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Abstract: Uterus transplantation (UTx) is the first and only available treatment for women with
absolute uterine factor infertility. However, clinical application is limited by the lack of organs,
ischemia/reperfusion injury, as well as immunosuppression after UTx. Several different preservation
solutions are used in experimental and clinical UTx, including Custodiol® solution. Recently,
the novel Custodiol-N solution was developed with superior results in organ preservation. However,
the solution was not tested yet in UTx. Therefore, the aims of this study were to evaluate the effect
of Custodiol-N in uterus prolonged cold preservation time (8 and 24 h), compared to Custodiol®

solution. Uterus tissue samples were obtained from adult Sprague Dawley rats (n = 10/group).
Cold ischemic injury was estimated by histology, including immunohistochemistry, and biochemical
tissue analyses. After 8 h of cold ischemia, higher percentage of tissue edema, necrosis signs and
myeloperoxidase expression, as well as lower superoxide dismutase activity were found in Custodiol®

compared to Custodiol-N (p < 0.05). These differences were more pronounced after 24 h of cold
preservation time (p < 0.05). This study demonstrated that Custodiol-N protects uterus grafts from
cold ischemic injury better than standard Custodiol® most likely via inhibition of oxidative stress
and tissue edema. It seems that iron chelators in the composition of Custodiol-N play an important
protective role against cold ischemia.

Keywords: uterus transplantation; infertility; ischemia reperfusion injury; preservation; static cold
storage

1. Introduction

Uterus transplantation (UTx) is the first and only available treatment for absolute uterine
factor infertility (AUFI). Up to 7% of women suffer from AUFI [1,2], which is linked to either
congenital uterine agenesis (Mayer–Rokitansky–Küster–Hauser syndrome), major congenital uterine
malformation (hypoplastic uterus, fraction of bicornuate/unicornuate uterus), a surgically absent
uterus, or an acquired condition (intrauterine adhesions, leiomyoma) related to uterine malfunction
that causes implantation failure or defect placentation [3].

In 2014, the first birth of a healthy child to a woman who underwent UTx under the care of
Brännström’s team in Sweden finally removed the doubts and skepticism in the medical community [4,5].

Int. J. Mol. Sci. 2020, 21, 8015; doi:10.3390/ijms21218015 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4996-4295
https://orcid.org/0000-0002-2101-7560
http://www.mdpi.com/1422-0067/21/21/8015?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21218015
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 8015 2 of 10

Since then, several births have occurred in multiple centers worldwide utilizing uterus grafts from
both living and deceased donors [6]. However, wider clinical application is inherently limited by an
organ shortage, ischemia/reperfusion injury (IRI), since all of these factors limit success rates of UTx [2].
To date, the living donor is preferred in UTx, [7] due to the possibility of better donor evaluation and
elective planning of the operation. On the other hand, the use of deceased donors is indisputable
advantageous because of avoiding surgical risks for the donor. The main risk for a living donor is a
thromboembolic event development due to the long surgical duration together with the possibility of
anesthetic complications [8]. Long-term risks include ureter injury (ureteric-vaginal fistula [9] and
ureteric laceration [10]). Whereas a cold ischemia time is short in living donation, longer ischemia times
have to be taken into consideration when using deceased donors. Therefore, more precise knowledge
about the tolerance of the uterus to prolonged cold ischemia is required in order to increase the organ
donor pool and improve the general outcomes.

In separate experiments, the uterus graft was proven to be resistant to both warm and cold
ischemia [11,12]. To date, several different preservation solutions, such as IGL-1® [13], Celsior® [14–16],
University of Wisconsin [17,18], NaCl [17], Ringer’s acetate [18], Perfadex® [18], and Custodiol® [19–25],
were used in experimental and clinical practice of UTx. Based on literature, modulation of the solution
used for uterus graft static cold storage (SCS) could prevent ROS formation with resulting in reduced
cell damage [17]. On the basis of Custodiol® solution, the novel Custodiol-N solution was developed
and supplemented with glycine and alanine to inhibit formation of hypoxia-induced plasma membrane
pores and fortified with iron chelators, including deferoxamine and LK-614, to inhibit cold-induced
cell injury as well as L-arginine to decrease microcirculatory disturbances [26,27]. Moreover, mannitol
has been replaced by sucrose. The complete composition of the preservation solution is compiled
in Table 1. In previous experiments, Custodiol-N proved to be superior to Custodiol® solution
concerning inhibition of hypoxic cell injury and cold-induced cell injury [26,28–30]. An ongoing
prospective, randomized, single blind, multicenter, phase III comparison study intends to demonstrate
non-inferiority of Custodiol-N against Custodiol® in kidney, combined kidney-pancreas and liver
transplantation (ClinicalTrials.gov Identifier: NCT03627013) [21]. Preliminary results are expected
in early 2023. However, currently, no studies using the novel Custodiol-N for preserving the uterus
were published.

Table 1. Composition of the clinically used Custodiol® and Custodiol-N solution.

Components
(mmol/L) Custodiol®

Custodiol-N
Base Solution Custodiol-N

Sodium 16 16 16
Potassium 10 10 10

Magnesium 4 8 8
Calcium 0.015 0.02 0.02
Chloride 50 30 30

L-Histidine 198 124 124
N-α-acetyl-L-Histidine – 57 57

Aspartate 1 5 5
Tryptophan 2 2 2

α-Ketoglutarate 2 2 2
Arginine – 3 3
Alanine – 5 5
Sucrose – 33 33

Mannitol 30 – –
Glycine – 10 10

Deferoxamine – – 0.025
LK-615 – – 0.0075

Data modified from Kniepeiss et al. [26]. Custodiol-N base solution is Custodiol-N without iron chelators,
deferoxamine, and LK-615.
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The aim of the present study was to evaluate the effect of Custodiol-N in an experimental
model of rat uterus prolonged cold preservation time compared to standard Custodiol® solution.
By using Custodiol-N base solution, the role of iron chelators in the composition of Custodiol-N was
evaluated. Cold ischemic injury was documented by histology, including immunohistochemistry
(IHC), and biochemical tissue analysis.

2. Results

2.1. Histology

After 8 h SCS, H&E staining revealed no differences between all three solutions (Figure 1) when
comparing the total score based on our adapted scoring system for cold injury (Table 2). The median
score in the Custodiol® group was 2.5 (2; 3) out of 9, Custodiol-N base—2.5 (1; 3) and Custodiol-N—2
(1; 3) (p = 0.728). However, a significantly higher percentage of tissue edema was found in the
Custodiol® group when compared to Custodiol-N base and Custodiol-N (10% (5; 15) vs. 4% (0; 5)
vs. 3% (3; 3), respectively, p = 0.004). After 8 h of SCS, the median percentage of tissue necrosis was
highest in the Custodiol® group when compared to the other groups, without statistical significance
(p = 0.138). There were no significant differences observed between Custodiol-N base and Custodiol-N
groups after 8 h of cold preservation.

After 24 h of SCS, the median score of the Custodiol® group was highest—6 (5; 7) out of 9,
Custodiol-N base—3.5 (3; 5) and Custodiol-N—3 (3; 4) (p = 0.008). Moreover, a significantly higher
percentage of tissue edema (15% (15; 25) vs. 5% (5; 10) vs. 5% (5; 10), respectively, p = 0.003) and the
median percentage of tissue necrosis signs (20% (10; 30) vs. 10% (5; 10) vs. 7.5% (5; 10), respectively,
p = 0.009) were found in the Custodiol® group compared to Custodiol-N base and Custodiol-N.
There were no significant differences observed between Custodiol-N base and Custodiol-N groups
after 24 h of SCS.

Other histological features, such as endometrial cell loss, perimetrium layer thickening,
vasoconstriction, and smooth muscle contraction, were similar at all time in all three groups.
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2.2. Tissue MPO Expression

After 8 h of SCS, the median percentage of MPO expression in the Custodiol® group
was highest—21.34% (12.43; 25.27), followed by Custodiol-N base—15.50% (12.50; 25.31) and
Custodiol-N—8.03% (5.81; 10.26) (Figure 2). Significant differences were found when Custodiol® was
compared to Custodiol-N (p = 0.002) as well as Custodiol-N base compared to Custodiol-N (p = 000.8).
Furthermore, MPO expression increased in all three groups over time and was found to be 32.83%
(27.66; 34.51) in Custodiol®, 17.48% (12.93; 21.11) in Custodiol-N base, and 11.07% (7.39; 12.86) in
Custodiol-N group after 24 h of SCS; however, this increase was only statistically significant in the
Custodiol® group (p = 0.007). MPO expression after 24 h of SCS was significantly lower in Custodiol-N
compared to Custodiol® and Custodiol-N base (p < 0.001 and p = 0.008, respectively), and significantly
lower in Custodiol-N base compared with Custodiol® group (p = 0.003).
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Figure 2. The percentage of myeloperoxidase (MPO) expression in uterus tissue cells preserved in
different solutions for 8 and 24 h.

2.3. Tissue SOD Activity

After 8 h of SCS, the SOD activity in uterus tissue samples was significantly increased in both
Custodiol-N base (1.85 (1.66; 2.62) U/mg protein; p = 0.019) and Custodiol-N (2.04 (1.82; 3.08); p = 0.002)
groups compared to the Custodiol® group (1.49 (1.21; 2.10)). There was no significant difference
between Custodiol-N base and Custodiol-N (p = 0.436) (Figure 3). Further, after 24 h of SCS, the SOD
activity increased in all three groups and was found to be 1.93 (1.69; 2.42) U/mg protein in Custodiol®,
2.29 (2.13; 3.15) in Custodiol-N base, and 2.33 (1.86; 3.24) in Custodiol-N group. However, this increase
was only statistically significant in the Custodiol® group (p = 0.019, p = 0.089, p = 0.579, respectively).
On the other hand, SOD activity after 24 h was significantly higher in Custodiol-N base (p = 0.007) but
similar in Custodiol-N (p = 0.123) compared to the Custodiol® group.
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3. Discussion

In this study, the effects of Custodiol-N, a modified Custodiol® solution, were investigated in a rat
uterus prolonged preservation model. This novel solution in both partial (without iron chelators) and
full composition achieved significant superior results over the standard Custodiol® in our experiments.

In general, the formulation of Custodiol-N solution was modified in four important ways to
improve the protective capacity of its predecessor Custodiol® [31,32]. (1) Reduction of chloride
concentration to reduce chloride-induced injury. (2) Addition of cytoprotective amino acids, such as
L-arginine, glycine, and alanine. (3) Partial substitution of histidine by N-α-acetyl-L-histidine to
inhibit the histidine-induced cytotoxicity. (4) Addition of the iron-chelators deferoxamine and LK-614,
to reduce iron-dependent injury.

Extensive research examining cell damage after tissue SCS has shown a complex interaction
of different events including production of inflammatory cytokines, increased release of reactive
oxygen species (ROS), loss of epithelial integrity, microvascular damage with subsequently increased
permeability, and cellular infiltration leading to cell death [33]. ROS formed in an iron-dependent
manner have been discovered to play a crucial role in cold ischemia injury [32] in different cell types,
including hepatocytes, endothelial, lung, and kidney cells [33–35]. Current research showed that
addition of iron chelators to preservation solutions decreased cold preservation injury [29,33–36].

Oxygen free radical scavengers, including SOD, have been shown to protect the subcellular
architecture during ischemia [37]. Significantly higher SOD activity was found in both Custodiol-N
groups (with and without iron chelators) compared to Custodiol® leading to reduced oxidative stress.
Due to preserved antioxidative agents in ischemic cells, the generation of ROS could be reduced upon
reperfusion, leading to less severe endothelial and DNA damage and local inflammatory responses [38].
Iron chelators added to Custodiol-N inhibit oxidative stress induced cell damage as well as further
polymorphonuclear infiltration and tissue activation as documented by reduced MPO levels in the
Custodiol-N groups.

The absence of substrate delivery during ischemia and hypothermia is known to induce Na+/K+

protein pump dysfunction leading to sodium and water retention in graft tissue [39]. The ability
to counteract this effect is supposed to be one of the most important properties of preservation
solutions [39,40]. In the current experiments, both Custodiol-N, with and without iron chelators,
demonstrated the ability to prevent tissue edema mainly due to the fact that mannitol has been replaced
with sucrose in Custodiol-N solution. Previous studies suggested that the inclusion of less permeable
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sugars in the preservation solution suppresses the cold ischemia-induced tissue edema more efficiently,
especially during prolonged cold preservation [40,41].

Our findings are supported by previous studies that described extended SCS in experimental
UTx [14,18,42]. El-Akouri et al. confirmed this tolerability by the successful pregnancies after embryo
transfer to murine uterus grafts that had been preserved for 24 h [42].

The undeniable tolerance of the uterus to prolonged SCS can only be confirmed at least after
reperfusion and/or pregnancy in a transplanted uterus which is the main limitation of this study.
However, further research is mandatory to improve UTx results by optimization of organ preservation.

4. Materials and Methods

4.1. Animals

A total of 20 female Sprague Dawley rats (12-week-old; weight 270–360 g) were used for uterus
procurement. The animals were obtained from Janvier Labs (Le Genest-Saint-Isle, France) and arrived
at the research facility 7 days prior to surgery. Rats were housed four animals per cage in a controlled
environment (22 ± 1 ◦C; 12 h/12 h light/dark cycle) and had access to fresh water and chow ad libitum.
The study followed the guidelines for the handling and care of experimental animals issued by the
Federation of European Laboratory Animal Science Associations (FELASA) and was approved by the
Austrian Federal Ministry of Science, Research and Economy.

4.2. Uterus Procurement

During the procedure of uterus procurement, rats were in deep anesthesia in a supine position on
a 37 ◦C heating pad. Anesthesia was infused by 2%, 2 L/min isoflurane applied in a rat anesthesia box.
After induction therapy, rats were anesthetized with intramuscular injection of ketamine (50 mg/kg)
and xylazine (9 mg/kg). A median abdominal laparotomy was performed with subsequent preparation
and removal of the whole uterus. The animals were euthanized immediately afterwards by terminal
blood withdrawal.

4.3. Experimental Groups, Static Cold Storage (SCS), and Sampling

The removed uterus horns were randomly assigned to the respective experimental groups:
Custodiol® (n = 10), Custodiol-N base (n = 10), and Custodiol-N (n = 10). Custodiol-N base solution
represents Custodiol-N solution without iron chelators (Table 1). The uterus cavity was, gently without
force, flushed with 100 µL respective cold preservation solution, immediately packaged in small plastic
bags filled with 30 mL of cold solution, and stored on ice at 4 ◦C. Tissue samples were obtained after 8
and 24 h of SCS. One part of the tissue specimen was fixed in 4% formalin and embedded into paraffin
blocks for histological analyses and IHC while another part was frozen and stored in liquid nitrogen
for later biochemical analyses.

4.4. Histology

Tissue sections (2 µm thick) were stained with hematoxylin and eosin (H&E) and subsequently
examined under a light microscope by a blinded, experienced pathologist. For histological evaluation,
a semi-quantitative morphological scoring system was modified based on previously published
methods [43,44] (Table 2).
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Table 2. The scoring system for uterus static cold storage (SCS) damage evaluation.

Histological Findings
Score

0 1 2 3

Edema <5% <5–15% 15–30% >30%
Necrosis Absent <15% 15–30% >30%

Smooth muscle contraction Absent Present
Impaired basement membrane integrity Absent Present

Endometrial cells loss Absent Present

The maximum score for uterus SCS injury is 9. Percentages are calculated as (surface of the affected area/surface of
the whole section) × 100.

4.5. Immunohistochemical (IHC) Staining

Expression levels of the oxidative stress marker myeloperoxidase (MPO) in uterus tissue was
assessed by IHC. Anti-MPO (Dako, Via Real Carpinteria, CA, USA; dilution 1:800; polyclonal rabbit
anti-human) antibodies were used in combination with the UltraVision LP Detection System HRP
Polymer (Thermo Fisher Scientific, Waltham, MA, USA) and DAB chromogen (Dako, Via Real
Carpinteria, CA, USA). For positive control, rat spleen tissue was used, while for negative control,
primary antibodies were omitted. Stained slides were scanned and analyzed using the QuPath software
version 0.2.0-m5 (Belfast, Northern Ireland) [45]. The number of positive cells was counted in a blinded
fashion and expressed as percentage stained cells of total nuclei in the entire tissue comprising all
uterus layers.

4.6. Biochemistry

For biochemical analyses, frozen tissue samples were homogenized in ice cold phosphate-buffered
saline using a bead-beater, MagNA Lyser (at 6500 rpm/30 s × 3). To prevent excess sample peroxidation
while processing, 5 mM butylated hydroxytoluene (antioxidant) was added in advance. The supernatant
was collected, aliquoted, and stored at −80 ◦C for later analyses. Superoxide dismutase (SOD) activity
was determined using the commercially available SOD Colorimetric Activity Kit produced by Thermo
Fisher Scientific (Waltham, MA, USA) exactly as described by the manufacturer. Results were adjusted
to total protein levels determined by the BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham,
MA, USA) and expressed as units per mg of protein.

4.7. Statistical Analyses

Statistical analyses were performed using SPSS (Statistical Package for the Social Sciences) version
23.0 (IBM Corp., Armonk, NY, USA). Kruskal–Wallis and Mann–Whitney U tests were used to analyze
statistical difference between groups according to their distribution. Non-parametric data is presented
as median and quartiles (Q1; Q3). A p value less than 0.05 was considered statistically significant.

5. Conclusions

This study demonstrates the superiority of Custodiol-N solutions for uterus graft preservation
when compared to standard Custodiol® most likely via inhibition of oxidative stress and tissue edema.
It seems that iron chelators included in Custodiol-N play an important protective role against cold
ischemic injury. The effects of this novel preservation solution are promising and further research
is warranted.

Author Contributions: P.S. (Philipp Stiegler) and P.S. (Peter Schemmer) were responsible for the study concept,
design, and critical revision of the drafted manuscript. V.Z., M.K., V.M., B.L., D.R., and K.S. were responsible
for the data collection and analysis, literature review, interpretation of data, writing, review, and revision of the
manuscript. All authors have read and agree to the published version of the manuscript.

Funding: This research received no external funding.



Int. J. Mol. Sci. 2020, 21, 8015 8 of 10

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AUFI absolute uterine factor infertility
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MPO myeloperoxidase
ROS reactive oxygen species
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