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In recent years, nonnegative matrix factorization (NMF) methods of a reduced image data representation attracted the attention
of computer vision community. These methods are considered as a convenient part-based representation of image data for
recognition tasks with occluded objects. A novel modification in NMF recognition tasks is proposed which utilizes the matrix
sparseness control introduced by Hoyer. We have analyzed the influence of sparseness on recognition rates (RRs) for various
dimensions of subspaces generated for two image databases, ORL face database, and USPS handwritten digit database. We have
studied the behavior of four types of distances between a projected unknown image object and feature vectors in NMF subspaces
generated for training data. One of these metrics also is a novelty we proposed. In the recognition phase, partial occlusions in the
test images have been modeled by putting two randomly large, randomly positioned black rectangles into each test image.
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1. Introduction

Subspace methods represent a separate branch of high-
dimensional data analysis, such as in areas of computer
vision and pattern recognition. In particular, these methods
have found efficient applications in the fields of face identi-
fication and recognition of digits and characters. In general,
they are characterized by learning a set of basis vectors from a
set of suitable image templates. The subspace spanned by this
vector basis captures the essential structure of the input data.
Having found the subspace (offline phase), the classification
of a new image (online phase) is accomplished by projecting
it on the subspace in some way and by finding the nearest
neighbor of templates projected onto this subspace.

In 1999, Lee and Seung [1] showed for the first time
that for a collection of face images an approximative
representation by basis vectors, encoding the mouth, nose,
and eyes, can be obtained using a nonnegative matrix
factorization (NMF). NMF is a method for generating a
linear representation of data using nonnegativity constraints
on the basis vector components and the coefficients. It can
formally be described as follows:

V ≈ W·H , (1)

where V ∈ Rn×m is a positive image data matrix with
n pixels and m image sample templates (template images
are usually represented in lexicographic order of pixels as
column vectors), W ∈ Rn×r are reduced r basis column
vectors of an NMF subspace, and H ∈ Rr×m contains
coefficients of the linear combinations of the basis vectors
needed to reconstruct the original data. Usually, r is chosen
by the user so that (n + m)r < nm. Then each column
of the matrix W represents a basis vector of the generated
(NMF)subspace. Each column of H represents the weights
needed to approximate the corresponding column in V
(image template) by means of the vector basis W. Various
error functions were proposed for NMF, such as in the papers
of Lee and Seung [2] or Paatero and Tapper [3].

The main idea of NMF application in visual object
recognition is that the NMF algorithm identifies localized
parts describing the structure of that object type. These
localized parts can be added in a purely additive way with
varying combination coefficients to form the individual
objects. The original algorithm of Lee and Seung could not
achieve this locality of essential object parts in a proper way.
Thus other authors investigated the possibilities to control
the sparseness of the basis images (columns in W) and
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the coefficients (matrix H). The first attempts consisted in
altering the norm that measures the approximation accuracy,
like LNMF [4, 5]. Hoyer introduced a method for steering
the sparsenesses of both factor matrices, W and H, with
two sparseness parameters [6, 7]. In their work, Pascual-
Montano et al. briefly summarized and described all NMF
algorithms used in this topic [8]. Their approach also led
to a sparseness control parameter, but only one for both
matrices. The optimization algorithm remained equal to the
one already introduced by Lee and Seung.

One important problem by using NMF for recognition
tasks is how to obtain NMF subspace projections for new
image data that are comparable with the feature vectors
determined in NMF coded in matrix H. Guillamet and
Vitrià [9] propose one method in their work that consists of
rerunning the NMF algorithm for new image data keeping
W constant. However, in the conventional method, training
images and new images are orthogonally projected onto
the determined subspace. Both methods have advantages
and drawbacks. We will discuss them in more detail and
propose a modification of the NMF task that comprises the
advantages of both methods.

An important aspect in measuring distances in NMF
subspaces, which is necessary in recognition tasks, is the
used metric. NMF subspace basis vectors do not form an
orthogonal system. Due to this fact, it is not convenient to
apply the natural Euclidean metric. Guillamet and Vitrià
[9] experimented with several alternative metrics: L1, L2,
cos, and EMD. They lined out that solely EMD takes the
positive aspects of NMF into account. As this metric is
computationally demanding, Ling and Okada [10] proposed
a new dissimilarity measure, the diffusion concept, which
is as accurate as EMD, but computationally much more
efficient. Liu et al. [11, 12] proposed to replace the Euclidean
distance in NMF recognition tasks by a weighted Euclidean
distance (a version of Riemannian distance). These authors
also experimented with orthogonalized bases. However, as
commented by authors, these modified NMF bases are not
part-based anymore.

In our research, we focus on studying the influence
of matrix sparseness parameters, subspace dimension, and
the use of distance measures on the recognition rates, in
particular for partially occluded objects. We use Hoyer’s
algorithms to achieve sparseness control. Additionally, we
propose a modification of the entire NMF task similar
to the methods of Yuan and Oja [13] and Ding et al.
[14]. The implementation of our modification additionally
comprises Hoyer’s sparseness control mechanisms. In the
case of studying proper distance measures, we propose a new
metric.

In Section 2, we briefly review Hoyer’s method
(Section 2.1). Section 2.2 contains a presentation of the
motivation and a detailed description of our modification
of the NMF task. Section 2.3 is about distance measuring
in NMF subspaces. We present the metrics we used for
our experiments and propose the anew distance measure.
Then we present the setup and results of our experiments
in Section 3. Section 4 contains conclusions and a future
outlook.

2. NMF with Sparseness Constraints

The aim of the work of Hoyer [7] is to constrain NMF to
find a solution with prescribed degrees of sparseness of the
matrices W and H. The author claims that the balance of
the sparseness between these two matrices depends on the
specific application and no general recommendation can be
given. The modified NMF problem and its solution is given
by Hoyer as follows.

2.1. Hoyer’s Method---Nmfsc

2.1.1. Problem Definition

Given a nonnegative data matrix V of size n × m, find the
nonnegative matrices W and H of sizes n×r and r×m (resp.,)
such that

E(W, H) = ‖V−WH‖2 (2)

is minimized, under optional constraints

s
(

wi
) = sW , ∀i, i = 1, . . . , r,

s
(

hi
) = sH , ∀i, i = 1, . . . , r,

(3)

where wi is the ith column of W, hi is the ith row of H.
Here, r denotes the dimensionality of an NMF subspace
spanned by the column vectors of the matrix W, and sW
and sH are their desired sparseness values. The sparseness
criteria proposed by Hoyer [7] use a measure based on the
relationship between L1 and L2 norm of the given vectors wi

or hi. In general, for the give n-dimensional vector x with the
components xi, its sparseness measure s (x) is defined by the
formula:

s(x) :=
√
n− L1/L2√
n− 1

=
√
n−∑∣∣xi

∣∣/
√∑

x2
i√

n− 1
. (4)

This measure quantifies how much energy of the vector is
packed into a few components. This function evaluates to
1 if and only if the given vector contains a single nonzero
component. Its value is 0 if and only if all components are
equal. It should be noted that the scales of the vectors wi

or hi have not been constrained yet. However, since wi·hi =
(wiλ)·(hi/λ), we are free to arbitrarily fix any norm of either
one. In Hoyer’s algorithm, the L2 norm of hi is fixed to unity.

2.1.2. Factorization Algorithm

The projected gradient descent algorithm for NMF with
sparseness constraints essentially takes a step in the direction
of the negative gradient, and subsequently projects onto the
constraint space, making sure that the taken step is small
enough that the objective function is reduced at every step.
The main muscle of the algorithm is the projection operator
proposed by Hoyer [7], which enforces the required degree
of sparseness.
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2.2. Modified NMF Concept: modNMF

In the papers mentioned up to now, the attention was
concentrated on methodological aspects of NMF as a part-
based representation of image data, as well as on numerical
properties of the developed optimization algorithms applied
to the matrix factorization problem. It turned out that the
notion of matrix sparseness involved in NMF plays the cen-
tral role in part-based representation. However, little effort
has been devoted to systematic analysis of the behavior of
the NMF algorithms in actual pattern recognition problems,
especially for partially occluded data.

For a particular recognition, task of objects represented
by a set of training images (V) we need: (i) to calculate
in advance (in an offline mode) projection vectors of the
training images onto the obtained vector basis (W)—the so-
called feature vectors—, and then (ii) to calculate (in an
online mode) a projection vector onto the obtained vector
basis (W) for each unknown input vector y. Guillamet and
Vitrià [9] propose to use the feature vectors determined in
the NMF run, that is, columns of matrix H. The problem
of determining projected vectors for new input vectors in
a way that they are comparable with the feature vectors is
solved by the authors by rerunning the NMF algorithm. In
this second run, they keep the basis matrix W constant and
the matrix Vtest contains the new input vectors instead of the
training image vectors. The results of the second run are the
searched projected vectors in the matrix Htest. However, this
method has some drawbacks. We investigated the function
of NMF exemplarily for 3D point data instead of high-
dimensional images. These points have been divided into
two classes based on point proximity. The two classes are
called A and B and are illustrated in Figure 1. We ran NMF
to get a two dimensional subspace visualized as yellow grid
in Figure 1 spanned by the two vectors w1 and w2, which
together build matrix W. Additionally, we show the feature
vectors of the input point sets (HA and HB in Figure 1) and
connected each input point with its corresponding feature
vector in the subspace plane (projection rays). Especially
for the point set A, it can be observed that the projection
rays are all nonorthogonal, with respect to, the plane and
that their mutual angles significantly differ (even for feature
vectors belonging to the same class). Thus the feature vectors
of set A and set B are not separated clusters anymore. We
have doubts that a reliable classification based on proximity
of feature vectors is achievable in this case. A second
possibility to determine proper feature vectors for an NMF
subspace, which is conventionally used (e.g., mentioned by
Buciu [15]), is to recompute the training feature vectors
for the classification phase entirely new by orthogonally
projecting the training points (images) onto to NMF sub-
space. Unknown input data to be classified are similarly
orthogonally projected to the subspace. This method is also
visualized in Figure 1: from each input point an orthogonal
dotted line is drawn to the orthogonal projections of the
points into the subspace plane. It can be noticed that the
feature vectors determined in this way preserve a separation
of the feature vector clusters, corresponding to the cluster
separation in the original data space (point sets W†A and

A

B

w1

w2

HA HB W†A W†B

Figure 1: Visualization of the Nmfsc results for a low-dimension
example (3D data sets A and B as training points). The plane
spanned by w1 and w2 represents the NMF subspace due to this
training set. HA and HB are the training set projections to the
subspace implicitly given by matrix H in the NMF algorithm. W†A
and W†B are the orthogonal projections of the training sets onto
the NMF subspace.

W†B). In view of these observations, we propose to favor the
orthogonal projection method.

Nonetheless, both methods have their disadvantages. The
method of Guillamet and Vitria operates with nonorthogo-
nal projected feature vectors that directly stem from the NMF
algorithm and do not reflect the data cluster separation in the
subspace. On the other hand, the conventional method does
not accommodate the optimal data approximation result
determined in NMF because one of the two optimal factor
matrices is substituted by a different one in the classification
phase. Our intention was to combine the benefits of both
methods into one, that is, benefits of orthogonal projections
of input data and preservation of the optimal training data
approximation of NMF. We achieve this by changing the
NMF task itself. Before we present this modification, we
recall in more detail how the orthogonal projections of the
input data are computed.

As the basis matrix W is rectangular, matrix inversion is
not defined. Therefore, one has to use a pseudo-inverse of
W to multiply it from the left onto V (cf. [15]). Orthogonal
projections of data points y onto a subspace defined by a
basis vector matrix W are realized by solving the following
overdetermined equation system:

W b = y (5)

for the coefficient vector b. This can, for instance, be achieved
via the Moore-Penrose (M-P) pseudoinverse (This may not
be the numerically stable way, but in our investigations we
could not observe differences to other usually more appro-
priate methods.) W† giving the result for the projection as

b = W† y. (6)

Similarly, for the NMF feature vectors (in the offline mode)
we determine HLS = W†V, where HLS are projection
coefficients obtained in the least squares (LS) manner. These
coefficients can differ severely from the NMF feature vectors
implicitly given by H (see Figure 1). It is important to state
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that the entries of HLS are not nonnegative anymore, HLS also
contains negative values.

If one has decided to use the orthogonal projections of
input data onto the subspace as feature vectors, the fact that
the matrix H is not used anymore in the classification phase
and that the used substitute for H—HLS—is not nonnegative
anymore, gives rise to the questions whether matrix H is nec-
essary at all in NMF and whether corresponding coefficient
coding necessarily has to be nonnegative. Moreover, using
the orthogonal projection method, we do not make use of
the optimal factorization achieved by NMF, as the coefficient
matrix is altered for classification. Consequently, we propose
the following modification of the NMF task itself:

given the training matrix V, we search for a matrix W such
that

V ≈ W(W†V). (7)

Within this novel concept (modNMF), W is updated
in the same way as in common NMF algorithms. Even
the sparseness of W can be controlled by the standard
mechanisms, for example, those of Hoyer’s method. Only
the coding matrix H is substituted by the matrix W†V to
determine the current approximation error. Thus this new
concept can be applied to all existing NMF algorithms.
In our research, we implemented and analyzed modNMF
comprising the sparseness control mechanisms of Hoyer.

There are two existing methods that are related to
modNMF in two complementary ways. In projective NMF
(pNMF) of Yuan and Oja [13], the independent factor matrix
H is given up and, similarly to modNMF, substituted by
a coding matrix derived from W and V, namely, WTV.
Ding et al. [14] realize the second change incorporated in
modNMF. They keep two independent factor matrices in
their semi-NMF method, but give up the nonnegativity
restriction for one of them. Unlike modNMF, the nonneg-
ativity constraint is kept for the coding matrix H while the
signs in the subspace basis W are not restricted. Following
Ding et al. notion, modNMF is also only semi-nonnegative.
The resulting subspaces of semi-NMF and modNMF are
not classical NMF subspaces anymore. However, in the
traditional NMF methods, as we have outlined above, the
training images have to be orthogonally projected to the
determined subspace in preparation of the object recognition
phase and this also results in mixed sign subspace vectors.
(Due to this very fact that for traditional NMF methods
as well as for modNMF the actually used subspace features
in the recognition phase are not purely nonnegative and
to the fact that the determined subspace bases are all
nonorthogonal in general, we face the same problems in
the recognition phase for modNMF and classical NMF
subspaces. To simplify matters in this paper, we summarize
all these subspaces in the notion NMF subspaces in our
further discussions, which address the issues related to
recognition experiments in such subspaces.) The difference
in the case of modNMF is that the orthogonal projections
of the training images onto the subspace that are used
in the recognition task (W†V) are also those for which
the factorization that optimally approximates the training
data V is achieved. In semi-NMF, this is not guaranteed,

that is, extra orthogonal projection of the training images
onto the subspace has to be done to prepare an object
recognition phase. These extra projections do not comprise
the structure of the optimally approximating factor matrix
determined in the factorization run, just like in classical
NMF methods. Similarly to modNMF, pNMF assures that
the subspace features are the orthogonal projections of the
training images onto the subspace, while these very subspace
features simultaneously constitute the optimal factorization
matrix in the sense of approximating V. Actually, pNMF
is in some sense a special case of modNMF. Both try
to optimize W with the goal to approximate an identity
matrix as close as possible in form of the factor in front
of V-modNMF in the case of WW† and pNMF for WWT .
Thus although orthogonality of W in pNMF may not be
explicitly demanded, within the factorization process, W
has to approximate an orthogonal matrix more and more
as the approximation improves. Thanks to the fact that
the more general modNMF model does not contain such
structural restrictions on W (except nonnegativity), there
are more degrees of freedom in modNMF to approximate V
accurately. Moreover, the sparseness of W can be controlled
in modNMF via the sparseness parameter.

2.3. Distances in NMF Subspaces

Having solved the NMF task for the given training images
(matrix V), the vector basis of an NMF subspace (of the
original data space) is generated as columns of the matrix
W. Depending on the sparseness of W and H controlled
in the algorithms, the basis vectors in W manifest different
mutual angles, that is, the basis is not orthogonal. With
increasing sparseness of W or decreasing sparseness of H,
the mutual angles tend to be closer to orthogonality. If both
sparseness parameters are adjusted, dependence on them is
not so obvious and straightforward.

As outlined by various authors mentioned in Section 1,
suitable metrics for measuring the distances of NMF sub-
space points have to be defined, due to the non-orthogonality
of NMF subspace bases. In our work, we compared the four
metrics Euclidean, diffusion, Riemannian, and ARC-distance.

For comparison reasons, we also included the Euclidean
metric (d2(x1, x2) = (x1−x2)T(x1−x2)), which is commonly
supposed not to be suitable in vector spaces with nonorthog-
onal basis. The diffusion distance is derived from the EMD
metric, for which Guillamet and Vitrià [9] argued that it
is well suited to the positive aspects of NMF. The complete
derivative of the diffusion distance can be found in the work
of Ling and Okada, who developed this dissimilarity concept
to achieve a computationally more efficient algorithm.

The third metric, Riemannian distance, will be described
in more detail, as it is the basis of our proposal, ARC-
distance. Liu and Zheng [11] defined the Riemannian
distance as a weighted Euclidean distance as d2

G(x1, x2) =
(x1 − x2)TG(x1 − x2), where G is a similarity matrix defined
as G = WT·W. They claimed that adopting this Riemannian
metric is more suitable than the Euclidean distance for
classification when using nearest neighbor classifiers.
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Figure 2: An example of face images of one person selected from the ORL face database—two top lines. An example of different randomly
occluded faces—the bottom line.

Figure 3: An example of handwritten digit images selected from the USPS database—two top lines. An example of different randomly
occluded digits—the bottom line.

For the standard Euclidean metric d2 and Riemannian
metric d2

G of two vectors x, y from a subspace, the following
formulas can be drawn: d2

G(x, y) = (x − y)TWTW(x − y) =
(W(x − y))TW(x − y) = d2(Wx, Wy). This proves that the
Riemannian distance measures the Euclidean distance of the
back-projected subspace vectors, that is, the subspace points
represented in the orthogonal image super space bases. Thus
the Riemannian distance takes the angle structure of the
NMF subspace bases into account.

To be able to deal with partial occlusions, the correctly
chosen distance measure should also be able to discriminate
two specific cases of vectors: (i) a case for which the value
of the Riemannian distance of two vectors is large because of
great deviations in all components of these vectors, and (ii)
a case when only a few components contribute to the great
value of the Riemannian distance, that is, when the error
of recognition is sparsely distributed over the feature vector
components. Therefore, to define a modified Riemannian
(shortly “ARC-distance”) distance, we introduce a sparseness
term into the Riemannian metric formula, that is, d2

G(x, y) =
(x − y)TG (x − y)(1 − s(|x − y|)), where s measures the
sparseness (compare Section 2) of the absolute difference
of the feature vectors. Note that the sparseness should be

measured in the feature space, as each component in this
space representation is optimized to reflect one essential part
of the training image objects.

3. Results of Computer Experiments

The goal of our study was to investigate influences of
sparseness control parameters and subspace metrics on recog-
nition rates of unoccluded and occluded images. In massive
computer experiments, we have varied the dimensions of the
NMF subspaces from r = 25 up to r = 250, similarly to the
papers of Guillamet and Vitrià [9] and Liu and Zheng [11].
The method of nearest neighbor classification has been used
for object recognition.

For our experiments, we chose three widely used image
databases: (i) the Cambridge ORL face database (cited in
paper of Li et al. [5]; grey-level images with resolution
92 × 112, which were down sampled for our experiments to
the size 46 × 58 = 2668 pixels) and (ii) USPS handwritten
digit database (cited in the paper of Liu and Zheng [11];
grey-level images with resolution 16 × 16 = 256 pixels),
and (iii) CBCL image database available at the web address:
http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html


6 Computational Intelligence and Neuroscience

Figure 4: An example of face images of two persons selected from
the CBCL face database—two top lines. An example of different
randomly occluded faces—the bottom line.

(cited in the paper of Hoyer [7]) that contains grey-level face
images with resolution 19 × 19 = 361 pixels. We simulated
object occlusions in test images as two rectangles of random
(but limited) sizes with random super positioning on an
original image (see Figures 2, 3, and 4).

In the case of ORL database, the number of training
images was 222, and the number of testing images was 151.
These two sets of images were chosen as disjunctive sets. For
the experiments with USPS database, we chose 2000 training
images and 1000 testing images (different from the training
ones again). (In the USPS recognition rate plots (Figures 6,
8), data points for r = 175 are missing. This is due to a
Matlab problem that could not be solved. For some reason,
all subspace files containing matrix H with dimension 175×
2007 were corrupted and could not be opened anymore. We
were able to reproduce the error in simplified configurations,
however, we were not able to solve it. As the recognition
curves do not oscillate a lot, we found it justified to just
interpolate between the two neighboring points of the point
in r = 175.) For the case of the CBCL image database, we
used 1620 training images and 809 testing images.

3.1. Nmfsc---Unoccluded versus
Occluded Test Images

The results of the first set of our experiments, accomplished
for all three image bases, and for unoccluded, as well as
occluded images are displayed in Figures 5, 6, and 7. The
acronym “Nmfsc” stands here for Hoyer’s NMF method
with coded sparseness (sW , sH). In this set of tests, Hoyer’s
Nmfsc-algorithm was applied consecutively to ORL face
images, USPS digits, and CBCL face images. The algorithms
have been trained for various combinations of sparseness
parameter values. The resulting NMF subspaces, calculated
for different dimensions r = 25, 50, . . . , 250 were used for
recognition experiments. We used four types of distances
to measure the distance of each projected test image to
the nearest feature vector (of the templates) in the given
subspace. For each NMF subspace, a recognition rate (RR)

over all test images was calculated. The plots show RR
versus subspace dimension r (unoccluded—(a), (c), (e), and
occluded—(b), (d), (f)). The plots with the best recognition
results have been chosen.

For unoccluded images, all three data sets show similar
RR behavior in the cases of the Riemannian-like metrics
(Riemannian and ARC-distance), only CBCL RR are slightly
smaller. The Euclidean and diffusion curves for the ORL
and CBCL data are almost as high as for the Riemannian-
like measures, but also, as one would expect. Their behavior
for USPS data even more fulfills these expectations, as they
are much smaller than the Riemannian-like RR curves and,
moreover, decrease with increasing dimension. This behavior
is expectable, as more (nonorthogonal) basis vectors intro-
duce more error components into the distance computation.
This happens due to the fact that Euclidean and diffusion
distance do not take into account the mutual basis vector
angles. The dimension reduction for all datasets is very high,
as for Riemannian-like metric all three achieve the maximal
RR at about r = 50. Remarkable is that ARC-distance does
not differ from Riemannian distance. It can be seen (Figures
7(a), 7(c), 7(e)) that the RR values for all types of distances
are lower (below 0.9) than those achieved for ORL faces.
There are only small differences in RR between the cases
corresponding to application of different distances, but in
general, Riemannian distance yields the maximum values.

The RR behavior for occluded data differs severely
between ORL and USPS data. First, RR maxima for USPS
data are higher than for ORL data—below 0.7 in the ORL
case versus about 0.75 for USPS data. Second, for ORL
data the RR curves of the metrics do not behave in the
expected way. Euclidean and diffusion distance generate
much better results than the Riemannian-like. For USPS, RR
behave qualitatively in the same way as in the unoccluded
case, RR values are only smaller. Finally, RR maxima are
achieved for higher dimension values in the ORL case, that
is, a much smaller dimension reduction. In the case of
CBCL image database, the situation changes dramatically
in comparison to that of ORL face images: in average the
RR are 50% smaller, they are reaching approximately the
value of 0.3 (comparing to 0.7 maximum for ORL). For two
value combinations of the sparseness parameters in Hoyer’s
method (Figures 7(b), 7(f)) the Euclidean distance yields
higher RR, though it is not strictly monotone; however, for
the case D, the Riemannian distance outperforms Euclidean
and diffusion ones. The difference between RR values for
Riemannian distances on one side, and Euclidean and
diffusion distances on the other side are apparent but not so
large as is the case of ORL face images.

3.2. Occluded Test Images---Nmfsc
versus modNMF

In the second part of our study, we were interested in a
comparison of the RR of Nmfsc and modNMF, latter one
being implemented with Hoyer’s sparseness control mecha-
nisms. Of course, since the NMF methodology is intended
mainly to generate part-based subspace representation of
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Figure 5: Classification results for ORL training image data using Hoyer’s method. (a), (c), (e): unoccluded test images for sW = 0.5,
sH = 0.1, 0.5, 0.9. (b), (d), (f): occluded test images for the identical values of the sparseness parameters.
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Figure 6: Classification results for USPS training image data using Hoyer’s method. (a), (c), (e): unoccluded test images for sW = 0.5,
sH = 0.1, 0.5, 0.9. (b), (d), (f): occluded test images for the identical values of the sparseness parameters.
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Figure 7: Classification results for CBCL training image data using Hoyer’s method. (a), (c), (e): unoccluded test images for sW = 0.5,
sH = 0.1, 0.5, 0.9. (b), (d), (f): occluded test images for the identical values of the sparseness parameters.
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Figure 8: Classification results for ORL training image data. (a), (c), (e): Hoyer’s Nmfsc algorithm applied to occluded test images for
sW = 0.1, 0.5, 0.9, sH = [ ]. (b), (d), (f): our modified modNMF algorithm applied to occluded test images for the identical values of the
sparseness parameters.
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Figure 9: Classification results for USPS training image data. (a), (c), (e): Hoyer’s Nmfsc algorithm applied to occluded test images for
sW = 0.1, 0.5, 0.9, sH = [ ]. (b), (d), (f): our modified modNMF algorithm applied to occluded test images for the identical values of the
sparseness parameters.
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Figure 10: Classification results for CBCL training image data. (a), (c), (e): Hoyer’s Nmfsc algorithm applied to occluded test images for
sW = 0.1, 0.5, 0.9, sH = [ ]. (b), (d), (f): our modified modNMF algorithm applied to occluded test images for the identical values of the
sparseness parameters.
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template images, our further interest was concentrated only
on occluded images. These results, obtained for optimum
values of sparseness parameter sW , are displayed in Figures 8,
9, and 10. The plots also show RR versus subspace dimension
r but the columns now discriminate the used algorithms
(Nmfsc—(a), (c), (e), and modNMF—(b), (d), (f)). The
plots with the best recognition results have been chosen.

The qualitative behavior of the RR curves of ORL
faces according to the distance measures is the same as
described in Section 3.1. Euclidean and diffusion distances
unexpectedly dominate the riemannian-like metrics. Except
a break-in of RR values for the Euclidean and diffusion
distances in the case of Nmfsc with sW = 0.1, both
algorithms, Nmfsc and modNMF achieve approximately the
same results (Figure 8). The qualitatively more expected and
quantitatively better results (w.r.t., RR maxima) are obtained
in the case of the USPS data. For Nmfsc with only the sW
parameter set, the Riemannian-like RR curves dominate the
Euclidean and diffusion distances, whereas—as expectable—
the latter decrease with increasing dimension and decreasing
sparseness sW (Section 2.3). Remarkable is that the novel
modNMF algorithm increases and stabilizes the performance
of the Euclidean and diffusion distances. The plots show that
the curves of these two metrics are close to the Riemannian-
like ones. The CBCL image data comprise face images which
have significantly lower spatial resolution than the face data
in the ORL image base, while the structure of their parts
is similarly complex. These characteristics are reflected in
apparent decrease of recognition rates for occluded images
for both methods being compared. In general, the behavior
of the recognition rates manifests in this case very low
sensitivity to the choice of the sparseness parameters. None
of the distances applied exhibits unique prevalence.

4. Conclusions

In this paper, we have analyzed the influence of the matrix
sparseness, controlled in NMF tasks via Hoyer’s algorithm
[7], from the viewpoint of object recognition efficiency. A
special interest was devoted to partially occluded images,
since images without occlusions can similarly well be
handled by all NMF methods. Besides, Hoyer’s algorithm,
we introduced a modified version of the NMF concept—
modNMF—using a term containing the Moore-Penrose
pseudoinverse of the basis matrix W instead of the coefficient
matrix H. Among the discussed important theoretical advan-
tages, this method provides the computational benefit that
the subspace projections of the training images do not have
to be calculated after subspace generation in an additional
step. The novel concept was implemented comprising the
sparseness modification mechanism of Nmfsc. A further goal
of the paper was to analyze and compare RR achieved for
four different metrics used in the recognition tasks. As NMF
subspace bases are nonorthogonal, distance measuring is
a crucial aspect. The computer experiments were accom-
plished for three different image databases, ORL, USPS,
and CBCL. In the classification tasks, we used the nearest
neighbor method. In the unoccluded cases, Riemannian-like
distances dominate RR quality in maxima and stability over

all subspace dimensions and all parameter settings. ORL and
USPS only differ slightly in the behavior of Euclidean and
diffusion distances. In the case of CBCL, small differences
of RR are manifested between the cases using different
distances. The conclusions related to the results for the
occluded test images can be summarized as follows.

(1) The ability of NMF methods to solve recognition
tasks is dependent on the kind of used images and the
databases as a whole. Independently of the method, the RR
for USPS data are higher than those for ORL face data. This
finding could be ascribed to the simpler structure of the
digits (almost binary data, lower resolution, objects sparsely
cover the image area). Moreover, USPS contain much larger
classes (USPS: 2000 training images for only 10 classes, ORL:
222 images with only 5 training images per class), so that
the interclass variations in USPS can better be covered. In
general, the RR obtained for faces from the CBCL database
are significantly worse than in comparable cases with ORL
face images. We assign these results to the poor resolution of
the structured face image data.

(2) Not following the overall expectation, Euclidean and
diffusion distances showed better recognition performances
for occluded test images in the case of ORL data. As
these do not take into account subspace bases angles
this is a surprise. USPS data treated with Hoyer’s Nmfsc
method behave like expected: with increasing dimension and
decreasingsW (i.e., increasing orthogonality, see Section 2.3),
the RR measured with Euclidean and diffusion distances
decrease (almost) monotonically. On the other hand, using
our modNMF method, Euclidean and diffusion distances
perform almost as well as the Riemannian-like metrics
overall dimensions and sparseness values. This gives a hint
that the relatively bad performances of these two metrics
for the Nmfsc method cannot totally be ascribed to the
nonorthogonality of the bases, but to the used orthogonal
projections of the training images (HLS) instead of the
well approximating factor matrix H (V ≈ W·H) in the
classification phase; since we have observed no differences
between the RR for the original Riemannian distance and
ARC-distance, the proposed formula will need further
exploration, likely to introduce some kind of numerical
emphasis of the added sparseness term, as for example,
exponential.

(3) Massive recognition experiments using Nmsfc and
modNMF algorithms, reported in our preliminary study
[16], showed minor influence of sparseness parameter sH on
recognition rates in cases of unoccluded, as well as occluded
images selected from three mentioned image databases.
Therefore, in the recognition experiments with occluded
images included in this study, the sparseness parameter sH
has not been controlled and we have been experimenting
exclusively with sparseness value sW of the NMF basis
matrix. Namely, we used three representative values: sW =
0.1, 0.5, 0.9. As mentioned above we applied two NMF
methods, conventional Nmsfc and our modified modNMF
algorithm. Based on the analysis of the plots of RR for these
methods and for images from three image databases, given in
Figures 8, 9, and 10, the following conclusions on influence
of the sparseness sW on RR can be drawn as follows:
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(i) ORL face images: Nmsfc method: the maximum RR
have been achieved for sW = 0.5, the minimum RR
have been achieved for sW = 0.9; modNMF method:
the maximum RR have been obtained for sW = 0.1,
however, the values of RR for sW = 0.5 were close to
maxima; the minimum values of the RR have been
obtained for sW = 0.9;

(ii) CBCL face images: Nmsfc method: the maximum RR
have been achieved for sW = 0.5, the minimum RR
have been achieved for sW = 0.1; modNMF method:
the maximum RR have been obtained for sW =
0.1, however the values of RR for sW = 0.5 were,
similarly to the case of ORL, also close to maxima;
the minimum values of the RR have been obtained
for sW = 0.9;

(iii) USPS digit images: for both NMF methods compared,
there were no significant influence of the sparseness
parameter sW on RR observed.

USPS performed better and followed the overall expectations
better than ORL and CBCL. We basically ascribe this fact
to the different training data situations. As mentioned in
the first point above, inter-class variations were much more
covered for the USPS dataset than for the face images.
The novel modNMF algorithm even improved the results
achieved in the case of the already well performing USPS
data set. ARC-distance in its current form did not fulfill the
expectations in the experiments. Significantly, lower spatial
resolution of the CBCL face data than the face data in
the ORL image base is reflected in apparent decrease of
recognition rates for occluded images for both methods
being compared. Various distances used for the CBCL
database manifested little influence on RR.

Spratling [17] analyzed the methodological situation
related to the concept of “part-based” representation of
image data by NMF subspaces, and pointed on the weak-
nesses of application of this concept in the NMF framework.
Inspired by Spratling’s results, we have analyzed possibilities
of further research of improvement of the NMF methodol-
ogy using a revisited version of this concept that could be
more attractive for object recognition tasks with occlusions.
The research into this NMF version is in progress.
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