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Abstract
Background: There is no good prognostic model that could predict the prognosis of 
bladder cancer (BCa) and the benefit of immunotherapy.
Methods: Through the least absolute shrinkage and selection operator (LASSO) 
algorithm, we constructed a 13-mRNA immune signature from the TCGA cohort 
(n  =  406). We validated its prognostic value and predictive value for the benefit 
of immunotherapy with four independent validation cohort (GSE13507 [n = 256], 
GSE31684 [n = 93], GSE32894 [n = 308], and IMvigor210 cohort [n = 298]).
Results: Our results indicating that high-risk group with higher inhibitory immune 
cell infiltration (regulatory T cells [Tregs] and macrophage, etc), higher expression 
of immune checkpoints, and more T cell suppressive pathways (transforming growth 
factor β [TGF-β], epithelial-mesenchymal transition [EMT], etc) were activated. 
Besides, the immune signature showed a good predictive value for the benefit of im-
munotherapy in a cohort of urothelial carcinoma patients treated with PD-L1.
Conclusions: The immune signature constructed is convenient to classify the 
 immunotherapeutic susceptibility of patients with BCa, so as to achieve precision 
immunotherapy for BCa.
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1 |  INTRODUCTION

Bladder cancer (BCa) is the ninth most common cancer 
worldwide and the 13th most fatal. Smoking remains the 
most associated risk factor for BCa.1 Bacillus Calmette-
Guérin (BCG) is one of the most successful immuno-
therapies for BCa. According to the existing research, 
the antitumor effect of BCG is mainly attributed to the 
synergistic effect of urothelial cells and immune system 
cells.2 In recent years, the treatment landscape of BCa has 
been changed by the introduction of checkpoint blockade 
(CPB).3,4 However, many patients currently treated with 
immune CPB do not benefit very well, and there are no 
unique biomarkers that could predict patients’ treatment 
benefits.5 According to the anatomy, BCa can be divided 
into nonmuscle-invasive bladder cancer (NMIBC) and 
muscle-invasive bladder cancer (MIBC).6,7 NMIBC has a 
high recurrence rate and progression rate,8 while MIBC has 
a high mortality rate.9,10 Similar to immune benefit, there 
are no good biomarkers or prognostic signature to accu-
rately predict the prognosis of BCa.

As tumors develop, the body's immune system is acti-
vated to resist tumor development. Unfortunately, tumor cells 
employ various strategies to delay or even stop the body's 
immune system from suppressing tumors, a phenomenon 
known as immune escape.11 The occurrence of immune 
escape usually leads to malignant progression, metastasis, 
poor prognosis, and failure of immunotherapy. Several im-
mune escape mechanisms have been identified, one of the 
key mechanisms is that tumor cells induce and recruit inhib-
itory immune cells (Tregs, macrophages, etc) to promote im-
mune escape.12 Immune checkpoints, such as programmed 
cell death protein-1 (PD-1), programmed death ligand-1 
(PD-L1), and cytotoxic T-lymphocyte-associated protein 4 
(CTLA4), are responsible for immune escape.13,14 Also con-
tributing to immune escape are cytokines such as vascular 
endothelial growth factor (VEGF) and transforming growth 
factor β (TGF-β).15,16

With the maturity of high-throughput technology and the 
development of many algorithms aimed at studying tumor 
immunity (single sample Gene Set Enrichment Analysis 
[ssGSEA], quanTIseq, CIBERSORT, etc),17-19 it is possible to 
describe the landscape of tumor immune microenvironment 
(TME) through transcriptome sequencing.20,21 However, no 
studies have systematically delineated the TME in BCa. We 
constructed an immune signature of 13-mRNA based on the 
least absolute shrinkage and selection operator (LASSO) al-
gorithm and then, the TME landscape of BCa was depicted 
according to two currently popular algorithms and quantita-
tively estimated the main immune cells, thus finding a signif-
icant correlation between immune signature score (ISS) and 
immune escape phenotype. Based on this immune signature, 
we could easily predict the prognosis and benefit of immuno-
therapy in BCa patients.

2 |  MATERIALS AND METHODS

2.1 | Data collection and preprocessing

The Cancer Genome Atlas (TCGA) level 4 RNA-sequencing 
(RNA-seq) data (Fragments Per Kilobase Million [FPKM] 
values and count values) were downloaded from the UCSC 
Xena website (https://gdc.xenah ubs.net). In order to make the 
RNA-seq data more comparable with the microarray data,22 
we converted the FPKM values to the Transcripts Per Million 
(TPM) values. For somatic mutation data, we downloaded 
the MuTect2 dataset (SNPs and small INDELs, and MuTect2 
Variant Aggregation and Masking) from the same website, 
and synonymous mutations and mutations with a mutation 
frequency of less than 5% were removed. Prognostic data for 
all TCGA survival analyses were obtained from published 
paper.23

For the Affymetrix microarray data of the Gene Expression 
Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/
geo/), the RMA algorithm of R package “affy”24 was applied 

T A B L E  1  Details of the cohort used

Series 
accession 
numbers GSE13507 GSE31684 GSE32894 TCGA-BLCA IMvigor210

Platform Illumina human-6 v2.0 
expression beadchip

Affymetrix Human Genome 
U133 Plus 2.0 Array

Illumina HumanHT-12 
V3.0 expression beadchip

Illumina 
RNA-seq

Illumina 
HiSeq 2500

No. of patients 256 93 308 406 298

Subtype NMIBC: 103; MIBC: 
62

NMIBC: 15; MIBC: 78 NMIBC: 215; MIBC: 93 NMIBC: 5; 
MIBC: 401

Gender Female: 30, Male: 135 Female: 25, Male: 68 Female: 80, Male: 228 Female: 107, 
Male: 299

Female: 65, 
Male: 233

Survival 
outcome

OS, PFS OS, RFS DFS OS, PFS OS

https://gdc.xenahubs.net
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
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for background adjustment and normalization, and then log-
arithmic processing. For the Illumina data, we followed the 
“lumi” software's protocol to perform preprocessing.

The IMvigor210 cohort was downloaded from the web-
site http://resea rch-pub.gene.com/IMvig or210 CoreB iolo-
gies, which was a cohort study of atezolizumab in patients 
with locally advanced or metastatic urothelial carcinoma.15 
For the microarray data of this cohort, the R package “array-
QualityMetrics” was used to quality control, and the trimmed 
mean of M-values was used to normalize the count data. The 
following logarithmic processing was carried out through 
“voom” function of R package “limma”.25,26 Samples from 

IMvigor210 cohort that had no clinical response were 
removed.

For all cohorts, only samples containing prognostic data 
were retained. The details of all the cohorts used are listed 
in Table 1, and the flow chart of our entire study is shown in 
Figure 1.

2.2 | Differentially expressed gene screening

To construct an immune-related prognostic signature, we re-
ferred to the method that has been published,27 and calculated 

F I G U R E  1  Flow chart of the study. LASSO, Least absolute shrinkage and selection operator; ISS, immune signature score

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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the differentially expressed genes (DEGs) between TP53 mu-
tation type (TP53Mut) and TP53 wild-type (TP53WT) samples. 
We used the count value as the input matrix, and the R pack-
age “DESeq2”28 was applied to perform DEGs analysis. We 
used the false discovery rate (FDR) <0.05 as the screening 
threshold.

2.3 | Dimension reduction and 
establishment of the immune signature

We intersected the DEGs and immune-related genes29 ob-
tained in the previous step, then univariate analysis was used 
to perform the dimension reduction to reduce the noise of 
gene without prognostic value (P <  .05 was considered to 
have prognostic value). We randomly divided the data from 
TCGA cohort into two groups according to the ratio of 3:1, 
the former as the training cohort (n = 304), the latter as the 
internal validation cohort (n  =  102), and all the samples 
as the entire cohort (n  =  406). The R packet “LASSO”30 
was used to establish the immune signature on the training 
cohort. The LASSO algorithm could reduce the dimension 
of high-latitude data,31 and the degree of high-latitude data 
complexity was controlled by the parameter λ, the larger λ 
was, the greater the penalty was, so as to get a model with 
fewer variables.32 We ran 10-fold cross-validation through 
the function “cv.glmnet” to get a stable model. Finally, Cox 
regression coefficient calculated by LASSO algorithm was 
used to construct the immune signature, and ISS was defined 
as ISS=

∑

�
i
G

i
, where β is the Cox regression coefficient of 

the mRNA; and G is the mRNA expression value of gene 
i. According to the median of ISS, we divided the patients 
into high-risk and low-risk groups. The time-dependent 
ROC curve performed by R package “survivalROC”33 and 
Kaplan-Meier survival curve analysis performed by R pack-
age “survival” both were used to verify the accuracy of the 
prognostic value of the immune signature. To avoid the 
overfitting effect, we validated the prognostic value of im-
mune signature with two internal validation cohorts (TCGA 
internal validation cohort and entire validation cohort) and 
three independent external validation cohorts (GSE13057, 
GSE31684, and GSE32894).

2.4 | Quantitative estimation of immune cell 
infiltration

The “quanTIseq” algorithm was used to quantify the infiltra-
tion of immune cells in BCa. “QuanTIseq” is an algorithm 
for quantifying tumor immune infiltration from human RNA-
seq data, and it quantifies the proportions of 10 different im-
mune cell types (neutrophil, NK cell, B cell, T cell CD4, 
macrophage, etc) by deconvolution. This algorithm could 

estimate the absolute proportion of related immune cell types 
from RNA-seq data, thus supports comparisons between and 
within samples, which some current deconvolution algo-
rithms cannot do (such as CIBERSORT, TIMER, EPIC).18 
Following the protocol of the R package “immunedeconv”,34 
we used a matrix of TPM values (no logarithmic process-
ing) as input to perform the deconvolution. The R package 
“immunedeconv” was downloaded from https://github.com/
grst/immun edeconv. In addition, we used the R package “es-
timate”35 to infer the fraction of immune and stromal cells 
in tumor samples, this package was based on ssGSEA algo-
rithm, from a macro perspective to detect the distribution of 
immune and stromal infiltration.

2.5 | Functional and pathway 
annotation of the immune signature

To find the functions and pathways represented by the im-
mune signature, we calculated the correlation coefficients 
between all genes and ISS. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis were 
performed through the R package “ClusterProfiler”.36 All 
genes were sequenced according to the magnitude of the 
correlation coefficient, so as to conduct gene set enrichment 
analysis (GSEA), and P < .05 was considered significant.

To understand the correlation between immune signa-
ture and other immune-related pathways, we first convert 
the logarithmic TPM value to a z-score using the R package 
“GSVA”,37 and published immune pathway signature to con-
duct ssGSEA analysis of the immune signature.

2.6 | Statistical analysis

For the comparison of two groups of data, if the data are 
normally distributed, unpaired t-student test was used to 
compare the difference between them. If the data were 
non-normally distributed variables, a nonparametric test 
(Wilcoxon rank-sum test) was selected. For more than two 
groups, Kruskal-Wallis test or one-way analysis of vari-
ance was selected. All the calculations of correlation were 
computed by the “Pearson” algorithm. The univariate and 
multivariate Cox regression analyses were performed by 
R package “survival”, and the R package “forestplot” was 
used to visualize the result. Based on the results of multi-
variate analysis, we used prognostic factors that were inde-
pendent of other factors to construct a nomogram through 
the R package “rms”. The calibration curve was used to 
test the accuracy of the nomogram. If the degree of fitting 
 between the observed value and the actual value is higher, it 
indicates that the nomogram's prediction accuracy is higher. 
The decision curve analysis (DCA) performed by R package 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13057
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
https://github.com/grst/immunedeconv
https://github.com/grst/immunedeconv
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“rmda” was used to determine if the predictive model was 
clinically useful.38 The logistic regression and receiver op-
erating characteristic (ROC) were used to measure the pre-
dictive value of tumor mutational burden (TMB) and/or ISS 
for immunosuppressive benefits. P  <  .05 was considered 
statistically significant. All statistical calculations were per-
formed on R software (3.6.1 version).

3 |  RESULTS

3.1 | Screening differentially expressed 
immune-related gene

The R package “DESeq2” was used to screen DEGs be-
tween TP53Mut and TP53WT samples in TCGA-BLCA 

F I G U R E  2  Risk scores by the immune signature, the time-dependent ROC curves, and Kaplan-Meier survival curves in the TCGA training 
cohort, internal validation cohort, and entire cohort. (A) Training cohort. (B) Internal validation cohort. (C) Entire cohort. The panels on the left 
represent the distribution of the survival status of each patient based on ISS; the middle panels indicate the time-dependent ROC curve of each 
cohort, the AUCs at 1, 3, 5, and 7 years were used to assess the prognostic accuracy; the right panels represent the Kaplan-Meier survival curve,  
the log-rank test was used to calculated the P values. AUC, Area Under Curve; HR, Hazard Ratio; CI, Confidence Interval
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cohort; a total of 4946 DEGs were identified, under the 
threshold of FDR <0.05. Intersections with published im-
mune-related genes,29 145 candidate genes, were obtained 
(Figure 1).

3.2 | Construction of immune signature

We obtained immune-related genes with prognostic value 
after noise reduction treatment using univariate regression 

F I G U R E  3  Risk scores by the immune signature, the time-dependent ROC curves, and Kaplan-Meier survival curves in the external 
validation cohorts 1, 2, and 3. (A) GSE13507 cohort. (B) GSE31684 cohort. (C) GSE32894 cohort. AUC, Area Under Curve; HR, Hazard Ratio; 
CI, Confidence Interval

F I G U R E  4  Cox regression analysis and establishment of nomogram. Univariable analysis (A) and multivariable analysis (B) of the risk score, 
age, gender, histologic grade, and so on. (C) The nomogram for predicting the proportion of BCa patients with 1-, 3-, or 5-year overall survival 
(OS). Plots depict the calibration of the nomogram between predicted and observed (D) 1- or (E) 3-year outcomes. (F) Decision curve analysis was 
used to evaluate the clinical utility of nomogram

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
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analysis. The R package of “glmnet” was used to con-
struct LASSO Cox regression analysis. After 1000 times 10 
cross-validation, we obtained an optimal λ value of 0.023 
and finally, we established an immune signature based on 
13-mRNA (Figure  1, Table  S1). We divided the patients 
into high- and low-risk groups based on the median ISS 
(Figures  2-3, left panels). We used TCGA training cohort 
(HR = 2.21, 95% CI: 1.57-3.12, P < .001, Figure 2A) and two 
internal validation cohorts (TCGA internal validation cohort: 
HR = 2.12, 95% CI: 1.18-3.80, P = .015; TCGA entire co-
hort: HR = 2.20, 95% CI: 1.64-2.96, P < .001, Figure 2B,C) 
and three independent cohorts (GSE13507: HR  =  1.78, 
95% CI: 1.10-2.87, P = .014; GSE31684: HR = 1.89, 95% 
CI: 1.16-3.10, P =  .083; GSE32894: HR = 5.81, 95% CI: 
2.65-12.74, P < .001, Figure 3A-C) to verify the prognostic 
value of this immune signature. The result of time-depend-
ent ROC curve analysis indicated that the immune signature 
could accurately predict the overall survival (OS) (Figures 2 
and 3A-B) and PFS (Figure 3C, Figure S1A-C) of BCa pa-
tients. Kaplan-Meier survival curve analysis indicated that 
the high-risk subtype had a significantly worse prognosis 
(Figures 2-3, right panels). We explored the prognostic value 
of the immune signature in different stages and grades, and 
the results indicated that the prognostic signature basically 
performed well in each subgroup (Figure  S1D-F). Since 
this immune signature was constructed based on DEGs of 
the TP53 mutation state, we explored the prognostic value 
of the immune signature of different TP53 mutation state 
isoforms, and found that immune signature exhibited good 
prognostic value in both TP53 mutant and wild-type patients 
(Figure S1G-H).

3.3 | Cox regression analysis and the 
construction of nomogram

To explore whether this immune signature could predict prog-
nosis independently of other factors, Cox regression analysis 
was performed. We first performed univariate analysis of im-
mune signature and other potentially prognostic factors (age 
[≥65 vs <65], gender [female vs male], neoadjuvant treat-
ment [yes vs no], histologic grade [high vs low], pathologic 
stage [Ⅲ/Ⅳ vs Ⅰ/Ⅱ]), and the results indicated that the immune 
signature (HR  =  3.35, 95% CI: 2.43-4.62, P  <  .001), age 
(HR = 1.96, 95% CI: 1.40-2.76, P <  .001), and pathologic 
stage (HR  =  2.20, 95% CI: 1.52-3.19, P  <  .001) had high 
prognostic value (Figure 4A). Then, we performed multivari-
ate Cox regression analysis of them, and the results showed 
that the immune signature (HR = 3.11, 95% CI: 2.20-4.39, 
P < .001), age (HR = 1.73, 95% CI: 1.23-2.42, P < .001), and 
pathologic stage (HR = 1.77, 95% CI: 1.22-2.57, P < .001) 
could predict the prognosis of BCa independently of other 
factors (Figure 4B).

Since such results were not convenient for clinicians to 
predict the prognosis of patients with BCa, we constructed a 
nomogram based on the results of multivariate Cox regression 
analysis (Figure 4C). The ISS, age, and stage were scored sep-
arately, and finally, the comprehensive score was combined 
with the three, which was convenient to predict the 1-, 3-, and 
5-year survival rate of BCa. In order to verify the reliability 
of the nomogram, we verified the nomogram with the cali-
bration curve and DCA. The results of calibration curve indi-
cated that this immune signature was highly consistent with 
the ideal model (the blue line in the figure is basically the 
same as the 45° gray line. Figure 4D,E, Figure S1I); the re-
sults of DCA curve indicated that the nomogram showed high 
clinical application potential and net benefits (Figure 4F).

3.4 | The landscape of the TME in 
bladder cancer

By using the “quanTIseq” algorithm, we quantified the ab-
solute abundance of tumor immune cell infiltration in BCa. 
The results indicate that macrophage (M1 and M2), Tregs, 
and neutrophil predominate in BCa (Figure 5A); the results 
also exhibited higher infiltration of macrophage, monocytes, 
and Tregs, and lower infiltration of neutrophil in the high-
risk group (Figure 5B). Macrophage and Tregs have a strong 
positive correlation with ISS, while neutrophil has a nega-
tive correlation with ISS (Figure  S2A). Besides, we found 
that higher macrophages or Tregs infiltration tended to have 
a poor prognosis (Figure 5C). With the “estimate” R package 
based on ssGSEA algorithm, we explored the immune infil-
tration between high- and low-risk groups from an overall 
perspective, and found that the high-risk group had higher 
immune and stromal infiltration (Figure 5D,E). We explored 
the expression of immune checkpoints between the high- and 
low-risk groups and found that the high-risk group had higher 
PD-1, PD-L1, CTLA4, LAG-3, and TIM-3 expressions 
(Figure 6C, Figure S2C-E). Through pan-cancer analysis, we 
found that immune signature not only had prognostic value 
in BCa, but also had good predictive efficacy in cervical 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC), head and neck squamous cell carcinoma (HNSC), 
kidney renal clear cell carcinoma (KIRC), kidney renal pap-
illary cell carcinoma (KIRP), liver hepatocellular carcinoma 
(LIHC), ovarian serous cystadenocarcinoma (OV), and pan-
cancer (Figure S2F, Table S3).

3.5 | Functional and pathway annotation for 
immune signature

The results of GO analysis indicated that the immune signa-
ture was related to the biological functions of the extracellular 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31684
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
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matrix organization, extracellular structure organization, 
connective  tissue development, bone development, etc 
(Figure 6B, Table S4). The results of KEGG analysis showed 
that immune signature was mainly enriched in PI3K-Akt, 
focal adhesion, and ECM-receptor interaction-related signal-
ing pathways (Figure 6D, Table S5). GSEA analysis results 

exhibited that patients with high ISS mainly had over-activa-
tion of EMT, inflammatory response, and G2M checkpoint 
signaling pathway (Figure 6A, Figure S2B, Table S6). We 
performed ssGSEA analysis of immune signature based on 
published signaling pathway signature (Table  S2), and the 
results showed that EMT, TGF-β, CSF-1, etc inhibitory 

F I G U R E  5  Landscape of tumor immune microenvironment based on the immune signature. (A) Heatmap of absolute abundance of tumor 
immune cell infiltration, the risk group, TP53 mutation state, survival state, and tumor mutational burden (TMB) are shown as patient annotations. 
(B) Box plot of the distribution of 10 immune cells in the high- and low-risk group; the statistical difference of two groups was compared through 
unpaired t-test or Wilcoxon test. (C) Alluvial diagram of the immune signature in groups with different levels of ISS, Tregs, macrophage, and 
survival outcomes. Violin plots based on “estimate” algorithm for quantitative estimation of immune (D) and stromal (E) infiltration between the 
high- and low-risk groups. *P < .05; **P < .01; ***P < .001
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immune signaling pathways were significantly activated in 
the high-risk group, the same is true of cell cycle and mis-
matched repair signaling pathways (Figure  6E). TGF-β, 

EMT, angiogenesis these stromal relevant pathways were 
upregulated in patients with high ISS, which was consistent 
with the above result (Figure 5E).
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3.6 | Immune signature predicts 
immunotherapy benefits

Most solid tumors can be classified into three immunological 
phenotypes: immune-inflamed, immune-excluded, or immune 
desert.39,40 To explore whether the immune signature could 
predict the immunological phenotype of BCa, we studied our 
immune signature in a large cohort (IMvigor210) of patients 
with urothelial carcinoma treated with PD-L1 inhibitors (at-
ezolizumab). In this cohort, 47% of tumor patients present an 
immune-excluded phenotype, immune desert, and immune-in-
flamed phenotype accounted for 27% and 26% of the total num-
ber of patients, respectively. Our results showed that the ISS of 
the immune-excluded phenotype was significantly higher than 
that of the immune desert or the immune-inflamed phenotype 
(Figure S3D). The results exhibited that the immune signature 
showed prognostic value only in patients treated with PD-L1 
and BCG (Figure S3A-C). And, we further discuss the differ-
ences in immunosuppressive benefits between high- and low-
risk groups based on immune signature, and it turned out that 
patients in the high-risk group had a higher complete response 
(CR)/partial response (PR) rate than those in the low-risk group 
(Figure 6H). Also, the ISS of patients with clinical response of 
CR was significantly higher than that of patients with progres-
sive disease (PD) or stable disease (SD) (P < .05). The ISS of 
patients with clinical response of PR was also higher than that 
of SD groups, even though there was no difference with PD 
groups (P < .05, Figure 6F). Moreover, the immune signature 
combined with TMB could accurately distinguish CR/PR from 
stable disease (SD)/progressive disease (PD) (AUC = 0.736, 
Figure 6G).

4 |  DISCUSSION

Through an in-depth exploration of TCGA BCa data, we devel-
oped a classifier with comprehensive predictive value, which 
could indirectly predict the prognosis and immunotherapy re-
sponse of BCa through gene expression of 13-mRNA, thereby 
to guide more precision immunotherapy. Stratified analysis of 
BCa immune microenvironment revealed a significant positive 
correlation between ISS and inhibitory immune cells (Tregs and 
macrophages M1/M2). However, there was no difference in an-
titumor immune cells (T cell CD4/CD8) between the high-risk 

and low-risk groups. Moreover, patients with high ISS tend to 
have immune-excluded phenotypes in the IMvigor210 cohort.

Tregs are one of the offenders leading to immune escape. 
It mediates homeostasis peripheral tolerance by inhibiting au-
toreactive T cells, or secretes cytokines, such as TGF-β, that 
restrict T cell infiltration, which usually leads to reduced ben-
efits of immunotherapy and is associated with poor progno-
sis.15,41,42 Tregs, on the other hand, promote tumor progression 
by promoting angiogenesis.43 Our ssGSEA results indicated 
that patients with a high ISS generally have high activation of 
TGF-β and angiogenesis signaling pathways and higher stro-
mal infiltration, which are consistent with the above functions 
of Tregs. Tumor-associated macrophages (TAMs) are also 
among the inhibitory immune cells that contribute to immune 
escape that can be differentiated into M1 (antitumor) and M2 
(pro-tumor) phenotypes. TAMs tend to acquire M2 carcino-
genic phenotypes, which could promote the progress of can-
cer. Recent studies have found that TAM, like Tregs, can lead 
to the upregulation of PD-1 to achieve immune resistance.44,45

Our study also found that several vital immune checkpoints 
were significantly upregulated in patients with high ISS, such 
as PD-1, PD-L1, and CTLA4. These three immune check-
points have been the focus of research in BCa treatment, and 
previous studies have found that PD-L1 can bind to PD-1 on 
T cells, B cells, and macrophages activated on the surface of 
tumor cells, thus showing immunosuppressive effects.46-48 
The high expression level of PD-L1 has been reported to be 
significantly correlated with malignancy and poor prognosis 
of BCa, and such patients have a higher rate of recurrence 
after surgery.13,49,50 Atezolizumab is currently the only FDA-
approved PD-L1 inhibitor for BCa treatment, yet only a small 
number of patients benefit from immunotherapy.51 Therefore, 
the immune signature we developed could be stratified ac-
cording to the sensitivity of BCa patients to PD-L1 inhibitors.

Our results also indicated that the TGF-β signaling path-
way was significantly activated in patients with high ISS, 
while the published study has shown that TGF-β signaling 
pathway was mostly activated in immune-excluded or im-
mune-inflamed phenotypes, which was consistent with our 
results. The published study suggests that TGF-β signaling 
pathway shapes the TME to restrain antitumor immunity by 
restricting T cell infiltration.15 Taken together, our results 
also provide a potential therapeutic option to suppress tu-
mors, by inhibiting TGF-β.

F I G U R E  6  Function annotation, immune checkpoint expression in different risk groups, and immune signature predicts immunotherapy 
benefit. (A) Enrichment plots of GSEA based on ISS, the blue line shows that the EMT signaling pathway is significantly enriched in high-risk 
patients, NES: normalized enrichment score. (B) GO enrichment plot of the top 500 genes with the highest correlation with ISS. (C) Expression 
of immune checkpoints (PD-1 and PD-L1) between high- and low-risk groups. (D) KEGG enrichment plot of the top 500 genes with the highest 
correlation with ISS. (E) Histogram of standardized ssGSEA scores for signaling pathways between different risk groups. (F) Distribution of ISS 
in groups with different anti-PD-L1 clinical response statuses (CR, complete response; PR, partial response; PD, progressive disease; SD, stable 
disease). (G) ROC curve used to measure the predictive value of immune signature for immunosuppressive benefits. (H) Rate of clinical response 
(CR/PR and SD/PD) to immunotherapy in high- or low-risk groups. *P < .05; **P < .01; ***P < .001
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After our analysis, we found an interesting phenomenon that 
patients with high ISS have obvious immune escape phenotypes, 
so they should tend to have a poor prognosis and poor immune 
treatment response, but we found through the study of IMvigor210 
cohort that patients with high ISS have good immune benefits. 
This appears to be contradictory, actually otherwise, because our 
results show that patients with high immune marker scores tend to 
have high expression of PD-L1, which makes the immunotherapy 
response of PD-L1 inhibitors more effective.

5 |  CONCLUSION

This study constructed an immune marker of BCa, which has 
a high predictive value in the prognosis and response to im-
munotherapy of BCa, and can be classified and treated ac-
cording to the sensitivity of patients to immunotherapy.
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