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Simple Summary: A fluid-structure interaction (FSI) simulation of an intra-atrial Fontan connection
was performed. Power loss and pressure drop results fluctuated less during the FSI simulation than
during the simulation run with rigid walls, but there were no observable differences in time-averaged
pressure drop, connection power loss or hepatic flow distribution. These results suggested that
employing a rigid wall is a reasonable assumption when evaluating time-averaged hemodynamic
quantities of the Fontan connection under resting breath-held flow conditions.

Abstract: Total cavopulmonary connection (TCPC) hemodynamics has been hypothesized to be
associated with long-term complications in single ventricle heart defect patients. Rigid wall
assumption has been commonly used when evaluating TCPC hemodynamics using computational
fluid dynamics (CFD) simulation. Previous study has evaluated impact of wall compliance on
extra-cardiac TCPC hemodynamics using fluid-structure interaction (FSI) simulation. However,
the impact of ignoring wall compliance on the presumably more compliant intra-atrial TCPC
hemodynamics is not fully understood. To narrow this knowledge gap, this study aims to investigate
impact of wall compliance on an intra-atrial TCPC hemodynamics. A patient-specific model of
an intra-atrial TCPC is simulated with an FSI model. Patient-specific 3D TCPC anatomies were
reconstructed from transverse cardiovascular magnetic resonance images. Patient-specific vessel
flow rate from phase-contrast magnetic resonance imaging (MRI) at the Fontan pathway and the
superior vena cava under resting condition were prescribed at the inlets. From the FSI simulation,
the degree of wall deformation was compared with in vivo wall deformation from phase-contrast
MRI data as validation of the FSI model. Then, TCPC flow structure, power loss and hepatic flow
distribution (HFD) were compared between rigid wall and FSI simulation. There were differences in
instantaneous pressure drop, power loss and HFD between rigid wall and FSI simulations, but no
difference in the time-averaged quantities. The findings of this study support the use of a rigid wall
assumption on evaluation of time-averaged intra-atrial TCPC hemodynamic metric under resting
breath-held condition.
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1. Introduction

The Fontan procedure is a common palliation for patients with single ventricle heart defects [1].
It is usually completed by constructing an intra-atrial tunnel or using an extra-cardiac connection
from the inferior vena cava to the pulmonary arteries as the Fontan pathway (FP). Together with the
superior anastomosis, this forms the total cavopulmonary connection (TCPC). In all cases, the resulting
geometries and constitutive materials can be very different. An intra-atrial TCPC is more bulgy and
compliant at the intra-atrial tunnel where vena caval flows mix and re-circulate prior to entering the
PAs [2,3]. An extra-cardiac TCPC is composed of a stiffer cylindrical synthetic graft (e.g., Gore-Tex and
Dacron grafts), so flow is more streamlined towards the PAs [4]. Even though the TCPC procedure results
in favorable short-term outcomes, the patients remain at risk for long term complications [5]. It has
been suggested that some of these complications may be attributed to the unfavorable hemodynamics
in the connection [6]. For example, there has been evidence showing the possible link between TCPC
energy dissipation and patient exercise tolerance [7–10]. Also, unbalanced distribution of hepatic blood
flow between the two sides of the lungs has been associated with the risk of pulmonary arteriovenous
malformations [11,12].

Computational fluid dynamics (CFD) serves as a valuable tool to resolve the complex flows in the
TCPC, and to understand the hemodynamics of the two types of connections [13–21]. CFD analysis
allows for a more detailed analysis of flow structures (i.e., vortices, streamlines, pathlines, stagnation
points, etc.), flow distributions, pressure distributions, and mechanical stresses (e.g., wall shear stress)
than in vitro or in vivo analyses. To simplify analysis and reduce computational cost, previous studies
applied various modeling assumptions, e.g., idealized geometries, rigid wall models and steady
flow boundary conditions. Recent advancements in image processing technology and computational
algorithms have helped addressing some of these assumptions and consider patient’s characteristics
in CFD simulation regarding TCPC hemodynamics [22–29]. These studies shifted the computational
modeling paradigm to more accurately understand and simulate TCPC hemodynamics.

One limitation of these computational models is the assumption of rigid walls. It has been
understood that the expansion and contraction of blood vessels contribute to blood pumping in the
body. Bazilevs et al. [30], studied the hemodynamic efficiency differences of realistic extra-cardiac TCPC
geometries between rigid and deformable walls using prescribed wall thickness, which demonstrated
the difference in resting and exercise hemodynamics between the rigid wall and fluid-structure
interaction (FSI) analysis. Orlando et al. [31], carried out a similar analysis using an idealized TCPC
model with prescribed material properties and flow rates in the vena cavae, left and right pulmonary
arteries, and suture lines, after which they found that the deformable model has 10% higher power loss
than the rigid model. Long et al. also performed an FSI CFD analysis of two extra-cardiac TCPCs with
varying wall properties for different vessels [21]. The aforementioned studies established the difference
between hemodynamics in rigid and deformable TCPC models, but their clinical relevance is still to
be investigated, as the prescribed wall properties are yet to be validated. In addition, only idealized
TCPCs and extra-cardiac TCPCs were investigated so far. The impact of wall deformation on an
intra-atrial TCPC is not well understood.

The objective of this work is to quantify the difference in TCPC hemodynamics between rigid and
compliant walls for an intra-atrial TCPC by using the FSI simulation. The wall deformation obtained
from the FSI simulations will be compared with the in vivo wall deformation. Finally, the qualitative
and quantitative differences of TCPC hemodynamics between rigid and compliant wall conditions will
be compared.
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2. Materials and Methods

2.1. Patient Image Acquisition and Reconstruction

Single ventricle patients with a TCPC anatomy were selected from the Georgia Tech/Children’s
Hospital of Philadelphia Fontan database. With informed consent and Institutional Review Board
approval, an intra-atrial patient was selected, based on the following criteria: (i) single superior vena
cava (SVC) and (ii) no apparent vessel stenosis. Anatomic and phase-contrast magnetic resonance
imaging (MRI) acquisition was performed on the patient. Static, steady-state free precession imaging
was used to acquire patient-specific anatomic images and 3D anatomies were reconstructed [32,33]
(Figure 1a). Phase-contrast MRI was used to acquire through-plane velocity profiles across the vena
cavae over a cardiac cycle under resting breath-held conditions. Patient-specific flow conditions were
obtained by segmenting phase-contrast MR images at the inlet’s cross-section [34,35]) (Figure 1b).
The change in vessel cross-sectional area was also obtained from the segmented phase-contrast
MRI slices [36] (Figure 2a,b). The approximate location of the phase-contrast MRI slice relative
to the anatomy is shown in (Figure 2c). To visualize the location of the atrial wall relative to the
TCPC, the heart, and surrounding pulmonary veins were segmented (Figure 3) with Invesalius 3.0
(http://www.cti.gov.br/invesalius/).
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Figure 3. The TCPC (gray) and the surrounding heart and blood vessels (blue). TCPC: total
cavopulmonary connection.

2.2. Hemodynamic Assessment

The finite element method solver LifeV (www.lifev.org) was used in this work. The FSI solver
is presented in Passerini et al. and has been validated with experimental data of the propagation of
a pressure wave in a fluid-filled elastic cylindrical tube [37]. The structural model is based on the
assumption of a linear elastic model. Although this is certainly a simplification of the real constitutive
law for the vessel wall, it provides a reasonable starting point, which is however, quite indicative for
the purposes of this research. The interaction between fluid and structure domains is implemented by
the arbitrary Lagrangian-Eulerian approach.

Flow extensions of 2 cm were added to each inlet and outlet for flow development. The resulting
surface was loaded into GAMBIT/ANSYS Workbench (ANSYS, Inc., Canonsburg, PA, USA) for surface
meshing with unstructured triangular elements. Gmsh [38] was used to prepare volume meshes for
both fluid and structure simulations based on the surface mesh. Gmsh preserves the nodes of the
input surface mesh when creating a 3D volume mesh. Tetrahedral elements were created in the fluid
domains while maintaining the nodes at the input surface. For the structural mesh, the input surface
mesh was extruded based on the normal of each element on the surface mesh. It contains two layers of
tetrahedral elements. P2 finite elements were used for fluid and structure velocity. P1 finite elements
were used for fluid pressure. Notice that with this choice, the meshes for fluid and structures are
conformal. This means that the degrees of freedom at the interface between the two domains coincide,
and no special matching procedures are required when solving the FSI problem. The duration of one
cardiac cycle was 0.86 s, obtained from the MRI data. A timestep of 5 × 10−4 s was used at least for
three cycles for both rigid wall and FSI simulations.

For the fluid domain, the inflow waveform segmented from phase-contrast MRI was applied as
inlet flow boundary conditions. The parabolic velocity profile was assumed at both inlets. The flow
extensions have the role of mitigating the impact of the arbitrary choice of a velocity profile at
the boundary to fill the mismatch between available data (the flow rate) and velocity conditions
required by the mathematical model. In addition, traction-free outflow boundary conditions were
used. Blood viscosity and density were assumed to be 3.5 × 10−6 m2/s and 1000 kg/m3, respectively.
The same inflow and outflow boundary conditions were applied for FSI and rigid wall simulations.
For the structural domain, edges at all inlets and outlets were fixed. The mesh extensions guarantee
for this part of the problem that the arbitrary displacement conditions have a limited impact on the
solution in the region of interest. The external side of the wall was allowed to move freely throughout

www.lifev.org
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the simulations. Poisson’s ratio of 0.3 and a wall thickness of 2.0 mm was prescribed. An iterative
method [39] was employed to estimate Young’s modulus of TCPC, resulting in consistent deformation
indices between the FSI simulation and in vivo measurement. The deformation index was computed
to quantify the amplitude of cross-sectional area change at the FP and the SVC since they are the more
compliant vessels of the TCPC:

De f ormation_Index =
Amax −Amin

Amean
× 100%

The estimated Young modulus was 0.07 MPa, which fell into ranges of literature values for blood
vessel walls [40–44]. Homogeneous material properties were assigned at the vessel wall. This study’s
primary hemodynamic metrics are power loss and hepatic flow distributions: their definitions adhere
to previous studies [23,45–48].

3. Results

3.1. Mesh Sensitivity

To investigate mesh sensitivity, three meshes were created and simulated with the same boundary
conditions:

(a) Very fine mesh—1 mm mesh edge length

i. Fluid: 193,974 elements
ii. Structure:164,178 elements

(b) Fine mesh—1.5 mm mesh edge length

i. Fluid: 97,793 elements
ii. Structure: 82,206 elements

(c) Coarse mesh—2 mm mesh edge length

i. Fluid: 27,640 elements
ii. Structure: 44,406 elements

Because the very fine mesh requires much higher computational time, a time duration of 0.13 s
was simulated with all three meshes and compared. Mesh displacements at four phases (deceleration,
low flow, acceleration, and high flow) were extracted (Figure 4).
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Comparing the maximum displacement between the different mesh sizes, they are all of the
similar magnitudes (Table 1). The discrepancy of maximum displacement between very fine mesh
and fine mesh ranged from 0.002 mm to 0.031 mm. Comparing the fine mesh and the coarse mesh,
the discrepancy ranged from 0.0 mm to 0.045 mm.

Table 1. Maximum mesh displacement with different mesh sizes.

Maximum Displacement
(mm)

(a)
Very Fine

(b)
Fine

(c)
Coarse

Difference Between

(a) & (b) (b) & (c)

Deceleration (at 0.02 s) 2.448 2.450 2.457 0.002 0.007
Low flow (at 0.03 s) 4.334 4.342 4.342 0.008 0

Acceleration (at 0.06 s) 6.955 6.964 6.979 0.009 0.015
High flow (at 0.09 s) 6.886 6.917 6.962 0.031 0.045

Comparing the pressure drop differences at each time step, the average (temporal) difference
between the coarse and the fine mesh was 0.009 mmHg, and the maximum difference was 0.015 mmHg.
The average (temporal) pressure drop difference between fine and very fine mesh was 0.005 mmHg.
The maximum pressure drop difference was 0.01 mmHg. Comparing time-averaged power loss over
the simulated time span, there was a 0.66% difference between the coarse mesh and the fine mesh,
and a 0.29% difference between the fine mesh and the very fine mesh (Table 2). Simulations with the
very fine mesh are computationally expensive. The hemodynamic and wall displacement predictions
with the fine mesh are in close proximity to the very fine mesh prediction. Therefore, in the following
sections, the fine mesh is used throughout this study. Moreover, in the following sections, the cardiac
cycle starts at t = 0.

Table 2. Differences in pressure drop and power loss with different mesh sizes.

Hemodynamic Metrics (a) Very Fine vs. (b) Fine (b) Fine vs. (c) Coarse

Pressure drop difference (mmHg) Temporal average 0.005 0.009
Temporal maximum 0.01 0.015

%difference in power loss 0.29% 0.66%

3.2. Simulated TCPC Wall Deformation

The simulated TCPC wall displacement is shown in Figure 5. Wall displacement magnitude
increases from t = 0 s to t = 0.2 s, expanding the TCPC volume. The maximum wall displacement of
0.21 cm occurred at t = 0.165 s, which was 0.065 s after the time point of maximum FP flow (t = 0.1 s).
At t = 0.3 s, wall displacement was almost zero. At that time point, the TCPC volume (62.49 mL) was
almost equal to the volume of the rigid wall simulation fluid domain (62.25 mL). After that time point,
the wall displacement magnitudes of both the FP and the center of the TCPC increased from t = 0.4 s
to 0.5 s. Wall displacement magnitude then decreased at t = 0.6 s. At t = 0.7 s, wall displacement
mainly occurred at the FP. At t = 0.8 s, wall displacement occurred at both the FP and the center of the
TCPC, expanding the TCPC volume. The simulated wall displacement animations are available in the
Supplementary Materials section of the journal online.
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From the FSI simulation results, the cross-sectional vessel areas of FP and SVC were extracted
throughout the simulated cardiac cycle (Figure 6). The vessel areas were compared between FSI
and phase-contrast MRI data (Table 3). Since the location of the phase-contrast MRI slice of the FP
was outside the CFD domain, a comparison of absolute values of wall displacement is not feasible;
therefore, the deformation index was used for comparisons instead. Simulation results showed that
deformation index from the simulation was in close agreement with the deformation index of the
phase-contrast MRI data at the FP. For the SVC, the maximum and average areas were similar between
FSI and phase-contrast MRI, but the deformation index was underestimated in the simulation since the
simulated minimum SVC area was higher.Biology 2020, 9, x 8 of 21 
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Table 3. Comparison of vessel areas between fluid-structure interaction (FSI) simulation and in vivo
phase-contrast MRI (PC-MRI) data. FP: Fontan pathway, SVC: superior vena cava.

Vessel Area
FSI Simulation PC-MRI Data

FP SVC FP SVC

Average (cm2) 3.74 1.99 6.81 1.94
Change (cm2) 0.20 0.07 0.37 0.14

Deformation Index 5.3% 3.4% 5.4% 7.1%

The net flow (total inflow−total outflow) through the TCPC was computed from the FSI simulations.
The TCPC volume change was then computed by integrating the net flow over time using the trapezoidal
rule (Figure 7). Throughout the simulated cardiac cycle, the minimum TCPC volume was 62.49 cm3, and
the maximum volume was 64.46 cm3. This means the TCPC changed its volume by 1.97 mL throughout
the cycle. From the FSI simulation results, the maximum and minimum pressure (averaged over the
entire TCPC volume) was 0.87 mmHg and 0.07 mmHg, respectively. The change in FP pressure was,
therefore, 0.8 mmHg throughout the cycle. By dividing the maximum volume change (1.97 mL) by
maximum TCPC pressure change (0.8 mmHg), TCPC compliance was estimated to be 2.46 mL/mmHg.
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3.3. TCPC Flow Field

The flow fields throughout eight evenly spaced time points of the cardiac cycle are shown in
Figure 8. Two planes were extracted at (1) the center of the TCPC and (2) across the FP. It is interesting
to note the high degree of similarity between the FSI and rigid wall simulation results. The main
differences between the two flow fields are at the center of the TCPC and the FP flow jet, in which the
velocity jets are shown in the two extracted planes. At t = 0 s, the volume of the TCPC expanded in the
FSI simulation. The FP jet has a higher maximum velocity in the FSI simulation than the rigid wall
simulation. At t = 0.1 s, the FP continues to expand. However, at this time point, the FP jet carried a
higher maximum velocity in the rigid wall than the FSI simulation. At t = 0.2 s, the wall deformation
occurred at both the FP and the center of the TCPC. The FP jet trajectory and velocity magnitude were
similar between the two simulations. However, at the center of the TCPC, the velocity magnitudes and
directions were different between the FSI and rigid wall simulations. At t = 0.3 s, the FSI and rigid wall
simulations have similar total TCPC volumes. However, the maximum velocity magnitude of the FP
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jet was lower under rigid wall conditions. Also, the velocity magnitudes were different at the center
of the TCPC. At t = 0.4 s, the TCPC continued to expand again in the FSI simulation. The maximum
velocity was lower in the FSI simulation at this time point. At t = 0.5 s, both the FP and the center
of the TCPC expanded, affecting the velocity magnitude in the FSI simulation. This also affected the
velocity magnitude and direction at the center of the TCPC. From t = 0.5 s to the end of the cycle, as the
wall displacement fluctuated, the velocity magnitude and direction were different between the FSI and
rigid wall simulations at the center of the TCPC.
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3.4. Pressure Drop and TCPC Power Loss

The instantaneous pressure drops (FP to left pulmonary artery pressure) and power loss across the
TCPC in the cardiac cycle are shown in Figures 9 and 10, respectively. The pressure drop and power
loss waveforms of the rigid wall and FSI simulations shared similar shapes, while the waveforms of the
FSI simulation lag behind that of the rigid wall simulation. Comparing the maximum and minimum
pressure drops and power losses, the rigid wall simulation has larger fluctuations than that of the FSI
simulation. The maximum pressure drop and maximum power loss were lower in the FSI simulation,
which is likely to be due to the increase of the TCPC volume in the FSI simulation. When comparing
the time-averaged pressure drop and power loss, the differences between the two simulations were
small (pressure drop difference = 0.01 mmHg, TCPC power loss difference = 0.1 mW) (see Table 4).
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Table 4. Comparison of pressure drop and TCPC power loss between the rigid wall and fluid-structure
interaction (FSI) simulations over the cardiac cycle. TCPC: total cavopulmonary connection.

Pressure Drop (mmHg) TCPC Power Loss (mW)

Minimum Maximum Average Minimum Maximum Average

Rigid wall −0.60 2.35 0.60 −4.46 17.33 2.89
FSI −0.07 1.13 0.61 −0.82 9.34 2.99

3.5. Particle Tracking

To assess the impact of wall deformation on particle residence times and %HFD(LPA) (the hepatic
flow distribution to the left pulmonary artery), a Lagrangian particle tracking analysis was performed
with ParaView software (Kitware Inc., Clifton Park, NY, USA). For each condition, approximately 700
(number of nodes at the FP cross-sections) particles were seeded at the FP at every 0.001 s for one
cardiac cycle (0.86 s) and were passively advected with the flow for five additional cardiac cycles.

The particle trajectories within the flow fields are shown in Figure 11 (FSI) and Figure 12 (rigid wall)
for eight time points, and the corresponding animations are available in the supplementary material
section of the journal online. The FP particles are colored based on the time at which they were seeded,
while the SVC particles are colored in black. There is no major difference in the particle trajectory at the
beginning of the filling phase (t = 0.3 s) between the two wall conditions. Under conditions, SVC and
FP flow met at the neck of the SVC-PA junction (t = 0.6 s), and together they circulated at the middle of
the TCPC (t = 0.86 s).
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Figure 11. Progression of the particles seeded at the FP from the fluid-structure interaction (FSI)
simulation. The FP particles are color coded by their seeding time step. SVC particles are colored black.
FP: Fontan pathway, SVC: superior vena cava.
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Figure 12. Progression of the particles seeded at the FP from the rigid wall simulation. The FP particles
are color-coded by their seeding time step. SVC particles are colored in black. FP: Fontan pathway,
SVC: superior vena cava.

After the second cycle (t > 0.86 s), the particles circulate before leaving the domain under both FSI
and rigid wall conditions (t = 1.3 s). However, the particle washout trajectories were different in the
FSI and rigid wall simulations. From t = 1.5 s to t = 1.72 s, the particles circulated at the center of the
TCPC close to the PAs for the FSI simulation. For the rigid wall simulation from t = 1.5 s to t = 1.72 s,
the particles circulated within the entire region of the center of the TCPC, instead of just close to the
PAs. From t = 2.58 s to t = 3.44 s, most particles had already exited the domain in the FSI simulation.
For rigid wall simulation from t = 2.58 s to t = 3.44 s, particles still remained in the domain. Many of
these particles are found close to the walls of the TCPC.

From Figure 11, it can be seen that very few particles remain in the domain after one cardiac
cycle (FSI simulation). It is found that with a deformable wall, most of the particles from the FP left
the domain within one heartbeat. The quantitative distribution of the FP particle residence times is
shown in Figure 13 and is compared between the FSI and rigid wall simulations. The particle residence
time distributions are very different. The peak of the distribution of the FSI simulation occurred at
801 ms, whereas that for the rigid wall simulations occurred at 1439 ms. Also, the peak of the rigid wall
simulation is of smaller amplitude. A majority of particles seeded at the FP in the rigid wall simulation
took more than one cardiac cycle (0.86 s) to leave the TCPC. The particle washout time (time at which
95% of the FP particles left the domain) is shown in Table 5. It took 1.77 s (~2 cardiac cycle) for 95% of
the FP particles to leave the TCPC for the FSI simulation. It took much longer (3.16 s) for 95% of the FP
particles to exit the domain for the rigid wall simulation.
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Table 5. Comparison of particle washout time and time-averaged hepatic flow distribution to the left
pulmonary artery, %HFD(LPA), between rigid wall and fluid-structure interaction (FSI) simulations.

Particle Washout
Time (s)

Particle Washout Time
(No. of Cardiac Cycle)

Time-Average
HFD(LPA)

FSI 1.77 2.06 19%
Rigid wall 3.16 3.67 19%

Particle tracking was also performed by visualizing the particles based on the vessel of origin.
Figure 14 illustrates that, in both the FSI and rigid wall simulations, the majority of the SVC particles
exited through the right pulmonary artery due to proximity. Even with the differences in the velocity
magnitude of the FP jet and velocity field at the center of the TCPC as observed earlier, there was
little difference in the FP particle trajectory between FSI and rigid wall simulations. From the particle
tracking results, HFD was also computed. Instantaneous %HFD(LPA) is shown in Figure 15. It is
observed that %HFD to the left pulmonary artery fluctuated in time more in the FSI simulation than
the rigid wall simulation. However, comparing the time-averaged %HFD(LPA), no difference is found
between the two conditions, Table 5.
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simulations from t = 0.45 s to t = 1.95 s. Particles originating from the FP are colored blue, and particles
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4. Discussion

In most CFD models of the TCPC, a rigid wall is often assumed for simplicity and reduced
computational cost. However, in reality, the TCPC is composed of native tissues (caval veins and
pulmonary arteries), which are compliant. Knowing that TCPC vessel wall deforms in vivo, it is
important to understand how such deformation can affect hemodynamics. Long et al. performed FSI
CFD analysis on two extra-cardiac TCPCs with varying wall properties [21]. The results showed that
there was little effect of FSI (with both homogenous and heterogeneous vessel wall material properties)
on pressure tracings, HFD, and time-averaged energy efficiency. However, the effect of FSI on
instantaneous energy efficiency and wall deformation was significant. This study highlighted that the
impact of FSI on TCPC hemodynamics is relevant to the metric of interest. However, several assumptions
were made with regards to the wall material properties, which have not been validated. Also, this study
was performed on extra-cardiac patients only. The geometry and constitutive materials of the
extra-cardiac and intra-atrial TCPC can be very different. It is expected that the difference in flow
dynamics between the rigid wall and compliant wall simulations to be more profound in the intra-atrial
TCPCs. Mirabella et al. investigated the effect of wall deformability on intra-atrial TCPC hemodynamics
with in vivo wall deformation data [49]. Using cine anatomic MRI data, the in vivo wall deformation
was prescribed in a CFD model that includes a moving domain. The largest differences between rigid
and moving wall models were observed in measures of energetic efficiency of TCPC as well as in hepatic
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flow distribution and transit time of seeded particles through the connection. This study highlighted
the importance of wall deformation on intra-atrial TCPC hemodynamics. However, this approach is
not necessarily applicable for prospective modeling, as one cannot always predict how the vessel wall
will deform after the surgical connection is being altered.

In the current study, the simulated wall deformation of the FP and SVC was compared with
phase-contrast MRI data. Using a normalized metric, the deformation index, the change in vessel area
at the FP and SVC were compared between the numerical simulation and phase-contrast MRI data to
validate the FSI simulations. It was found that the FP deformation index was in a close agreement
between FSI simulation and in vivo data. This is important as intra-atrial FP wall deformation was
the focus of this work. This suggested the assigned wall material property at the FP was a reasonable
estimation of the in vivo wall properties. However, the SVC deformation index agreement between FSI
simulation and phase-contrast MRI was not optimal. This could be attributed to the following reasons:
It was possible that the assigned homogenous material properties throughout the TCPC were different
from the in vivo SVC wall material property. In reality, the material properties in FP and SVC can be
different. From the change in TCPC volume as well as the change in pressure, TCPC compliance was
estimated to be 2.46 mL/mmHg. This is in the same order of magnitude as PA compliance in healthy
subject = 2.87 mL/mmHg [50].

Qualitative differences in the TCPC flow field were observed at the FP velocity jet and the center of
the TCPC between the rigid wall and FSI simulations. These were also the regions in which most wall
displacements were observed in the FSI simulation. Particle residence time provides a quantitative
measure for the differences of particle pathways under the rigid wall and compliant wall conditions.
The longer residence times of the rigid wall condition were mostly associated with FP particles evolving
at a low velocity close to the rigid wall (Figure 12). On the other hand, with a deformable wall,
the particles in the wall boundary layers had a higher probability of being redirected towards the bulk
of the flow during contraction of the deforming wall.

TCPC pressure drop and power loss are important hemodynamic metrics, as high power loss
suggests a less efficient pathway, which has been related to patient exercise intolerance [8–10,51].
Pressure drop and power loss were compared between the rigid wall and FSI simulations. Instantaneous
pressure drop and power loss vary between FSI and rigid wall simulations. Comparing the maximum
and minimum pressure drops and power loss, the rigid wall simulation has larger fluctuations than
that of the FSI simulation, which is in agreement with a previous similar study on the carotid artery [52].
However, the differences in time-averaged pressure drops (0.01 mmHg) and power losses (0.1 mW)
between the two simulations were small. Hepatic flow distribution was also quantified, which is a TCPC
hemodynamic metric that was related to the risk of pulmonary arteriovenous malformations [11,12,53].
As shown in Figure 15, the instantaneous HFD varies within the simulated cycle between the rigid
wall and FSI simulations. However, there was no difference in time-averaged HFD between the two
conditions, which is in agreement with Long et al. [21].

Previously, it was speculated that the hemodynamic differences observed in intra-atrial and
extra-cardiac TCPCs were attributed to its geometry as well as wall properties. From this work, it was
found that wall compliance has little influence on time-averaged hemodynamic quantities under
resting breath-held conditions. This also means that the wall compliance of the intra-atrial TCPC did
not contribute significantly to TCPC hemodynamics as one would be expected.

The results in this work suggest that wall deformation has an impact on the instantaneous
hemodynamic metrics of the TCPC (instantaneous flow field, particle trajectory, pressure drop,
power loss and HFD). However, FSI has little impact on time-averaged quantities (pressure drop,
power loss, HFD) under resting breath-held condition. Considering time-averaged hemodynamic
quantities are the more common surrogates of patients’ hemodynamic performance for surgical
planning of TCPC, the results here support the notion that a rigid wall assumption is a reasonable
assumption for such image-based surgical planning systems [29,53–56]. The framework for a surgical
planning system of TCPC already exists [57,58] to prospectively model different surgical configurations.
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Time-averaged quantifies (mainly power loss and HFD) were compared across different surgical
options, usually with resting breath-held flow boundary conditions. A rigid wall assumption was
often applied for simplicity in previous computational or experimental research for Fontan patients.
It was originally expected that including vessel deformability into the system can possibly help more
realistically predicting post-operative scenarios. The results of this work suggest that a rigid wall
assumption is a reasonable approximation when evaluating time-averaged quantities under resting
breath-held conditions. Especially when the surgery planning needs to be completed in a short time
frame, and FSI simulation has a higher computational cost, it could be expected that the error associated
with a rigid wall assumption will be minimal.

Limitations

A linear elastic structural model was assumed for the vessel wall. Stress-free outflow boundary
conditions were also used. Also, TCPC is composed of heterogeneous materials. It contains native
tissue, as wells as stiffer surgical materials and suture lines. In addition, the initial condition of the FSI
simulation used geometry from patient-specific MR images, which represents a deformed configuration
stressed by the in vivo conditions. In the simulation, the structure was assumed to be stress-free initially.
However, these limitations should not affect the conclusions of this study. In addition, only one patient
was included in this study. Future work should extend this study to more patients.

5. Conclusions

In this study, the rigid wall assumption used in most CFD models of the TCPC was evaluated.
A detailed comparison of TCPC hemodynamics under a rigid wall and a compliant wall condition was
performed with respect to the surrogates for TCPC efficiency, namely power loss, HFD, and particle
washout time on an intra-atrial patient. The wall deformation in the simulated FP was in the same
magnitude as that observed in vivo. The simulation results suggest that a rigid wall assumption appears
to provide an adequate representation of the time-averaged TCPC power loss and pressure drop.
There was no difference in time-averaged HFD between the rigid wall and FSI simulations. In summary,
the results here support the use of a rigid wall assumption on the evaluation of time-averaged TCPC
hemodynamic metric under resting breath-held condition.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-7737/9/12/412/s1.
Video S1: Animation of the simulated mesh displacement viewing from the anterior angle. The flow waveform is
shown simultaneously, Video S2: Animation of the simulated mesh displacement viewing from the left. The size
and color of the arrows represent the magnitude of the displacement, Video S3: Particle tracking video of FSI
simulation. Particles are colored by its release time step, Video S4: Particle tracking video of rigid wall simulation.
Particles are colored by its release time step
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