. In this experi-
ment, the initial model number (mls) and the number of iterations 
(epochs) were set. When mls is 50 and epochs are 500, the data 
modelling after MSC processing achieves the best classification effect. 
The accuracy of the training set is 96.19%, and the accuracy of the test 
set is 79.07%. 

The analysis results of each model under different pretreatment 
methods are shown in Fig. 4. The results show that the accuracy and FI of 
different pretreatment models are the same. Fig. 4 shows that the ac-
curacy and F1 values of SVM models under other preprocessing results 
are higher than those of other models except FD and SD processing. After 
the spectrum was processed by SG transformation, the classification 
ability of each model for the ’Akizuki’ pear data was poor except for 
SVM and Autokeras. However, in SVM, the original data obtained the 
highest accuracy and F1 score on the test set. The better classification 
results in other preprocessing methods include MSC, SNV, SG + MSC, 
SG + SNV. This may be due to the light scattering shape and surface 
difference characteristics of the pear fruit surface during the analysis. 
Both MSC and SNV can reduce the occurrence of light scattering and 
baseline offset. SNV has been shown to minimize the scattering effect 
(Alisaac, Behmann, Kuska, Dehne, & Mahlein, 2018). 

Due to similar characteristics, pears in asymptomatic parts are easily 
misclassified as healthy or diseased fruits. This is because for asymp-
tomatic fruit, the internal components of the plant tissue have changed 
but not in appearance. The accuracy results of asymptomatic fruits are 
shown in Table 2. Although the overall recognition accuracy of the 
Autokeras model is lower than that of the SVM modelling results, for the 
classification of asymptomatic fruits, the modelling results of the data 
processed by SG are the best, reaching 90%, of which 4 data points are 
misjudged as diseased fruits and 4 data points are misjudged as healthy 
fruits. The spectral data after SD processing had the worst modelling 
results, only 43.75%, of which 15 data points were misjudged as 
diseased fruits and 30 data points were misjudged as healthy fruits. The 
comprehensive recognition accuracy of the original data of the SVM 
model is the highest, but for the classification of asymptomatic fruits, the 
spectral data after SNV are modelled, and the accuracy rate reaches 
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88.06%. Among them, 3 data points were misjudged as diseased fruits, 
and 5 data points were misjudged as healthy fruits. The spectral data 
after SD processing had the worst modelling results, only 55.22%, of 
which 15 data points were misjudged as diseased fruits and 15 data 
points were misjudged as healthy fruits. For RF, the accuracy of MSC and 
SNV was the highest, both 86.57%. The spectral data processed by SG +
SNV are modelled, and the highest accuracies are obtained in AdaBoost 
and XGBoost, which are 82.93% and 86.57%, respectively. The data 
processed by SNV were modelled by GBDT, and the classification ac-
curacy of the asymptomatic fruit was the highest, which was 71.95%. 

The model can identify most healthy fruits, diseased fruits and 
asymptomatic fruits. However, because the appearance of asymptomatic 
fruits is too similar to the surface characteristics of healthy fruits, the 
recognition results are more or less biased. For the classification and 
recognition of asymptomatic fruits, the Autokeras model after SG 
treatment achieved the best results, reaching 90%, which could accu-
rately differentiate asymptomatic fruits from diseased fruits and healthy 
fruits. The optimal result of the Autokeras model for the classification 
and recognition of healthy fruits, diseased fruits and asymptomatic fruits 
is 79.07%, and the classification result is also better. 

In this experiment, asymptomatic fruits were classified as diseased or 
healthy fruits, resulting in poor accuracy of some models. The reason 
may be that asymptomatic fruits and healthy fruits are difficult to 
distinguish in appearance and are similar to diseased fruits in internal 
composition, resulting in easy misjudgment of fruits. This sample is a 
biological sample with a high degree of complexity, and the classifica-
tion index of this model is acceptable under this study. The results of the 
model can be combined with the characteristics of fruit disease observed 
by the naked eye for comparative analysis to further improve the ac-
curacy of asymptomatic fruit recognition and achieve the purpose of 
early identification of ’Akizuki’ pear cork disease. 

In summary, the modelling of Autokeras processed by SG achieves 
the best classification results in the identification of asymptomatic fruits, 
and the model has high robustness and accuracy. This study can provide 
more accurate results for the early identification of cork spot disorder in 
’Akizuki’ pear. 

Based on near-infrared spectroscopy, the early recognition of ’Aki-
zuki’ pear cork disease was studied. The recognition results of asymp-
tomatic fruit were poor, and it was easy to misclassify as healthy fruit 
and diseased fruit, resulting in low accuracy of individual classification. 
This may be because the test materials are field materials, and diseased 
fruits appeared in the field. Some fruits may have been diseased, but 
their appearance has not yet shown related symptoms. This paper 
mainly focuses on the early identification of ’Akizuki’ pear cork disease. 
Considering the variability of asymptomatic samples in the later stage, 
the classification indexes obtained in this study are acceptable. 

4. Conclusion 

Studies have shown that it is feasible to use the Autokeras method to 
detect early asymptomatic ’Akizuki’ pear cork disease under near- 
infrared spectroscopy. These studies have found that near-infrared 
spectroscopy can classify healthy, asymptomatic and diseased fruits 
based on differences in mineral elements and related components in 
diseased, asymptomatic and healthy fruits. Compared with the original 
data, SG eliminates most of the effects caused by noise and nonsmooth 
surfaces. However, in the field environment, there are many interference 
factors, and the appearance of asymptomatic fruit and healthy fruit is 
difficult to distinguish. The ’Akizuki’ pear under natural conditions may 
be diseased without any symptoms, resulting in the incorrect classifi-
cation of healthy pears. The internal components of asymptomatic fruits 
and diseased fruits are similar, and the misjudgment of the two types is 
within the normal range. This study provides a new perspective and idea 
for the study of early asymptomatic identification of ’Akizuki’ pear cork 
disease, which can be used for early disease assessment and prediction in 
’Akizuki’ pear planting areas. 
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