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Abstract: Individual glycemic responses following dietary intake result from complex physiological
processes, and can be influenced by physical properties of foods, such as increased resistant starch
(RS) from starch retrogradation. Predictive equations are needed to provide personalized dietary
recommendations to reduce chronic disease development. Therefore, a precision nutrition model pre-
dicting the postprandial glucose response (PPGR) in overweight women following the consumption
of potatoes was formulated. Thirty overweight women participated in this randomized crossover
trial. Participants consumed 250 g of hot (9.2 g RS) or cold (13.7 g RS) potatoes on two separate
occasions. Baseline characteristics included demographics, 10-day dietary records, body composition,
and the relative abundance (RA) and α-diversity of gut microbiota. Elastic net regression using
5-fold cross-validation predicted PPGR after potato intake. Most participants (70%) had a favorable
PPGR to the cold potato. The model explained 32.2% of the variance in PPGR with the equation:
547.65 × (0 [if cold, high-RS potato], ×1, if hot, low-RS potato]) + (BMI [kg/m2] × 40.66)—(insoluble
fiber [g] × 49.35) + (Bacteroides [RA] × 8.69)—(Faecalibacterium [RA] × 73.49)—(Parabacteroides [RA]
× 42.08) + (α-diversity × 110.87) + 292.52. This model improves the understanding of baseline
characteristics that explain interpersonal variation in PPGR following potato intake and offers a tool
to optimize dietary recommendations for a commonly consumed food.

Keywords: resistant starch; potatoes; microbiome; Faecalibacterium; precision nutrition

1. Introduction

Resistant starch (RS) is a bioactive fiber found naturally in certain foods. Health
benefits associated with RS intake include lower postprandial glucose and insulin and
an improvement in enteroendocrine hormones [1–9]. Potatoes contain RS, which can
increase in concentration based on preparation method [10]. Cooked then chilled potatoes
contain higher amounts of RS compared to cooked, nonchilled potatoes, through the
process of retrogradation [11]. The process of altering preparation methods to optimize
RS from potatoes, one of the most commonly consumed high-RS foods [12], had not been
investigated to promote a glycemic benefit until recently [13]. Previous studies demonstrate
an improvement in glycemic biomarkers following the intake of Russet potatoes with
varying RS concentrations that resulted from different cooking and preparation methods.
Significant reductions in insulin and glucose-dependent insulinotropic peptide (GIP) area
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under the curves (AUC) 120 min postprandial were found following the cold potato
compared to a hot potato; however, not all of the participants responded favorably to the
cold potato in terms of lower postprandial glucose response (PPGR).

Foods with higher amounts of RS, or fiber, typically have lower glycemic index (GI)
scores compared to those with more rapidly digestible starches. Gaesser et al. investigated
the impact of fiber on postprandial glucose AUC in healthy adults, and found that low
GI meals resulted in 9% lower 4 h glucose AUC [14]. Other studies have shown that
foods with higher levels of RS through gelatinization (i.e., cooling after cooking) have a
lower glycemic index, or reduced available carbohydrate, which may help explain why
Patterson et al. observed a lower glucose iAUC following the cold potato compared to the
hot [15]. Consuming foods with a lower GI may help improve glucose homeostasis and
reduce risk factors for metabolic syndrome [16,17], type 2 diabetes [18] and cardiovascular
disease [19,20]. However, controversy remains regarding the impact of a low-GI diet or
improved PPGR. For example, the OmniCarb randomized control trial did not indicate
improved cardiovascular markers after consuming a low-GI diet for 5 weeks [21].

An area of interest in better understanding the influence of RS on postprandial glucose
homeostasis is its relationship with the microbiome. Key microbiota from the Ruminococcus
and Eubacterium genera and Faecalibacterium prausnitzii species degrade RS, which promotes
the production of short-chain fatty acids (SCFAs) [22,23]. Several reviews describe how RS
modifies the microbiome; however, an important distinction should be made for the reverse
scenario: how the microbiome environment influences the physiological responses to RS.
To consider the influence of the microbiome on glycemic response to foods, in particular
to RS, focus has been placed on SCFA binding to receptors of enterocytes to stimulate
incretins, such as GIP and glucagon-like peptide-1 (GLP-1) [24–26]. Downstream reactions
release GLP-1 and in turn stimulate insulin secretion. Other studies indicate that select
microbiota can predict PPGR independently of other host metabolic and/or physiologic
factors [27], and that select dietary fibers (i.e., RS4) induce divergent and highly specific
modulations of the microbiome to alter the output of propionate or butyrate SCFAs. Thus,
the microbiome can modulate the postprandial response from consuming RS.

To better understand interindividual differences, the field of precision nutrition identi-
fies factors that contribute to individual responses to dietary interventions. Most studies
investigating responses to RS interpret results as collective means, and do not consider vari-
ability among individuals or factors driving interindividual differences. Since postprandial
physiological responses depend on several complex biological and metabolic processes,
this oversimplification of PPGR warrants deeper investigation with consideration for the
individuals’ specific biology and external influences (i.e., dietary choices). A precision
nutrition framework takes interindividual differences into account using machine learn-
ing, and has been used to predict PPGR following dietary interventions. For example,
Zeevi et al. [28] investigated PPGR in over 800 participants to develop a predictive model
for selecting dietary recommendations to lower PPGR. The model’s prediction of foods to
lower glycemic responses in a prospective cohort was accurate and superior to standard
dietary recommendations.

PPGR has also been predicted following the consumption of specific foods. Korem
et al. [27] conducted a crossover intervention in healthy subjects using white and sour-
dough breads (4 g vs. 9 g of fiber, respectively) and compared PPGR and other clinical
parameters. Each bread intervention provided 50 g of available carbohydrates. Data anal-
ysis utilizing linear mixed models found no significant differences in clinical parameters
(i.e., glucose, insulin, or low-density lipoprotein) between the two groups. However, upon
deeper investigation of person-specific responses, not all participants exhibited lower PPGR
following the intake of the higher-fiber sourdough bread. A model using gradient boosting
regression and leave-one-in cross-validation identified factors that predicted PPGR. Of note,
baseline microbiome features, including relative abundance (RA) of species, RA of genes,
and function, solely predicted PPGR following the intervention. Thus, integrating models
that include person-specific factors may predict individual PPGR better than traditional
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statistical methods. Key variables used in these personalized models to predict PPGR
include demographics, dietary intake, and microbiome composition.

The objectives of the present study included assessing baseline characteristics to
predict PPGR in individuals following an intervention of low- vs. high-RS potatoes (hot vs.
cold Russet potatoes, respectively) and to develop a precision nutrition model to predict
PPGR. To achieve these objectives, we performed a post hoc analysis and used an elastic
net penalty to select variables to be included in the model. Baseline characteristics included
demographics, dietary components, body composition, the RA of stool microbiota, and
α-diversity of the stool microbiome. We hypothesized that our model would identify
predictors of PPGR, and that microbiome features would significantly contribute to the
explained variance of the model.

2. Materials and Methods
2.1. RS Quantification

Quantification of RS was performed using the AOAC Method 2002.02 (Megazyme©
RS Assay Kit, Bray, County Wicklow, Ireland) [29]. Three potatoes were prepared for
each potato cooking method: baked—served hot, boiled—served hot, baked—chilled, and
boiled—chilled. Chilled potatoes were stored at 4 ◦C for 5 days. After potatoes were
prepared, they underwent lyophilization for 72 h to ensure adequate drying. Each potato
type was run in duplications for 2 samples taken from each potato (a total of 4 per potato
type). The mean concentrations of RS per potato type were compared using the unpaired
t-test with significance being p < 0.05.

2.2. Glucose Response

Blood samples were drawn at fasting (>8 h, water allowed) and at 15, 30, 60, and
120 min postprandial. Blood was collected in one 6 mL EDTA vacutainer for glucose.
All blood samples were centrifuged at 4000 RPMs for 15 min. Serum was immediately
aliquoted into cryovials and stored at −80 ◦C. Serum glucose was determined by colori-
metric analysis. Quantification of glucose occurred by a multimode reader (Synergy HI,
BioTek® Instruments, Inc., Winooski, VT, USA).

The incremental area under the curve (iAUC) was calculated for glucose from fasting
until 120 min after the final bite of the potato. The area between each time interval (15–0 min,
30–15 min, 60–30 min, and 120–60 min) was calculated using the trapezoidal method based
on 5 different equations, depending on if concentrations fell above or below the baseline
concentration. Only the area above the baseline value was retained in the iAUC value.
Detailed equations and scenarios of iAUC calculations are described elsewhere [30,31].
The iAUC describes the cumulative postprandial response over time; however, important
features such as the concentration maximums (Cmax) and minimums (Cmin) between each
intervention are not independently captured. Therefore, we tabulated the Cmax and Cmin
and the time to Cmax and Cmin (as Tmax and Tmin, respectively) of glucose and compared
them between potato interventions.

2.3. Clinical Trial and Baseline Characteristics

More detailed descriptions of the study participants and the primary analysis can be
found elsewhere [13]. In brief, participants were all females with a body mass index (BMI)
between 25 and 40 kg/m2. Participants were excluded if they were not between 18 and
40 years old, were pregnant or lactating, had significant weight change in the past 6 months,
or were taking medications or supplements that affect metabolism or antibiotics/probiotics
within the past 3 months.

Body composition was measured using air displacement plethysmography via the
BOD POD® (COSMED USA, Inc., Concord, CA, USA) to determine fat mass and fat-free
mass. Anthropometrics included height, weight, and BMI. The weight measurement used
was derived from the calibrated scale from the BOD POD®.
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Dietary records were captured over 10 days throughout the study to better represent a
participant’s usual diet compared to other methods such as 24 h recalls. One participant
had an average energy intake of >4000 kcals/d and was likely an over-reporter [32];
therefore, we applied a crude cutoff value of 4000 kcals/day and adjusted subsequent
dietary components to the proportion of energy reduction. Dietary information was entered
into the Nutrition Data System of Research (Nutrition Coordinating Center, University of
Minnesota, 2016), and the nutrient composition was analyzed. Only dietary components
thought to be relative to the study question were included for analysis.

Participants collected stool specimens prior to the first study intervention (OMNIgene®

GUT OM-200, DNA Genotek, Ontario, CA, USA). Stool samples were aliquoted and stored
in −80 ◦C freezer and batch-analyzed by MicrobiomeDx (Houston, TX, USA). In brief,
microbial DNA was extracted using the Mag-Bind Universal Pathogen DNA Kit (Omega
Bio-Tek, Norcross, GA, USA). 16S sequencing libraries were generated by amplifying
the v3–v4 hypervariable regions of the 16S gene [33]. MicrobiomeDX used BacPro™,
a proprietary algorithm, to generate a comprehensive report that includes α-diversity
scores describing community richness, evenness, taxonomic composition with RA.

2.4. Statistical Analysis

No participants or periods were excluded following assessments of the carryover,
treatment, and period effects, demonstrating an adequate 7-day washout period. We ap-
plied simple mean imputation for missing biomarkers of one participant [34]. Outliers
of biomarkers were evaluated visually by boxplots and calculated by interquartile range
(IQR) × 3.

Normality assumptions were evaluated using the Shapiro–Wilk test, and hypothesis
testing was performed based on the distribution. Demographics (age, ethnicity, BMI)
were described using proportions and mean (standard deviation). The glucose iAUC was
calculated using the trapezoid method, and differences in biomarkers between the potato
interventions were determined by Wilcoxon signed rank test and described as median
(interquartile range). Dietary data were calculated as means and standard deviations or
medians and interquartile range, as appropriate, to describe the energy, total and percent
of kilocalories of macronutrients (fat, protein, and carbohydrates), available carbohydrate,
glycemic index, total fiber, insoluble fiber, soluble fiber, monounsaturated fatty acids,
polyunsaturated fatty acids saturated fatty acids and trans fatty acids. Microbiota taxa
included in correlative studies and the regression model were selected based on prevalence
and use in previous literature. At a minimum, genera had to be present in at least 50%
of the participants. Five phyla and 1 family of interest were also included based on
prior studies related to PPGR. Correlations between glycemic biomarkers and baseline
demographics, body composition, microbiota, and diet, were performed using Spearman’s
rho. Relationships between the microbiota and biomarkers included a Bonferroni correction
for multiple comparisons. All other significance was assigned at p < 0.05. Statistical analysis
was performed using Stata® v.16.1 (College Station, TX, USA), and figures were generated
using Prism v.7.03 (Graphpad, San Diego, CA, USA).

2.5. Penalized Regression

We used a data-driven approach to build a penalized regression model with an
elastic net penalty and k-fold cross-validation to identify predictors of PPGR following
consumption of low-RS (hot) and high-RS (cold) potatoes. Baseline demographics, body
composition, Shannon and Simpson α-diversity, the RA of key microbiota, and dietary
intake were used as input data for the models (Supplemental Table S1). Predictors that
were sparse or clinically insignificant were removed as input variables.

One model was built to predict glucose iAUC with a variable in the final equation to
account for potato type (low-RS vs. high-RS). Data was stacked, and the glucose iAUC
for low-RS (1) or high-RS (0) potatoes were retained as separate input variables; all other
variables were duplicated and controlled for by using the vce cluster option in STATA®
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(variance-covariance matrix of estimators, used commonly in case–control analyses) for
matched-paired comparison. A 5-fold cross-validation was used to avoid overfitting the
model. The strength of this approach is the out-of-sample prediction [35]. This method
of k-fold cross-validation randomly partitions data into k − 1 samples for training and
then tests the model on the 1 held out k-fold. Elastic net regression was chosen over other
penalized regression methods because it applies two penalty terms, a combination of the L1
norm from the least absolute shrinkage and selection operator (LASSO) to provide feature
selection and the L2 norm of ridge regression to provide effective regularization. This
makes it optimal for analysis using a small sample size and a large number of predictors
that are highly correlated (i.e., dietary components and microbiota composition). After
elastic net variable selection, we performed linear regression with the final input variables
to generate β-coefficients and the model equation.

The linearity of the standardized residuals against each of the predictor variables in the
regression model was evaluated. Although there is a certain level of nonlinearity at the far
end values of BMI, insoluble fiber, and Bacteroides RA, we believe it is not severe, and it is
acceptable that the final model met the linearity assumption. The normality of residuals of
the final model was evaluated using the Shapiro–Wilk test for normality. With p = 0.16, the
Shapiro–Wilk test indicated that the residual of the final model was normally distributed.
Correlations between dietary components and the microbiome were present; however,
the implementation of the elastic net penalties controls for multicollinearity by restricting
correlated parameters so that only one (the most predictive) is retained in the model [36].
To this effect, the variance inflation factor (VIF) revealed no evidence of multicollinearity.
Lastly, the vce cluster option to fit the model resulted in no homoscedasticity concerns.

3. Results
3.1. Participants and Study Design

A total of 30 overweight females without comorbid conditions participated in this
randomized crossover study. Participants consumed roughly 9.2 ± 1.1 g of RS during
the low-RS (hot) potato intervention and 13.7 ± 3.0 g of RS during the high-RS (cold)
potato intervention (p = 0.009). The mean age of participants was 29.6 ± 6 years old, and
the mean BMI was 32.8 ± 3.6 kg/m2. Participants exhibited a high body fat percentage,
averaging 45.5 ± 4.8%. The following results consist of a post hoc analysis describing
baseline characteristics associated with PPGR and the predictive model developed using
key baseline features.

3.2. Postprandial Biomarker Response

Postprandial responses following the low-RS and high-RS potatoes varied among
participants. Previous analysis [13] revealed reductions in glucose concentration following
the high-RS potato in the early postprandial period (15 and 30 min) compared to the low-RS
potato, but no difference in glucose total area under the curve (tAUC) between potatoes
occurred. However, when the data were reanalyzed based on incremental AUC (iAUC) to
exclude values below the basal fasting concentrations from the AUC calculation [37], PPGR
was different between potato intakes, p = 0.02.

Despite an overall significant reduction in the median glucose concentration of the
group, not all participants demonstrated a lower glycemic response following the high-RS
potato (Table 1). The median reduction in glucose iAUC after consuming the high-RS
potato was 471 mg·h/mL, p = 0.02. Twenty-one out of 30 participants (70%) exhibited a
lower glucose iAUC after consuming the high-RS potato compared to the low-RS potato.

3.3. Dietary Patterns

Dietary patterns heavily influence the gut microbial population and epigenetic factors
associated with glucose metabolism [38]; therefore, key components of dietary intake
contributed to the model. Dietary records were captured over 10 days throughout the study
to represent the usual diet of participants during the study period (six weekdays and four
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weekend days). Participants consumed an average of 1828 ± 643 kcals/d (Table 2). Dietary
patterns revealed slightly higher fat and sugar intakes than the U.S. Dietary Guidelines for
Americans 2020–2025 recommendations [39]. The mean percent of kilocalories (%kcals)
from fat totaled 36% (recommended between 20 and 35%), and the mean saturated fat intake
was 25.4 ± 12.7 g/day (recommended as <10 g/day). Further, participants consumed a diet
high in sugar, with 48 g out of 75 g (64.1%) of sugar ingested as added sugars (sugar not
naturally present in the food product consumed). Added sugars composed 10.5% of kcals
consumed per day, which slightly exceeds dietary recommendations of 10% of total kcals.
Fiber intake did not meet dietary guidelines and averaged nearly half of the recommended
intake: 15.24 g/day consumed by the participants vs. recommendations of 25 g/d [39].
Of note, RS is not a dietary component that is currently assessed in food databases, and
therefore, the usual intake of RS could not be reported in this study.

Table 1. Postprandial glucose response of women with overweight (n = 30) following hot and cold
potato consumption.

Postprandial Glucose Low-RS Potato High-RS Potato Delta
(Low − High) p-Value

iAUC, mg·h/mL 1180 (500, 1910) 709 (316, 1038) 471 0.021
Concentration maximum, mg/dL 153.2 (129.6, 174.7) 140.93 (124.6, 160.8) 12.3 0.047
Concentration minimum, mg/dL 95.93 (85.2, 120.9) 100.70 (89, 109) −4.8 0.417

Time to peak concentration, minutes 30 (15, 30) 30 (15, 30) 0 0.767
Time to minimum concentration, minutes 120 (22, 120) 90 (30, 120) 30 0.99

All values are presented as median (interquartile range) except for the delta. iAUC, incremental area under the
curve; RS, resistant starch.

Table 2. Mean 10-day nutrient composition.

Dietary Variable Mean (SD)

Energy, kcal 1828 (643)
Total fat, g 78.7 (36.1)

Kcals from fat, % 36.0 (5.1)
MUFA, g 27.9 (12.4)
PUFA, g 18.8 (9.1)

Trans FA, g 2.3 (1.17)
SFA, g 25.4 (12.7)

Protein, g 75.0 (28.0)
Kcals from protein, % 16.6 (3.5)

Total CHO, g 206.4 (69.2)
Kcals from CHO, % 45.5 (8.1)

Total sugar, g 75.4 (36.9)
Added sugar, g 48.1 (27.8)

Available CHO, g 191.1 (66.7)
Total Fiber, g 15.2 (5.7)

Soluble fiber, g 4.5 (1.5)
Insoluble fiber, g 10.7 (4.4)
Glycemic Index 60.3 (4.6)

Dietary record information was inputted into the Nutrition Data System for Research (Nutrition Coordinating
Center, University of Minnesota, 2016) to determine nutrient composition. Abbreviations: CHO, carbohydrate;
kcal, kilocalories; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated
fatty acids.

3.4. Microbiome Profile

Microbiome profiling using 16S rRNA occurred from a single stool sample collected
prior to the first potato intervention. All 30 participants provided an adequate sample
for analysis. The average number of operational taxonomy unit reads was 147,070, with
75% of those reads mapped to the SILVA database as previously observed microbes [40].
Divided by taxonomy, there were 14 different phyla, 62 families, and 221 genera identified.
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Top phyla detected followed typical Western patterns, and included: Firmicutes, Bac-
teroidetes, Proteobacteria, and Actinobacteria. The most prevalent genera (phyla) observed
among the samples were Bacteroides (Bacteroidetes), Faecalibacterium (Firmicutes), Blauti
(Firmicutes), Lachnoclsotridium (Firmicutes), Ruminococcus (Firmicutes), Anaerostipies
(Firmicutes), and Ruminiclostridium (Firmicutes; Figure 1). Relative abundance of top taxa
varied considerably between participants. Key taxa used for correlative and predictive
analyses were determined based on previous studies using microbiota to predict PPGR
(Supplement Table S1) [28,41]. The genera included in the penalized regression model
accounted for >66% of the total population genera (Figure 2).
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3.5. Correlative Relationships with Baseline Characteristics and Glucose iAUC

All significant relationships between baseline features and PPGR differed for low- and
high-RS (Table 3), meaning that the different RS content in the potatoes played a major role
in these findings. Following the low-RS potato, moderate, inverse relationships existed
between height and the RA of Faecalibacterium. These correlations were not found from
the high-RS potato intervention. Glucose iAUC following the high-RS potato correlated
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inversely to insoluble fiber intake and the RA of the Actinobacteria phyla. Positive correla-
tions were seen between %kcals from fat and protein and the high-RS potato glucose iAUC.
Of note, when a Bonferroni correction factor was applied to the microbiome relationships
with glucose iAUC, no significant correlations remained. These differences in PPGR follow-
ing each potato, though consumed by the same participants, further highlights the need for
precision nutrition to distinguish personal characteristics that influence PPGR.

Table 3. Significant * correlations between baseline characteristics and iAUCs of glucose, Spear-
man’s rho.

Glucose–Low-RS
Potato

Glucose–High-RS
Potato

Rho p-Value Rho p-Value

ANTHROPOMETRICS

Height, cm −0.38 0.04 −0.23 0.23

METABOLIC

Fasting glucose at high-RS intervention, mg/dL 0.38 0.04 0.21 0.26

DIET

Insoluble fiber, g −0.20 0.28 −0.37 0.04

Kcals from fat, % −0.13 0.49 0.39 0.03

Kcals from protein, % −0.20 0.30 0.50 0.005

MICROBIOME † (relative abundance)

Actinobacteria (phyla) −0.16 0.67 −0.40 0.04

Faecalibacterium −0.44 0.02 0.03 0.87
Abbreviations: kcal, kilocalories. * Note: Variables are included in the table if statistically significance correlations
were found with either the low- or high-RS iAUCs. No correlative variable showed significant relationships with
both potato types. † All microbiome correlations became nonsignificant when the Bonferroni correction factor
was applied.

3.6. Predictve Model for PPGR following Potatoes

A total of 58 input variables (Supplemental Table S1) were used for elastic net se-
lection for the final model. Stopping criteria and variable selection were based on 5-fold
cross-validation. Sparse taxa were removed. The top five most abundant genera in our
sample and taxa used in previous prediction models for postprandial glucose were evalu-
ated [27,28,41,42]. Note that due to the unavailability of RS concentration in food databases,
we were not able to include ratios related to RS, such as carbohydrates:RS or insoluble
fiber:RS, in the model. Variables selected by elastic net regression were included in the final
model, even if they did not yield significant findings, namely because of their clinical sig-
nificance and contribution in explaining the model’s variance. The root-mean-square error,
or the prediction error that was minimized by the model hyperparameters, was 855.32.

Glucose iAUC could be explained by the potato type (low-RS vs. high-RS), three
genera, Simpson α-diversity, BMI, and insoluble fiber intake. The model accounted for
32.2% of the variance (R2) in glucose iAUC. Only the type of potato (low-RS or high-RS)
and the RA of Faecalibacterium were significantly associated with glucose iAUC (β = 547.65,
95% CI 131.61, 963.68, p = 0.01 and β = −73.49, 95% CI −128.51, −18.47, p = 0.01, respec-
tively; Table 4).

The type of potato (low-RS vs. high-RS) was the only significant, positive association
with glucose iAUC, while the RA of Faecalibacterium significantly and negatively associated
with glucose iAUC. This model predicts the PPGR following either low- or high-RS Russet
potatoes in this small population of overweight women.
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Table 4. Unadjusted and adjusted coefficients from linear regression that predict postprandial
glucose response.

Univariate Multivariate

β Coef. (95% CI) p-Value β Coef. (95% CI) p-Value

Low-RS (vs. high-RS) potato 547.65 (153.72, 941.58) 0.01 547.65 (131.61, 963.68) 0.01

Faecalibacterium −69.37 (−124.15, −14.58) 0.02 −73.49 (−128.51, −18.47) 0.01

Bacteroides 11.26 (−11.78, 34.31) 0.33 8.69 (−14.33, 31.72) 0.45

Body mass index (kg/m2) 49.05 (−77.58, 175.68) 0.39 40.66 (−54.21, 135.54) 0.39

Alpha Diversity, Simpson −5599.38 (−15,827.10, 4628.34) 0.27 110.87 (−10,209.57, 10,431.30) 0.98

Insoluble fiber, g −50.10 (−101.24, 1.05) 0.06 −49.35 (−116.56, 17.86) 0.14

Parabacteroides −70.90 (−173.86, 32.06) 0.17 −42.08 (−136.35, 52.18) 0.37

Intercept – – 292.52 (−9705.98, 10,291.01) 0.95

4. Discussion

This study observed significant reductions in glucose iAUCs following the intake of
high-RS potatoes compared to low-RS potatoes in 30 overweight or obese women. This
study is novel in that a predictive equation to determine baseline characteristics that
influenced the glycemic response following a low- or high-RS potatoes was developed. The
study focused on understanding the glycemic benefits of modifying RS by cooking and
refrigeration in a commonly consumed food.

Investigations into the role of RS on glucose homeostasis related to other RS foods
mirror the results of the current study. A randomized crossover trial by Nilsson et al. [3]
examined a 3-day intervention where high RS bread (barley, ~17 g RS/day) was compared
to white bread (2.5 g RS/day) and reported improved glucose homeostasis in 20 healthy
volunteers (85% women). Postprandial glucose peaks were reduced following the high-RS
bread. Stewart et al. [43] provided acute supplementation of RS type 4 (16.5 g) in a crossover
study comparing high fiber vs. low fiber scones. After measuring the iAUC for 180 min,
postprandial glucose significantly reduced between 43 and 45% [43]. However, these trials
did not examine the influence of food processing on RS levels in whole foods, nor was the
influence of the gut microbiome explored. These trials, among many others [1,2,6,7,43],
demonstrate that a higher, acute intake of RS resulted in improved PPGR. It is important to
note that the present study observed reductions in glucose iAUC following the intake of a
high-RS potato with approximately 13.7 g of RS, which is a lower amount than many of the
studies, but was still efficacious. This in part may be due to the combination of RS types,
both RS type 2 and RS type 3, present in the high-RS potato, or other fiber components
inherent in potatoes. We also studied healthy, overweight females following acute ingestion
of a whole food product containing RS, rather than a RS supplement, which few other
studies exclusively investigate.

The usual dietary intake reported by the study participants mostly aligned with the
U.S. Dietary Guidelines for Americans 2020–2025 [39]. The most concerning dietary pattern
from our participants was the lack of fiber intake and excessive added sugar consumption.
Studies investigating the postprandial response of RS (either acute or prolonged consump-
tion) usually fail to report the usual dietary intake of the participants in the trial. Our
participants’ metabolic phenotype was primed by diets high in available carbohydrate,
possibly confounding the interaction between epigenetic factors and the low-RS potato
(higher in available carbohydrates). Phenotypic patterns may have affected the availability
of digestive enzymes or activated genes related to carbohydrate metabolism or RS degrada-
tion. RS causes genetic alterations in carbohydrate metabolism [44], to where participants
consuming a higher-fiber diet may have elicited a different response to the intervention
than individuals with consistently lower-fiber intake. The importance of this may be evi-
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dent in the negative association (though not significant, p = 0.14) between insoluble fiber
and glucose iAUC in our regression model.

The interplay between diet and gut microbiota may play an important role in how
dietary RS can improve PPGR. Although this study did not measure the fermentation of RS
by gut microbiota nor the microbiome changes resulting from RS intake, we did measure the
association between baseline microbiota and PPGR. Several genera showed relationships
with postprandial glucose iAUC following consumption of low- and high-RS potatoes. The
Faecalibacterium genus and Actinobacteria phyla showed moderate, negative correlations
with glucose iAUC following the intake of low- and high-RS potatoes, respectively. The
results of this observational trial should be tested in greater depth in randomized controlled
trials and mechanistic studies.

Several studies have reported similar relationships between Faecalibacterium and glu-
cose. Zhang et al. sequenced the microbiome of patients with different levels of glu-
cose intolerance, and Faecalibacteria prausnitzii was most abundant in the normal glucose-
tolerant group compared to the participants with prediabetes and type 2 diabetes mellitus
(T2DM) [45]. The influence of Faecalibacterium on glucose iAUC became evident in our
model as the only significant contributor, other than potato type, associated with PPGR.
Other studies have also observed an inverse relationship between Faecalibacterium and
diabetes [46]. A recent review [47] reports that four out of five studies found a negative
association between Faecalibacterium and T2DM. To our knowledge, this is the first study to
demonstrate the inverse association between Faecalibacterium and iAUC glucose following
a high-RS whole food.

Various modeling techniques can predict PPGR using baseline characteristics. In a
post hoc analysis of 106 healthy Danish adults, S
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ndertoft et al. used a random forest
model focused on clinical features and the microbiome to determine the effect on PPGR [42].
The authors noted that a model based solely on microbial components accounted for up to
14% of the variance in PPGR excursions. When clinical features were added to the model,
up to 78% of the variance in PPGR excursions was reported. Our model did not have any
other clinical laboratory values available, such as serum cholesterol or triglycerides, which
may have explained more variance. Because many underlying clinical, physiological, and
metabolic features contribute to PPGR, stronger predictors may exist that were not assessed
in the present study.

In the present study, a key element in the design was to provide a dietary intervention
that could feasibly be achieved in a real-world setting. The amount of potato administered
(250 g) was equivalent to a serving size of mashed or baked potato, which can be realistically
consumed alone or with a meal. We were unable to determine the actual amount of RS2
and RS3 (RS3 exclusively in the cold potato) for each potato administered to participants,
but we did quantify the mean RS in the hot and cold potatoes. Moreover, the volume of
potato consumed was equivalent between interventions, yet the proportion of available
carbohydrate differed, with a lower amount of available carbohydrate in the cold, high-RS
potato. Another limitation of this study includes that the postprandial time period did not
allow for adequate assessment of bacterial fermentation of RS and further stimulation of
incretins located lower in the gut. We were also limited to microbial data at the 16S rRNA
level, while whole-genome sequencing could provide deeper insight into the functional
role of key microbiota and specific species associated with lowering postprandial glucose.
Despite these limitations, a robust modeling technique incorporated common baseline
features and selected variables with the greatest influence on PPGR. Further, because this
study recruited volunteers without chronic disease, the identified predictors of PPGR may
be applicable to other healthy populations.

5. Conclusions

Incorporating simple, modifiable changes, such as increasing the RS concentration in
the commonly consumed potato by changing the cooking method, may aid in better control
of glycemic responses to this starchy food. Understanding the interpersonal variation in
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the glycemic effect of potatoes would allow for appropriate dietary recommendations and
optimization of routine food choices. The gut microbiota, especially Faecalibacterium, pre-
dicted the PPGR following potato intake. Larger studies are needed for the generalizability
and evaluation of more diverse populations.
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