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Emergence of rhythmic chunking
in complex stepping of mice

Kojiro Hirokane,1,2 Toru Nakamura,2 Yasuo Kubota,3 Dan Hu,3 Takeshi Yagi,2 Ann M. Graybiel,3

and Takashi Kitsukawa1,2,4,*
SUMMARY

Motor chunking is important for motor execution, allowing atomization and effi-
ciency ofmovement sequences. However, it remains unclear why and how chunks
contribute to motor execution. To analyze the structure of naturally occurring
chunks, we trained mice to run in a complex series of steps and identified the for-
mation of chunks. We found that intervals (cycle) and the positional relationship
between the left and right limbs (phase) of steps inside the chunks, unlike those
outside the chunks, were consistent across occurrences. Further, licking by the
mice was also more periodic and linked to the specific phases of limb movements
within the chunk. Based on these findings, we propose the rhythm chunking hy-
pothesis, whereby within chunks, the repetitive movements of many body parts
are linked by the rhythm parameters: cycle and phase. The computational
complexity of movement may thereby be reduced by adjusting movements as
the combination of rhythms.
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INTRODUCTION

Many of the movements that we perform in our daily lives are continuous movements in which many body

parts move together in coordination.1 In order for such continuous movements to be successfully per-

formed, these body parts must be coordinated both spatially and temporally. For example, when you

are playing the piano, your fingers work together one after another to produce the music. When we learn

a continuous movement consisting of a series of motor elements, the movement sequence is initially per-

formed by making each motor element, but after many repetitions, several successive adjacent elements

gradually form small clusters, which are called chunks.2–4

A variety of studies have suggested that the positive effects of movement chunking include movement ef-

ficiency and energy conservation. One of the behavioral tasks most frequently employed for research on

chunking is the discrete sequence production (DSP) task and its derivatives, in which subjects perform a

series of key presses.3,5 Experiments based on this task indicate that motor chunks are formed during

continuous movement and that the entire sequence could collectively be generated as a response to a sin-

gle stimulus. As demonstrated by Verwey et al.,6 the reaction times to start the first tapping of a key press

sequence were shortened through performance of the DSP task, and Yamaguchi and Logan6 demonstrated

that the time needed to perform the entire sequence decreased with learning. Given that the time required

to start the movement sequence becomes shorter, the time to prepare the series of movements may be

reduced, indicating the reduction of complexity of information processing in motor chunks as compared

to the generation of each movement of the sequence one by one. Ramkumar et al.7 analyzed jerk param-

eters of arm movements in non-human primates using a continuous reaching task to model the chunk as a

local optimal control problem. They found that local optimal control allows a counterbalance between ef-

ficiency and complexity of movement so that chunking contributed to the reduction of computational

complexity and was cognitively efficient.

Chunks that form naturally in our daily life often involve movements of multiple body parts requiring coor-

dination among these parts. However, most of the chunks studied so far have been repetitions of simple

single movements of body parts, and many of them have been movements with specific instructions given

to human subjects. In many cases, the boundaries of the chunk, the pace of the repetitive movement, and

the movement to be performed were pre-determined in the experimental plans. For this reason, the
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formation, structure, and function of chunking in continuous movements requiring coordination remain to

be further clarified.

Here, we gave mice the opportunity to form chunks spontaneously in the process of learning and perform-

ing complex sequential movements (see STAR Methods for details). We examined how chunks are gener-

ated, how they grow to include increasing numbers of individual movements, and how movements differ

between those inside and outside of the chunks that are formed. For this purpose, we used the step-wheel

task8 to train mice to perform complex continuous movements. The step-wheel is a vertical running wheel

for mice with pegs for footholds arranged in a ladder-like or complex pattern on the running surface. The

wheel turns at a constant speed under computer control, and water-restrictedmice are required to run with

complex stepping patterns without any specific instructions for the timing of each step in order to obtain

reward. We have used this step-wheel task to examine sequential learning and performance of mice,

including genetically modified mice.8–12 In this study, we found that as the training on complex steps pro-

gresses, the chunked sequences in which the movement parameters were stable became more pro-

nounced and were gradually elongated and that the motor coordination within the chunks was supported

by the rhythm of these movements.
RESULTS

Stable running regions in a complex peg pattern

To test how chunks are formed spontaneously out of a series of different movements, it was necessary to

train mice first to perform repetitive, yet non-uniform, continuous movements over a certain period of time.

For this purpose, we used a training protocol in which the mice repeatedly ran 50–60 times on 12 irregularly

placed pegs on each side of the step-wheel. After the initial use of the regular peg pattern to familiarize

them with the wheel, they were exposed, in each session, to 24 pegs (pegs 1 to 24) arranged in the complex

peg pattern (Figures 1A–1D).

A key feature of a motor chunk is that it represents a stable movement pattern.13 Thus, we sought to find

stable regions in the running of mice in the wheel. In stable regions, the timing of the peg touches should

vary little from trial to trial. On the other hand, unstable regions should show high variability. Therefore, we

measured the timing of all the limbs as the paws touched the pegs, and we determined whether the sta-

bility of touch timing of the footfalls differed for different pegs. Raster plots and histograms of the peg-

touch times (Figure 1E) illustrate examples indicating that the variability of the peg-touch timing was

different depending on the location in the entire peg pattern This variability suggested that there were sta-

ble and unstable regions in the running.

To quantify the variability of the locomotion in the stable and unstable regions during the runs, we first

calculated the inter-touch intervals, taken as the time interval between two consecutive peg touches

comprising a single step, and we calculated the coefficient of variation (CV) of the inter-touch intervals (in-

ter-touch CVs) for all pegs of each trial (Figure 2A). It was apparent without quantification that the inter-

touch CVs decreased as training progressed. In fact, measurements showed that the mean inter-touch

CVs of all mice decreased across sessions, and when the values of session 1 were compared to those of

each other session, the values were significantly lower after session 4 (Figure 2B, black line, n = 7, p =

2.4 3 10�6 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test). The smaller inter-touch CV at the later

stages of the training is consistent with our previous results reporting the acquisition of peg patterns on the

step-wheel.11

However, there were high-CV segments and low-CV segments even in later sessions (Figure 2A). This

finding indicated there were regions in which touch intervals varied from trial to trial within a session as

the mice ran on the pegs with high inter-touch CVs. At the pegs with low inter-touch CVs, the mice ran

with similar inter-touch intervals during most trials. This meant that the steps within low-CV segments

were stably repeatable, suggesting that the continuous movements in these segments might comprise

chunks.

If they were chunks, we expected that (1) there would be a low-CV segment with roughly constant inter-

touch CVs; (2) there would be unstable segments with high inter-touch CVs before and after the low-CV

segment; and (3) the inter-touch CVs would be different inside and outside of a low-CV segment. There-

fore, we identified low-CV segments, which were considered chunks, by several criteria (see Figure S1
2 iScience 26, 106765, May 19, 2023



Figure 1. The step-wheel and peg touches of mice

(A) Timeline of the entire experiment, including pre-training and training periods.

(B) Side view of the step-wheel. An infrared beam was equipped to detect a mouse when it was close to the spout. The

turning speed of the wheel was kept constant at 12.5 cm/s in all sessions by computer control.

(C) Peg patterns used in the study. The regular peg pattern was used for pre-training, and the complex peg pattern was

used for the training. A single pattern consisting of 24 pegs was defined as 1 trial.

(D) Diagram illustrating the relationship between trials and rotation. Within one rotation of the step-wheel, the same

pattern was repeated twice.

(E) Raster plots and histograms of the timing of left and right peg touches (middle) by a mouse running the complex peg

pattern (top) and raster plots of the timing of licking (bottom).

(F) Enlarged view of the raster plots and histograms in the box in E.
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and STAR Methods for details). We call the first and last pegs of the low-CV segments as, respectively, the

start-peg and end-peg. Examples of the start-peg and end-peg of the chunks identified by this method are

indicated, respectively, by blue and red vertical lines in Figure 2A. Here, the total lengths (transverse) dis-

played in Figure 2A represent single lengths of peg patterns (trials).

We were then able to determine whether the decreases in inter-touch CV occurred inside the chunks or

outside of the chunks or across both regions. In other words, was the stable part further improved or

was there an improvement in the unstable part? To answer this question, we separately calculated the in-

ter-touch CVs of touches inside the chunk (in-chunk) and outside the chunk (out-chunk). We found that both
iScience 26, 106765, May 19, 2023 3



Figure 2. Emergence of motor chunks during running on the step-wheel detected by the inter-touch CV

(A) Heatmaps of the inter-touch CV between consecutive peg pairs in all sessions (session 1–9, vertical axis) for all mice

(n = 7). The start (blue line) and end (red line) of the chunk are shown. Specifically, the inter-touch CV at the nth peg is the

coefficient of variation of the time interval from the peg touch to the (n� 1)th peg to that of the nth peg within one session.

The pegs that were excluded from the analysis due to the low number of touches in a session are marked with diagonal

lines. One trial (= 24 pegs) is shown as the horizontal axis.

(B) The inter-touch CV (mean G SEM, n = 7) for all pegs (black), in-chunk pegs (purple), and out-chunk pegs (orange)

through the training. Black, purple, and orange asterisks indicate, respectively, the significant decrease in the inter-touch

CV compared to that of session 1 for all (p = 2.4 3 10�6, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test), in-chunk

(p = 4.5 3 10�4, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test), and out-chunk (p = 1.2 3 10�3, by one-factor

ANOVA; *p < 0.05, by Tukey-Kramer test) pegs.

(C) The ratio of the inter-touch CV between in-chunk and out-chunk pegs is shown as the mean G SEM (n = 7, p = 1.8 3

10�3, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test).

(D) The average length of chunks in all mice across sessions (n = 7, p = 2.2 3 10�6, by one-factor ANOVA; *p < 0.05, by

Tukey-Kramer test).
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in-chunk and out-chunk inter-touch CV decreased over the course of training. The in-chunk inter-touch CVs

in session 1 were significantly higher than those after session 4 (Figure 2B, purple, n = 7, p = 4.5 3 10�4 by

one-factor ANOVA; p < 0.05 by Tukey-Kramer test). The out-chunk inter-touch CV also decreased with the

progress of training, with the average inter-touch CV in session 1 being significantly higher than that after

session 8 (Figure 2B, orange, n = 7, p = 1.2 3 10�3 by one-factor ANOVA: p < 0.05 by Tukey-Kramer test).

Throughout the 9 sessions of training, the average inter-touch CVs were always smaller for in-chunk, fol-

lowed by those for total session and then out-chunk inter-touch CVs. In our previous study,11 it was re-

ported that each mouse reduced the variance of its steps overall with training but without providing a defi-

nition of in-chunk and out-chunk periods. In the current study, we conducted the same experiment with

different mice, and we performed the same analysis, comparing data for inside and outside of the chunk.

To estimate the relative reduction in the inter-touch CV between out-chunk and in-chunk periods, we

calculated the ratio of in-chunk to out-chunk inter-touch CVs. We found significant increases in the ratio

in sessions 5, 7, 8, and 9 compared to the ratio in the first session (Figure 2C, n = 7, p = 1.8 3 10�3 by

one-factor ANOVA; p < 0.05 by Tukey-Kramer test). Thus, the out-chunk inter-touch CVs were higher

than the in-chunk inter-touch CVs especially in the later sessions, indicating that the chunked regions

of the runs gradually became demarcated by lower CV as training proceeded. This pattern seems

reasonable, given that the in-chunk and out-chunk inter-touch CVs decreased with roughly similar slopes

and the in-chunk inter-touch CVs were always smaller than the out-chunk CVs, leading to larger ratios in

the late stages of the training. This result supported the validity of the method that we developed here to

set the chunk boundaries.
4 iScience 26, 106765, May 19, 2023
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These results appear to indicate that the chunk locations becamemore fixed in the later sessions. However,

contrary to this impression, the chunk boundaries changed from session to session (Figure 2A). The

changes were always in the direction of elongating the length of chunked sequence; the start-pegs moved

backward, and the end-pegs moved forward with respect to the direction of running (Figure 2A, blue and

red lines, respectively). We found that there was a significant increase in absolute chunk length in sessions 8

and 9 compared to the length in session 2 (Figure 2D, n = 7, p = 2.23 10�6 by one-factor ANOVA; p < 0.05

by Tukey-Kramer test). This result suggests that the increase in the CV ratio across learning does not neces-

sarily correspond to a fixation of chunk boundaries. Rather, chunk boundaries were found to be changing

dynamically during the course of training. Further, we found no concatenation of small chunks. The devel-

opment of chunks may be caused by gradual elongation at the two ends of a given chunk rather than by

concatenation.
Individual chunking strategies in stepping

We next addressed the issue of the locations of chunks within the runs on the complex peg pattern. They

appeared relatively similar in a given individual but different across different individuals (Figure 2A). To

compare their locations, we defined a chunk vector (Figure S2) with 24 components corresponding to 24

pegs, each assigned a value of either 1 (inside chunk) or 0 (outside chunk). The similarities of chunk loca-

tions between sessions of the same mouse (intra-individual) or of different mice (inter-individual) were

calculated by the cosine similarities of the chunk vectors. The matrix showing the cosine similarities of

chunk vectors of all sessions of all mice indicated that they tended to be higher across sessions of the

samemouse (diagonal blocks) and lower across sessions of different mice (non-diagonal blocks, Figure 3A).

The averages of the cosine similarities between the intra-individuals and the inter-individuals were signif-

icantly different (Figure 3B, n = 7, p = 6.4 3 10�20 by two-tailed t test). This result indicates that the chunk

locations were relatively constant within a given mouse but that different individuals formed chunks at

different locations even with the identical complex peg pattern. This finding implies that the chunks that

we identified were developed independently by individual mice, rather than simply being dependent on

the peg-pattern.

To estimate the developmental progression of chunk locations, that is, whether the differences started

from the beginning of training or gradually increased, we compared the cosine similarities of the chunk

vectors of sessions 1–8 to those of the last session (session 9). We found that the cosine similarities of the

intra-individual chunk vectors became gradually larger, indicating that the chunking pattern over succes-

sive sessions became more similar to that of the final session. When compared to the similarity between

sessions 8 and 9, those between sessions 1–3 and 9 were significantly smaller (Figure 3C, green, n = 7,

p = 6.9 3 10�6 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test). This finding was important in

demonstrating that chunk formation was not stable already in the early sessions but instead, gradually,

as training proceeded, became similar to that of the final session. We found no such experience-related

increase in similarity in the comparisons of training sessions from different individuals (Figure 3C, orange,

n = 7, p = 0.14 by one-factor ANOVA). Furthermore, the similarity score was higher for the intra-indi-

vidual comparisons than the inter-individual comparisons in the sessions 4, 6, 7, and 8 (Figure 3C, black

asterisks, n = 7, two-tailed t test; p = 5.6 3 10�10 in session 4; p = 8.4 3 10�6 in session 6; p = 5.5 3 10�10

in session 7; p = 9.1 3 10�11 in session 8). These results indicate that a running pattern specific for

each individual might have been acquired by the middle phase of training and that, thereafter, the

chunks became more elongated based on the running strategy of each individual mouse, contrary to

the idea that the running strategies converged to one particular running pattern determined by the

peg pattern.
Limb interval preserved inside the chunk

It is an open question how movements are structured inside of chunks and how movements differ inside

and outside the chunks. To address this question, we explored the difference of movements made inside

and outside of chunks, with a specific focus on the coordination of right and left forelimb movements,

measured by the timing of the footfalls recorded and concentrating on the coordination of the forelimb

movements rather than on individual footfalls. We used two indices of coordination: the footfall intervals

as an index of coordination of repetitive movements of a single limb (Figure 4A) and the positional relation-

ship between the left and right legs (phase) as an index of coordination between the left and right limbs

(Figure 4B).
iScience 26, 106765, May 19, 2023 5



Figure 3. Development of chunks through successive sessions and individual differences in these chunk formation

behaviors

(A) Heatmap of products of chunk vectors, showing similarity between sessions within individual mice (e.g., inset) and

between sessions from different mice. See also Figure S2.

(B) Intra- and inter-individual comparison of chunk similarity (mean G SEM). The cosine similarities of the chunk vectors

were averaged for intra-individual (green) and inter-individual (orange) sessions (*p = 6.4 3 10�20, by two-tailed t test).

(C) Chunk similarities between each of sessions 1–8 to the ninth session. Chunk similarities of intra-individual (green) and

inter-individual (orange) sessions are displayed as the mean G SEM. Green asterisks indicate the sessions whose intra-

individual chunk similarities to session 9 are significantly low compared to those of session 8 (p = 6.93 10�6, by one-factor

ANOVA; *p < 0.05, by Tukey-Kramer test). No significance detected for inter-individual comparison. Black asterisks

indicate the sessions in which the intra-individual similarities are significantly higher compared to the inter-individual

similarities of the same session (*p = 5.6 3 10�10 on session 4; *p = 8.4 3 10�6 on session 6; *p = 5.5 3 10�10 on session 7;

*p = 9.1 3 10�11 on session 8, by two-tailed t test).
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In continuous locomotion, individual body parts are used repeatedly, so whether or not the intervals be-

tween two consecutive repetitive movements change from one repetition to the next should have a pro-

found impact on the continuous locomotion. Such changes occurring with repetition can be considered

as representing coordination on a temporal axis between consecutive movements of the same body

part. To test whether such coordination emerges during the step-wheel training, we calculated, for the

left and right forelimbs, the interval shift, which is the difference between successive inter-touch intervals.

In other words, interval shift is an index of howmuch change there was in the time taken for one cycle before

and one cycle after a given peg of interest. The inter-touch intervals were distributed around an average of

369.73 G 0.55 ms (Figure 5A). The interval shifts were distributed around an average of 41.53 G 0.13 msec

(Figure 5B).

We found that the interval shift was high where the inter-touch CV was high, that is, adjacent to the start-

pegs and end-pegs (Figures 4C and 4D). To clarify the positional relationship between a putative chunk and

the interval shift, we aligned the interval shift to the start-peg or end-peg (Figures 5C and 5D). We used the

start-pegs and end-pegs after session 4 (Figure 3C), when chunk formation had become stable. This anal-

ysis showed that the interval shifts at the start-peg and the next peg were significantly smaller than those at

the peg before the start-peg (Figure 5C, p = 7.8 3 10�3 by one-factor ANOVA; p < 0.05 by Tukey-Kramer
6 iScience 26, 106765, May 19, 2023



Figure 4. Calculations and examples of inter-touch CV, interval shift, and phase shift

(A) Scheme for describing the formulas for calculating the interval shift. Ri indicates the i-th touch to the right side peg.We

calculated the interval shift in the following calculation: Interval ShiftðR1Þ = ðR3 � R2Þ � ðR2 � R1Þ.
(B) Scheme for describing the formulas for calculating the phase shift. Li and Ri indicate, respectively, the i-th touch to the

left and right pegs. We calculated the phase shift as: Phase ShiftðR2Þ =
n
L2 �R2

R3 �R2
� L1 �R1

R2 �R1

o
3 2p.

(C–E) An example of inter-touch CV (C), interval shift (D), and phase shift (E) of a session performed by mouse number 7 on

day 9. Start-pegs, end-pegs, and chunk region (gray) are shown in C.
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test). The interval shifts at the end-peg and the peg before the end-peg were also significantly smaller than

those of the peg after the end-peg (Figure 5D, p = 4.1 3 10�3 by one-factor ANOVA; p < 0.05 by Tukey-

Kramer test). These results indicated that the changes in time taken for consecutive cycles were smaller

within the chunk than outside the chunk.

To quantify this relationship, we compared the interval shifts between in-chunk and out-chunk periods. The

average of the in-chunk interval shifts was significantly smaller than that of the out-chunk interval shift (Fig-

ure 5E, p = 5.6 3 10�6 by two-tailed t test). These results clearly demonstrated that the time durations for

successive cycle were stable inside the chunk, indicating that the touch intervals in the chunk segment were

relatively constant compared to touch intervals outside of the chunk. We next tested whether the modula-

tion of the interval shift around the chunk boundary differed among individual mice. The results demon-

strated that, across all the mice, a similar trend occurred, with differences in significance level of the mod-

ulation in interval shift among the mice (Figure S3).
Inter-limb phase preserved inside the chunk

We defined the interval shift on a per-limb basis to demonstrate that the cycles of each body part were

modulated around the chunk region, but the stepping of the animal is determined by a combination of

the left and right limb movements. Therefore, we next focused on the phase of the limb movements, which

we defined as the time difference between left and right paw touches in a cycle. The phase was distributed

around an average of 0.971G 2.323 10�3 p (Figure 6A, radian), indicating that the mice prefer to move left

and right limbs alternately rather than simultaneously. The phase shift, the difference of the phase between

two consecutive cycles, showed a skewed distribution with a thicker tail to the right (Figure 6B, mean G

SEM: 0.220 G 1.12 3 10�3 p rad; median, 0.184 p rad). The phase shifts were often observed to be high

where the inter-touch CV and the interval shifts were high, that is, neighboring the start-pegs and the

end-pegs (Figures 4C–4E). To investigate the relationship between the chunk position and the phase shift,

we aligned the phase shift to the start-peg or end-peg (Figures 6C and 6D) and found that the phase shifts

at the start-peg and the next peg were significantly higher than that at the second peg before and after the

start-peg (Figure 6C, p = 6.9 3 10�3 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test). When
iScience 26, 106765, May 19, 2023 7



Figure 5. The modulation of interval shifts around the chunk boundaries

(A and B) Distribution of intervals of steps (A) and interval shift (B) in all sessions of all mice.

(C and D) Boxplots of interval shift aligned at start-peg (C; p = 7.8 3 10�3, by one-factor ANOVA; *p < 0.05, by Tukey-

Kramer test) and at end-peg (D; p = 4.13 10�3, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test) for all chunks from

all session, including both right and left pegs. The median and interquartile range are shown. See also Figure S3.

(E) Comparison of the interval shifts between in-chunk and out-chunk periods (*p = 5.6 3 10�6, by two-tailed t test). The

median and interquartile range are shown in boxplots.
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compared to the phase shift of the end-peg, the phase shift of two pegs before and after the end-pegs was

significantly higher (Figure 6D, p = 1.6 3 10�4 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test).

These results indicated that the phase shifts might be higher at the boundaries of chunk regions, unlike the

interval shifts, in which a significant difference was observed between inside and outside the chunk. There-

fore, we compared the phase shifts between the boundaries, which were defined as three consecutive pegs

centered at the start-peg or end-peg, and the other regions in the peg pattern (non-boundary regions). The

phase shift was significantly higher in the boundary regions (Figure 6E, p = 7.23 10�18 by two-tailed t test).

Even when the phase shift was compared between in-chunk and out-chunk periods as we did in the interval

analysis, a significant difference was observed (Figure 6F, p = 5.5 3 10�6 by two-tailed t test). Additionally,

we examined the modulation of the phase shift in relation to the chunk boundary on a per-mouse basis and

found a similar trend across all the mice, with differences in significance level of modulation in phase shift

among the mice (Figure S4).

These findings indicate that the phase in the chunk regions was relatively constant compared to the phase

in parts of the runs outside the chunk. This result in turn implies that the coordination of left and right limbs

was relatively consistent within the chunk, as compared to their relative coordination during non-chunked

parts of the runs. The phase shift increased around the chunk boundaries (Figure 6), whereas the interval

shift increased just outside the chunk (Figure 5). This finding indicates that the adjustment of step intervals

may have been made before the adjustment of step phases at the start of the chunk, whereas the adjust-

ment of step phase may have been made before the adjustment of step intervals at the end of the chunk.

For both situations, the chunk proved a critical variable in the adjustments.
Stable relationship between licking and touch

The fact that the coordination of the left and right forelimbs differed between in-chunk and out-chunk pe-

riods raised the intriguing question of whether movements of other parts of the body that are not directly

involved in running were also coordinated with limb movements. As a first step toward addressing this

issue, we detected licking by means of a voltage sensor attached to the spout, and we analyzed the licking

patterns registered (Figures 1E and 1F). Themice licked to drink water while they were running in the wheel,

and their licking was quite periodic, with a mean interval of 117.5 G 0.22 msec (Figures 7A and 7B). We

examined the relationship between licking and peg touches inside and outside chunks and found that

the timing of licking was aligned with the timing of peg touches for each peg (Figure 7C). The licking

was periodic with about 100 msec peak-to-peak latency when aligned to some pegs (Figure 7C, top),
8 iScience 26, 106765, May 19, 2023



Figure 6. The modulation of phase shifts at chunk boundaries

(A and B) Distribution of phase in a step (A) and phase shift (B) in all sessions of all mice.

(C and D) Boxplots of phase shift aligned by the start-peg (C; p = 6.9 3 10�3, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test, compared to the start-

peg) and by the end-peg (D; p = 1.63 10�4, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test, compared to the end-peg) for all chunks from all session.

The median and interquartile range are shown in boxplots. See also Figure S4.

(E and F) Comparison of phase shifts (mean G SEM) between the chunk boundary segment and the non-boundary segment (E; *p = 7.2 3 10�18, by two-

tailed t test) and between inside and outside the chunk (F; *p = 5.5 3 10�6, by two-tailed t test) for all chunks from all sessions. The median and interquartile

range are shown in boxplots.
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but not when aligned to other pegs (Figure 7C, bottom), indicating that the coordination of licking and

forelimb movement was different for each peg.

To identify pegs that were accompanied by periodic licking, we calculated the power spectrum of the cross-

correlogram that aligned the licks with respect to touches to the pegs (Figure 7D).We defined a licking peri-

odicity index for each peg as the maximum value of the power spectrum in the range of 8–10 Hz, which cor-

responds to licking frequency observed. Thus, the higher this index value was, the more periodically the

mice licked the spout around the peg. To investigate the relationship between the periodicity index and

the locomotor chunks, the periodicity index of each peg was aligned with the start-peg and the end-peg.

We found that the periodicity index increased significantly at 1–3 steps after the start-peg compared to

that of the start-peg (Figure 7E, p = 3.4 3 10�3 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test)

and that the periodicity index significantly increased 1–3 steps before the end-peg compared to that of

the end-peg (Figure 7F, p = 6.1 3 10�3 by one-factor ANOVA; p < 0.05 by Tukey-Kramer test). This pattern

suggested that the coordination of forelimb movement and licking was higher inside of the chunk than

outside of the chunk. Thus, we compared the periodicity index between in-chunk and out-chunk periods.

We found that the periodicity index was significantly higher inside the chunk than outside of it (Figure 7G,

p = 2.13 10�7 by two-tailed t test). It was important to test these results also for eachmouse.We did so (Fig-

ure S5) and found that themice exhibited individual differences in significance level of modulation in licking

periodicity, but we found that there was a similar trend in the results across all mice.

Because therewas apossibility that the licking itself couldhardly beperformedduring theout-chunkperiods, the

auto-correlogram of the licking in each region (Figure S6A) and the average drinking frequency in each region

(Figure S6B) were calculated. We confirmed that licking occurred rhythmically even in the out-chunk period,

although it was slightly less rhythmic than during in-chunk periods (Figure S6A). In addition, the number of licks

was quite similar between in-chunk (6.46G 1.37/s) and out-chunk (6.22G 1.25/s; Figure S6B). These results were

important in indicating that the licking in the chunk was more periodically linked to peg touches than it was

outside of the chunks. Inside the chunk, not only the interval and phase of steps were stable and highly coordi-

nated but also the licking, which was also periodic, was coordinated with the limb movements.

DISCUSSION

Here we developed a protocol to examine the formation of stable running patterns by mice as they navi-

gated a complex peg pattern of footholds (pegs) that they were required to run on in order to receive
iScience 26, 106765, May 19, 2023 9



Figure 7. The modulation of licking periodicity around chunk boundaries

(A) Distribution of the lick intervals.

(B) Auto-correlogram of lick timing.

(C) Cross-correlograms of licks aligned to the time of peg 10 (top) and peg 5 (bottom) touches. Note that the cross-correlogram to peg 10 shows large

amplitude whereas that to peg 5 shows small amplitude. The data used to construct the cross-correlogram were from session #9 of mouse #6.

(D) Power spectra calculated from the cross-correlograms shown in C. Note that the power spectrum for peg 10 (top) shows a large peak at around 9 Hz,

which corresponds to licking frequency, whereas power spectrum for peg 6 (bottom) does not.

(E and F) Boxplot of periodicity indices for each peg aligned to the start-peg (E; p = 3.43 10�3, by one-factor ANOVA; *p < 0.05, by Tukey-Kramer test) and to

the end-peg (F; p = 6.13 10�3, by one factor ANOVA; *p < 0.05, by Tukey-Kramer test) for all chunks from all sessions. Themedian and interquartile range are

shown in boxplots. See also Figure S5.

(G) Comparison of periodicity indices between in-chunk and out-chunk pegs (*p = 2.13 10�8, by two-tailed t test) for all chunks from all sessions. Themedian

and interquartile range are shown in boxplots. See also S6.
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reward delivered during the runs. Three major findings emerged. First, as the mice learned the patterns,

they developed stable, repetitive several step stepping of their runs, regions that we defined a chunk.

The intervals of cycles were more consistent in these chunks than outside of the chunks, suggesting that

the movements of limbs were iso-periodic and cycles were more rhythmic within the chunk. Second, we

observed that the relative positions of the left and right forelimb touches comprising a full cycle were stable

within the chunks, indicating that the rhythmic movements of each forelimb were coordinated with phase,

which is a parameter of rhythm. This further indicates that within the chunked parts of the runs, the coor-

dination of movements among body parts was achieved through links between rhythms via phases. Third,

we found that the rhythm of licking, which occurred at a different frequency than the stepping and was not

directly related to running, was phase locked with step rhythms especially within chunks, indicating that, in

chunked regions, the movements of many body parts can be coordinated with each other by virtue of the

rhythm.

According to Thompson et al.,14 there are three commonly accepted definitions of chunks: (1) the number

of chunks should increase with repetition, (2) the proportion of actions falling within a chunk should in-

crease, and (3) chunks should be faster than non-chunks. In this study, the turning speed of the wheel

was kept constant, and thus the running speed of mice was constant. This procedure allowed us for a

detailed comparison of inside and outside the chunks, but it became impossible to satisfy the definition
10 iScience 26, 106765, May 19, 2023



Figure 8. Schematic diagram illustrating the occurrence of motor chunks structured by rhythmic coordination of

licking, left forelimb, and right forelimb

Motor chunks are composed of the combination of rhythms for stepping and licking of a mouse running in the step-wheel.
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of (3). Therefore, instead of definition (3), speed increase, we used the reproducibility of step timing in the

definition of chunks. In tasks in which the animal can change the speed of movement by themselves, the

movement in chunks should be faster, but in tasks where the animal cannot change the speed, such as

running in the step-wheels used in this study, we considered that the movement in the chunk region would

be more highly reproducible instead of being faster, because of a speed-accuracy trade-off relationship

(Fitts’ law15). Indeed, it has been found in both monkey and rat studies that when a behavior is sufficiently

repeated, that behavior becomes stabilized.16,17 The details of the movements after the behavior was sta-

bilized were not measured in these studies. But we did analyze these in detail, and we found that the sta-

bilized movements in mouse stepping were based on rhythm.

Based on these findings, we propose the rhythm chunking hypothesis whereby the motor chunk is

composed of the combination of rhythms generated by the repetition of simultaneously ongoing move-

ments of multiple body parts (Figure 8). To generate optimal movements involving multiple body parts,

it should be necessary to consider the number of possible combinations of all joints and muscles to be

adjusted. In addition, in continuous movements, the degrees of freedom for the timing of such combina-

tions are infinite. However, by using rhythm as the coordinating parameter—matching the cycles of each

movement, connecting them in a particular phase, and repeating them—the degrees of freedom can be

greatly reduced.18 This should also save brain resources used for movement generation.

The positions of the body parts determined by rhythm coordination will often not be the optimal position

for each individual movement. In the case of stepping on the complex peg pattern, the optimization of

movements for each step may be impaired to some extent. However, if the best positions of the body parts

for each step are selected, extra efforts should be needed for the transition between steps, which may not

be optimal for continuous stepping. If the positional relationship of the body parts in a consecutive step is

constrained to be within a certain range, the movements formed by the rhythm coordination could be

smoother and more efficient in the transition. As a result, even if the movement at each step was not

optimal, continuous movements as a whole might become more efficient, which might be the driving force

to form the chunk. The longer the movement sequence generated by the rhythmic coordination is , the

more efficient and advantageous it is. This efficiency could be the determinant of chunk length.

The application of the rhythm chunking strategy may be limited to repetitive movements. However, most of

the continuous movements that we perform routinely can be regarded as repetitive movements. For

example, we need to move our arm forward and then back when we walk, and we need to close our mouth

and then reopen it when we talk. Furthermore, some discrete movements like throwing a ball can be

considered as a cycle of repetitive movements. The rhythmic chunking of movements thus can be applied

to a wide range of movements. It is unclear whether the motor chunks previously reported in earlier studies

were rhythm chunks, but the chunks reported using periodic movements may well be rhythm chunks.19,20

It is known that rhythms are often combined in simple integer ratios automatically in continuous move-

ments, which implicates that the coordination of periodic movements occurs via links of rhythm parame-

ters: interval (cycle) and phase. For example, when an animal walks or runs, the rhythms of gait and
iScience 26, 106765, May 19, 2023 11
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breathing are combined in a simple ratio. In the gallop of quadrupeds, the ratio is 1:1.21,22 Even in the

bipedalism of humans, the rhythm of walking and breathing has a relationship of simple frequency ratios,

such as 2:1 and 3:1.23,24 In addition, whisking rhythms were also shown to be synchronized with sniffing in

rats with simple ratios such as 2:1, 1:1, and 1:2.25 The existence of many of such examples indicates that

rhythm coordination is a general phenomenon for motor coordination.

In this study, we observed how mice developed complex continuous movements by examining their

behavior on the step-wheel, and we found that small chunks were generated and that the length of the

chunks increased as training proceeded. Because the movements were coordinated in the chunk by the

parameters of rhythm, the regions of chunk elongation would be the regions where mice can continue

to perform without major changes in the rhythm parameters. In addition, the fact that the difference in in-

ter-touch CV between inside and outside of the chunks increased as the training progressed suggests the

possibility that the magnitude of differences in the rhythm parameters may increase at chunk boundaries in

the later sessions. We did not observe chunk concatenation, which might have resulted from difficulty in

merging chunks with different rhythm parameters.

We found individual differences amongmice in the location of chunks within the peg patterns that they ran.

This observation made it clear that the location of chunk formation was not determined solely by the peg

pattern, given that all mice ran on the same peg pattern; and it provided evidence against the possibility

that the chunk was formed at easy-to-run regions determined by the peg pattern. Once formed, chunks

tended to be maintained in successive sessions, and individual differences increased as training pro-

gressed. Thus, the running movements may be fixed to a different movement pattern for each mouse,

rather than converging on the most optimal movement physically determined by the peg pattern.

The different convergence patterns for individual mice may depend on the position of the first chunk that

the mouse formed early in training. In complex peg patterns, there can be multiple strategies for executing

successful movements consisting of multiple steps. Each mouse may have selected one of them, probably

by chance, and continued to use that strategy thereafter. The diversity of individual chunking strategies

observed in our experiments is consistent with the results of a previous study,13 in which different tapping

sequences formed across individual subjects. Alternatively, differences in the features that consist of

chunks may have affected where the chunks form. At the boundaries of the detected chunks, both of the

rhythm parameters, interval and phase, changed, but the magnitude of the changes varied among individ-

uals. It is possible that the location of chunk formation differed depending on whether the emphasis was on

interval or phase. It has been reported that the importance of features in a chunk differs when there is a

difference in the position at which the chunk is formed.26 It may be true for chunks in general that the fea-

tures that consist of a chunk affect the location of chunks. As well, the differences among mice may have

resulted from differences in sensory conditions. Mice could run in dark conditions with the same proficiency

as they did under light conditions. However, when their whiskers were trimmed, they were unable to run

proficiently in the wheel.12 These findings suggest that the differences in whisker sensibility could be

involved in the individual differences in chunk locations.

On the basis of all of these considerations, we propose the hypothesis that motor chunks are developed by

and are dependent on the coordination of rhythms of the moving parts. Reconstructing complex repetitive

movements into a combination of rhythmic coordination of the relationships among them may reduce the

calculations needed to generate effective movement sequences. This may reduce the load on the brain,

eliminating the need to be aware of each individual movement and automating continuous movement,

which may lead eventually to the formation of habits.27
Limitations of the study

We acknowledge that there are several limitations in our study. First, in our experimental system, the

complexity of the peg pattern was represented by 12 pegs on each side. With this design, there is no guar-

antee that all possible complexity would have had appeared within the complex peg pattern, and a longer

peg pattern would have revealed more about the chunks. We found that the length of chunks increased,

but they were not concatenated. We consider that this elongation may be the principle of chunk formation,

but if the mice were required to learn and perform a longer peg pattern, concatenation might have

occurred, as reported in other studies.28,29 Second, we did not analyze hind limb movements, even though

the presence or absence of rhythm coordination between forelimbs and hind limbs is a very important
12 iScience 26, 106765, May 19, 2023
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issue. This lack of data acquisition occurred because touches were detected by voltage sensors located

only at the spout, and we could not record both forelimbs and hind limbs simultaneously. In the future,

if both forelimbs and hind limbs can be simultaneously recorded by high-speed video, it will be possible

to determine whether, as we would expect, the movements of all four limbs are coordinated by rhythm.
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Matlab Mathworks https://www.mathworks.com

Python Python Software Foundation https://www.python.org/

LabVIEW National Instruments https://www.ni.com
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Takashi Kitsukawa (kits@fc.ritsumei.ac.jp).
Materials availability

This study did not generate unique reagent.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code. All custom Python scripts will be available upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Step-wheel

Detailed descriptions of the step-wheel can be found elsewhere.8,11 Briefly, the step-wheel is a motor-

driven running Ferris-like wheel with series of pegs for the stepping surface serving as footholds for

mice. The placement of pegs was changeable. We used ‘Regular’ and ‘Complex’ peg patters, designed

as follows: In the regular peg-pattern (Regular), the pegs on the two sides were alternately spaced at con-

stant inter-peg distances. In the complex peg-pattern (Complex), the pegs were arranged pseudo-

randomly (Figure 1C, see Kitsukawa et al.8 for details). Both peg patterns consisted of 24 pegs, 12 on

each side, and a peg pattern was repeated twice in one rotation of the wheel (Figure 1D). The passage

through the entire peg pattern was counted as one trial. Thus, one rotation consists of two trials. A spout

was placed between the left and right side of pegs, from which mice could drink water as a reward if it kept

pace with the turning wheel. Thus, the mice were required to run on the pegs at the same speed as the

rotational speed of the wheel. Voltage sensors were installed on each peg and on the spout for detection

of touches and licks.8 We have confirmed that body parts other than the paws (e.g., tail and head) were

never detected by the voltage sensors. An infrared sensor detected a mouse close to the spout (Figure 1B).

All analyses were performed on data recorded while this infrared sensor was cut by the mouse.
Mice

ICR mice (male, 10–20 weeks old, weighing 30–40 g) were purchased from SLC Japan (Hamamatsu, Japan).

All procedures were approved by the Committee on Animal Care of the Massachusetts Institute of Tech-

nology and the Osaka University Animal Experiments Committee, and were performed in accordance with

the National Research Council’s Guide for the Care and Use of Laboratory Animals.
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The mice had free access to dry pellet food. During pre-training and training sessions, the mice were

allowed to drink water principally in the step-wheel during and after the training session. Additional water

was given in their home cages as needed to reach 3 ml/day. They were given free access to water for an

entire day every 1–2 weeks. Their health condition, including weight, body temperature and fur condition,

was closely monitored during water restriction. Water was given ad lib if their weight fell to less than 80% of

its initial level, or if any abnormal health condition was observed.
Pre-training and training

To familiarize mice to running in the step-wheel while drinking water, we pre-trained them on the regular

peg-pattern for 2–3 weeks. Pre-training continued until mice became able to run at the speed of

12.5 cm/sec. Training on the complex peg-pattern version of the task started on the next day after the

completion of the pre-training (Figure 1A).

Mice were trained in one session per day and performed 60–70 trials (1 rotation was defined as 2 trials) of

the complex peg-pattern at a speed of 12.5 cm/s. The training period was 9 days. Histograms of touch fre-

quency (illustrated under the raster plots in Figure 1E) were obtained by counting touch events (peg-touch)

in every 5-msec bin and by smoothing over 10 bins.
CV of inter-touch interval

All data analyses were conducted using customMatlab (Mathworks, MA) programs. The touch intervals for

all peg pairs (inter-touch interval) were calculated using the peg-touch data recorded. The CV (coefficient

of variation) of the inter-touch interval in a session was calculated for each peg and shown in heat maps. The

inter-touch CV of a target Peg(N) was defined as the CV of the inter-touch intervals between the previous

peg (Peg(N-1)) to the target peg (Peg(N)) calculated throughout a session. Heat maps were drawn by using

the inter-touch CV calculated for each peg. In a given heat map, pegs with large inter-touch CV are drawn in

darker gray, and pegs with small inter-touch CV are drawn in lighter gray (see Figure 2A). The heat maps

were normalized by setting the mean value to 1.

There were 24 pegs in the complex peg-pattern, but mice usually used only 18–22 pegs, and the number

and locations of these pegs varied by mouse and by session. If the number of touches for a peg was less

than one-third of the number of trials in the session, that peg was excluded from the analysis, and the in-

ter-touch CV was calculated only among the remaining pegs. The excluded pegs were not used in the later

analysis. All subsequent principal analyses were performed on data collected during the training period

and not in the pre-training period, because no notable variations in inter-touch CVs were found during reg-

ular peg-pattern running. This stability was attributed to the even and alternatively spaced structure of the

regular peg-pattern. Thus, the principal analyses focused exclusively on the training period, using the data

collected as mice learned top ran on the complex peg-pattern.
Definition of a chunk

To determine the boundaries of a chunk, we searched for pegs at which the inter-touch CV jumped up at

both ends of the low-CV segment. Initially, the pegs at which the low-CV segment started or ended (start-

peg or end-peg, respectively) were determined using the inter-touch CV at each peg in the following way.

(1) To find a start-peg, the inter-touch CV of each peg was examined one by one in the opposite direc-

tion of the peg number (from 12 to 1). If the inter-touch CV was more than 1.3 times the value of the

previous peg, the inter-touch CV was considered to have jumped up, and the last peg before the

jump up was determined to be a putative start-peg.

(2) To find the end-peg, the inter-touch CV of a peg was checked in the order of the peg number. If the

value was 1.35 times or more than the previous peg, it was considered that a jump up has occurred,

and the last peg before the jump up occurred was identified as a putative end-peg.

(3) The span of pegs between the putative start-peg and end-peg identified in steps (1) and (2) was

defined as the putative low-CV segment. If all the inter-touch CV of pegs in that segment were lower

than the standard deviations of the inter-touch CV of all pegs in the peg pattern and that of the start-

peg or end-peg, the segment was defined as a low-CV segment.
16 iScience 26, 106765, May 19, 2023
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(4) When the length of the low-CV segment was more than 4 pegs in a row, the sequence was identified

as a chunk.

The thresholds for significant jump-ups and jump-downs of the inter-touch CV were both determined from

the distributions of jump-ups and jump-downs calculated across all sessions in all mice. As a population

deviating from the central distribution was identified, the upper ten percentile of jump-ups (and downs)

was selected as the threshold that effectively differentiates between the two groups (Figure S1). Conse-

quently, the thresholds were determined to be 1.35 and 1.3, respectively, for jump-ups and jump-downs.
CV analyses inside and outside of chunk

The start-pegs and the end-pegs belonged to the chunk in all analyses. The pegs inside the chunk were

noted as in-chunk pegs in some of the following analyses, and all pegs not included in the in-chunk

were assumed to be out-chunk. When showing the changes of the inter-touch CV, the inter-touch CV for

the pegs defined as all pegs, in-chunk pegs, and out-chunk pegs were averaged for each session (see Fig-

ure 2B). A one-factor ANOVA followed by Tukey-Kramer’s multiple comparison test was performed to test

the amount of change in the transition of CV. The CV ratio in each session was calculated as (mean out-

chunk CV)/(mean in-chunk CV). A one-factor ANOVA followed by Tukey Kramer’s multiple comparison

test was performed to test the change of the amount of the CV ratio throughout the session. When the

adjusted p values were less than 0.05, the difference was considered significant.
Similarity analysis of chunks

To compare quantitatively the structure of chunks across different sessions, a chunk vector was used, which

was defined as a vector of 24 components corresponding to pegs that indicate the position of the chunk.

Specifically, the component of the chunk vector was 1 if a peg belonged to a chunk and 0 if a peg did not

belong to any chunk. To quantify the similarity of chunk structure between sessions, we calculated the

cosine similarity between the chunk vectors. The cosine similarities were calculated across all sessions in

all mice and shown as a heatmap (see Figure 3A).

Chunk vectors were arranged in a session order from top to bottom for each mouse to make a chunk binary

map (see Figure S2). The pegs that were excluded from the analysis due to the small number of peg touches

were complemented in the following way. An excluded peg was defined as an in-chunk peg only if two adja-

cent pegs on both sides were in-chunk pegs. Otherwise, any excluded pegs were defined as out-

chunk pegs.

To compare the similarity of chunk structures within an individual mouse (intra-individual), the dot product

of chunk vectors in different sessions of the same mouse was calculated. The similarity between individual

mice (inter-individual), after enumerating the pair of sessions between different mice, was evaluated by

randomly choosing the same number of pairs as the number of intra-individual session pairs and by calcu-

lating the similarity between the sessions.

A one-factor ANOVA followed by Tukey-Kramer’s multiple comparisons was performed to test the differ-

ence in chunk similarity between intra- and inter-individual. When the adjusted p values were less than 0.05,

the difference was considered significant.
Indices for interval and phase

The interval-shift and phase-shift were used as indicators of motor coordination in repetitive steps

(Figures 4A and 4B). We define ‘‘step’’ and ‘‘cycle’’ before defining interval and phase, and then define

the interval-shift and phase-shift. A step was defined as the time spent between the forelimb touching a

peg and the other forelimb touching the next peg on the other side. A cycle was defined as the time taken

for a forelimb to touch a peg and then for the same forelimb to touch on the subsequent peg of the same

side (Figure 4A). An interval was the time required for one cycle, and an interval-shift was defined as the

time difference in intervals between two consecutive cycles. The ratio of the time required for one step

within one cycle was defined as phase, and the difference of phases between two consecutive cycles

was defined as phase-shift.
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Let Ri and Li be the time when themouse touches the i-th (i = 1 to 12) pegs on, respectively, the left and right

sides, and the interval-shift before and after the target peg was calculated as:

Interval ShiftðLiÞ = fLi+1 � Lig � fLi � Li� 1g
Interval ShiftðRiÞ = fRi+1 � Rig � fRi � Ri� 1g
The interval-shift was calculated separately for the left and right trial by trial, then averaged over all trials in

a session. The interval-shift of the opposite side to the start-peg and end-peg were aligned to the peg just

before the start-peg or end-peg on the opposite side. The phase-shift of the target peg was calculated as:

Phase ShiftðLiÞ =

�
Ri � Li
Li+1 � Li

� Ri� 1 � Li� 1

Li � Li� 1

�
3 2p
Phase ShiftðRiÞ =

�
Li � Ri

Ri+1 � Ri
� Li� 1 � Ri� 1

Ri � Ri� 1

�
3 2p

The phase-shifts were calculated trial by trial and were averaged across all trials in the session. This index

shows how much the position of the opposite limb (phase) has changed before and after the target peg.

To analyze the distribution of interval, interval-shift, phase, and phase-shift, all the data from all sessions

were used. The histogram of intervals (see Figure 5A) was obtained by counting the number of intervals

in each 10-msec bins and smoothed over 100 msec using sliding windows. The histogram of the interval-

shift (see Figure 5B) was obtained by counting the number of interval shifts in each 2-msec bins and

smoothed over 20 msec using sliding windows. The histogram of phase (see Figure 6A) was obtained by

counting the number of phases in each 0.04 p (rad) bins and smoothed over 0.4 p using sliding windows.

The histogram of the phase-shift (see Figure 6B) was obtained by counting the number of phase-shifts in

each 0.02 p bins and smoothed over 0.2 p using sliding windows. After the histograms of each variable

were obtained, those were converted into the probability distribution.

Comparison between in-chunk and out-chunk steps

For the comparison between in-chunk and out-chunk values for the interval-shift or the phase-shift, we used

the data after the fourth session, in which chunk locations had become stable. Changes in the mean inter-

val-shift and phase-shift between in-chunk and out-chunk steps were tested by two-tailed t-tests. A one-

factor ANOVA followed by Tukey-Kramer’s multiple comparisons was performed to test the changes in

the interval- and phase-shift around start-pegs and end-pegs. When the adjusted p values were less

than 0.05, the difference was considered significant. For the per-mouse analyses, a one-factor ANOVA fol-

lowed by Tukey-Kramer’s multiple comparisons was performed on the data from each mouse. When the

adjusted p values were less than 0.05, the difference was considered significant.

For the comparison of the phase-shift between chunk boundary region and other regions, we defined the

boundary region as the region including start-peg and end-peg and one peg before and after such pegs

(total of 6 pegs, three at the start and three at the end). All pegs except the boundary-region pegs were

defined as belonging to the non-boundary region of the chunk. A two-tailed t-test was performed to

test the difference in phase-shift between the boundary and the non-boundary regions. p-values less

than 0.05 were considered significant.

Licking analysis

Histograms of licking intervals were obtained by counting consecutive intervals in 2-msec bins and smooth-

ing over 10 bins using sliding windows. For auto-correlograms, the licking events detected during the

500-msec windows before and after each licking were counted in 5-msec bins smoothed over 10 bins

with sliding windows. Finally, the histograms were converted into probability distributions.

Auto-correlograms of licking events were constructed separately for the in-chunk and out-chunk regions

with the same method described above (see Figure S6A). The period corresponding to in-chunk for licking

analysis was determined as the time from touching start-peg to touching end-peg, and all other periods

were determined as the time corresponding to out-chunk. The average number of licks for in-chunk and

out-chunk was calculated for each mouse, and the means and SEMs were shown for all mice

(see Figure S6B).
18 iScience 26, 106765, May 19, 2023
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Throughout a given session, the number of licks that occurred in in-chunk and out-chunk periods was

counted. Then, counts were divided by the total time that mice spent in each region to calculate the

average number of licks per second.

For cross-correlograms between the licks and the peg touches, licks that occurred in the 300-msec periods

before and after each peg touch were counted. A cross-correlogramwas obtained by counting licks in each

consecutive 5-msec bin (see Figure 7C). A periodicity index of licking around each peg touch was calcu-

lated as the maximum value of the power in the 8–10 Hz range in the spectrogram, which corresponded

to the frequency band of licking. A one-factor ANOVA followed by Tukey-Kramer’s multiple comparison

test was performed to test the changes in the periodicity indices around start-pegs and end-pegs; adjusted

p values less than 0.05 were considered significant. For the per-mouse analyses, a one-factor ANOVA fol-

lowed by Tukey-Kramer’s multiple comparisons was performed on the data of each mouse. When the

adjusted p values were less than 0.05, the difference was considered significant.
QUANTIFICATION AND STATISTICAL ANALYSIS

Numerical analyses and statistical tests were performed on Python. Variances (Figure 2B), chunk length

(Figure 2C), variance ratio (Figure 2D), and chunk similarities (Figure 3) are presented as mean G SEM.

All the other values are presented as boxplots, and the median and interquartile ranges are shown. We em-

ployed the parametric two-tailed t-test for comparison between two groups. For multiple comparison, we

performed one-factor analysis of variance (ANOVA), followed by Tukey-Kramer’s multiple comparison test.

The p value less than 0.05 was considered statistically significant, and we used adjusted p values for mul-

tiple comparison.
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