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ABSTRACT

Epigenome-Wide Association Study (EWAS) has be-
come an effective strategy to explore epigenetic
basis of complex traits. Over the past decade, a
large amount of epigenetic data, especially those
sourced from DNA methylation array, has been ac-
cumulated as the result of numerous EWAS projects.
We present EWAS Data Hub (https://bigd.big.ac.cn/
ewas/datahub), a resource for collecting and normal-
izing DNA methylation array data as well as archiving
associated metadata. The current release of EWAS
Data Hub integrates a comprehensive collection of
DNA methylation array data from 75 344 samples
and employs an effective normalization method to
remove batch effects among different datasets. Ac-
cordingly, taking advantages of both massive high-
quality DNA methylation data and standardized meta-
data, EWAS Data Hub provides reference DNA methy-
lation profiles under different contexts, involving 81
tissues/cell types (that contain 25 brain parts and
25 blood cell types), six ancestry categories, and 67
diseases (including 39 cancers). In summary, EWAS
Data Hub bears great promise to aid the retrieval and
discovery of methylation-based biomarkers for phe-
notype characterization, clinical treatment and health
care.

INTRODUCTION

Epigenome-Wide Association Study (EWAS) has become
an effective strategy to explore epigenetic basis of com-
plex traits, such as aging (1–4), body mass index (BMI)
(5,6), smoking (7,8) and diseases (9,10), accordingly lead-

ing to massive amounts of epigenetic data. Among differ-
ent types of epigenetic data, DNA methylation is the most
abundant and widely characterized one, primarily owing
to the rapid advancement in DNA methylation profiling
technologies, especially Infinium HumanMethylation450
(450K) and MethylationEPIC (850K) arrays (11,12). There-
fore, comprehensive integration of DNA methylation array
data and metadata is of fundamental significance to sys-
tematically characterize and investigate methylation states
across different experimental conditions and explore epige-
netic mechanisms associated with diverse traits.

Over the past several years, several databases have been
developed to host DNA methylation array data (13–19), pri-
marily including Gene Expression Omnibus (GEO) (20),
ArrayExpress (21), The Cancer Genome Atlas (TCGA)
(22), Encyclopedia of DNA Elements (ENCODE) (23),
Firehose and The cBio Cancer Genomics Portal (cBioPor-
tal) (24). Although they made valuable efforts to help users
conduct methylation studies, these databases have three sig-
nificant drawbacks. First, they lack an effective and uni-
fied normalization method to remove batch effects among
different datasets, which may exert severe negative influ-
ences on downstream analysis (25,26). Second, different
databases use different metadata standards, making it chal-
lenging to integrate methylation data across diverse condi-
tions and samples. Third, as a result, none of them pro-
vides standardized and normalized DNA methylation pro-
files across different tissues, sexes, ancestry categories and
diseases. In short, these databases are designed mainly for
archiving raw data, without value-added curation for data
normalization and metadata standardization.

To address these drawbacks, we develop EWAS Data
Hub (https://bigd.big.ac.cn/ewas/datahub), for collecting
and normalizing DNA methylation array data as well as
archiving associated metadata. More than just rehosting
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Figure 1. Schematic overview of data processing workflow.

datasets as they appear in public databases, a pipeline op-
timized for data normalization and metadata curation is
employed to remove batch effects and standardize meta-
data across different datasets. Thus, EWAS Data Hub not
only provides normalized methylation data and standard-
ized metadata but also integrates a comprehensive collec-
tion of high-quality methylation profiles across different
contexts.

IMPLEMENTATION

EWAS Data Hub is implemented using Spring Boot (http://
spring.io), a prevailing and easy-to-configure Model-View-
Controller (MVC) framework, deployed in a Centos Linux
7.4 environment. Thymeleaf (https://www.thymeleaf.org),
which is integrated with the Spring Framework, is used to
render the HTML interface. In the back-end part, meta-
data and reference data are stored in MySQL (https://www.
mysql.com). Front-end interfaces are built using Bootstrap
(https://getbootstrap.com) with jQuery (https://jquery.com)
to provide responsive and user-friendly web pages. The
documentation is generated by docsify (https://docsify.js.
org). HighCharts (https://www.highcharts.com) and plotly

(https://plot.ly/) are used to provide interactive charting and
data visualization.

DATA CURATION AND DATABASE CONTENTS

We download all available datasets generated by Infinium
HumanMethylation450 or MethylationEPIC arrays from
GEO, TCGA, ArrayExpress and ENCODE. If raw data
are available, signal intensities are extracted using the Minfi
package in Bioconductor (27). A series of curation pro-
cesses are applied to remove batch effects and improve the
quality of data (Figure 1). First, we normalize signal in-
tensities of type I probes between arrays using an in-house
reference-based method (for details see the Documentation
in the database website). Second, Beta-Mixture Quantile
Normalization (BMIQ) is employed to correct the bias as-
sociated with technical differences between Type I and Type
II array designs (28). Previous studies have shown that set-
ting a stringent detection P-value threshold (10−16) is able to
significantly reduce the proportion of outlying values (due
to a low signal-to-noise ratio of fluorescence intensities) and
accordingly achieve improved calling (29,30). Therefore, we
perform rigorous quality control to filter out probes with
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Figure 2. Screenshots of the ‘Browse’ pages. (A) An example of advanced search and its results, (B) the ‘Browse’ page of probe/gene.
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Figure 3. Reference data of probe ‘cg16867657’. (A) The ‘Basic’ panel, (B) the ‘Tissue’ panel, (C) the ‘Age’ panel and (D) the ‘Cancer’ panel.

high detection P-values (by default, the threshold is set at
2.2 × 10−16, which is the smallest number that can be stored
by the floating system in R program) and remove samples
with more than 20% of the probes with high detection P-
values (31). To standardize the metadata, we develop a cura-
tion model that summarizes 178 fields, including four com-
mon fields (sample ID, project ID, tissue/cell and sample
type which refers to health status of the sample) and 174

other fields (sex, age, disease, etc.) (see the online Documen-
tation for details). We standardize the values of all fields,
if applicable, by setting up controlled vocabularies or map-
ping them to experimental factor ontology (EFO) that com-
bines parts of several biological ontologies, such as Disease
Ontology (DO) and Gene Ontology (GO).

Based on the standardized curation process, EWAS Data
Hub obtains a comprehensive collection of DNA methyla-
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tion data as well as associated metadata from 75 344 sam-
ples (Figure 2), including 470 tissues/cell types, 306 diseases
and other conditions. In order to find the sample(s) with
specific characteristics, a set of advanced filters, such as tis-
sue, age, sex and platform, are provided to facilitate users to
query and narrow down the searched results (Figure 2A).
After retrieval, users can download data and metadata of
retrieved samples. Importantly, EWAS Data Hub integrates
a curated collection of 485 512 probes in association with 36
397 genes (Figure 2B). For each probe/gene, it provides a
series of relevant estimates, including tissue-specificity, age
correlation, sex difference and ancestry-specificity. In ad-
dition, EWAS Data Hub is equipped with multiple filters,
allowing users to easily find probes and genes of interest.
Specifically, these filters include tissue-specificity score es-
timated across all collected tissues, correlation coefficient
with age, methylation level difference between sex, and
ancestry-specificity score. Taken together, EWAS Data Hub
features a complete collection of curated probes/genes as
well as standardized sample metadata.

For each probe/gene, EWAS Data Hub provides ref-
erence DNA methylation profiles cross different contexts,
making it possible to systematically characterize and in-
vestigate the landscape of methylation states across a wide
range of experimental conditions. To facilitate data pre-
sentation, taking the probe ‘cg16867657’ (https://bigd.big.
ac.cn/ewas/datahub/probe/cg16867657) as an example, all
these data are organized into different panels in terms of
basic, tissue, sex, age, ancestry category, BMI, cancer, dis-
ease and public EWAS, respectively (Figure 3).

The ‘Basic’ panel not only provides fundamental infor-
mation such as genomic location, position relative to CpG
island, associated phenotypic traits in EWAS Atlas (32),
but also summarizes the correlation of DNA methylation
level with tissue, sex, age and ancestry (Figure 3A). Besides,
a genome browser is presented to visualize related data in
an interactive manner. The ‘Tissue’ panel contains DNA
methylation profiles across 31 tissues, 25 brain parts and 25
blood cell types (Figure 3B). For each probe, its methylation
profiles across different tissues/brain parts/blood cell types
are depicted in a violin plot, which can greatly help users
explore the methylation pattern in various conditions. The
‘Sex’ panel provides DNA methylation profiles across dif-
ferent sexes, which would be helpful to investigate the het-
erogeneity of DNA methylation in male and female. The
‘Age’ and ‘BMI’ panels provide the distribution of DNA
methylation by chronological age and BMI, respectively
(Figure 3C). Following a previous study (28), six ancestry
categories are adopted in our study. Therefore, the ‘Ances-
try’ panel contains six categories by grouping all datasets
into different ancestries. The ‘Cancer’ and ‘Other disease’
panels provide DNA methylation profiles across 39 cancers
and 28 diseases in both case and control samples. For can-
cers, Kaplan-Meier survival analyses of overall survival of
patients according to the DNA methylation status are con-
ducted (Figure 3D). Moreover, the relationships between
DNA methylation and expression of proximal genes are
presented in a scatter plot. The Public EWAS panel pro-
vides detailed information of public EWAS associations. In
partnership with EWAS Atlas (32), EWAS Data Hub au-
tomatically retrieves related traits for each probe/gene and

provides users with convenient links to EWAS Atlas. More-
over, all datasets collected in this study are publicly available
at https://bigd.big.ac.cn/ewas/datahub/download.

DISCUSSION AND FUTURE DEVELOPMENTS

Considering the significance of DNA methylation as one
of the most promising cancer diagnostic and therapeutic
targets and also a key link between environmental factors
and phenotypes (33–38), EWAS Data Hub provides great
opportunities to dissect epigenetic mechanisms underlying
complex biological traits by integrating and normalizing
large amounts of DNA methylation array data as well as
curating and standardizing the corresponding metadata.
With the ever-growing volume of DNA methylation data
and the rapid development of methylation profiling technol-
ogy, EWAS Data Hub will be updated regularly to integrate
more DNA methylation array data, especially those from
850K. Accordingly, the reference DNA methylation profiles
will be updated and expanded to include more phenotypic
traits, making it possible to conduct a meta-analysis for
probes and genes from multiple studies of the same trait. In
addition, considering that DNA methylation in combina-
tion with gene expression pattern has been frequently used
to explore the molecular mechanisms between epigenet-
ics and phenotype (39,40), the relationships between DNA
methylation and expression of proximal genes in more phe-
notypes will be added to EWAS Data Hub. Moreover, on-
line tools to visualize and analyze DNA methylation array
data will be developed.
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