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Background: Studies investigating chemokines in gestational diabetes mellitus (GDM)
have yielded mixed results. The purpose of this meta-analysis was to explore whether
concentrations of chemokines in patients with GDM differed from that of the controls.

Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines, we systematically searched Web of Science, Embase,
Cochrane Library, and PubMed databases for articles, published in any language, on
chemokines and GDM through August 1st, 2021. The difference in concentrations of
chemokines between patients with GDM and controls was determined by a standardized
mean difference (SMD) with a 95% confidence interval (CI), calculated in the meta-analysis
of the eligible studies using a random-effects model with restricted maximum-likelihood
estimator.

Results: Seventeen studies met the inclusion criteria for the meta-analysis. Altogether,
they included nine different chemokines comparisons involving 5,158 participants (1,934
GDM patients and 3,224 controls). Results showed a significant increase of these
chemokines (CCL2, CXCL1, CXCL8, CXCL9, and CXCL12) in the GDM patients
compared with the controls. However, there was a significant decrease of the
chemokines, CCL4, CCL11 and CXCL10, in the GDM patients compared with the
controls. Moreover, subgroup analysis revealed a potential role of chemokines as
biomarkers in relation to laboratory detection (different sample type and assay methods)
and clinical characteristics of GDM patients (ethnicity and body mass index).

Conclusion:GDM is associated with several chemokines (CCL2, CCL4, CCL11, CXCL1,
CXCL8, CXCL9, CXCL10 and CXCL12). Therefore, consideration of these chemokines as
potential targets or biomarkers in the pathophysiology of GDM development is necessary.
Notably, the information of subgroup analysis underscores the importance of exploring
putative mechanisms underlying this association, in order to develop new individualized
clinical and therapeutic strategies.
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INTRODUCTION

In recent years, the incidence of gestational diabetes mellitus
(GDM) has increased rapidly worldwide and constitutes a major
public health problem (1). GDM leads to adverse short-term
perinatal complications (e.g., eclampsia, preeclampsia, placental
malfunction, diabetic fetopathy, and jaundice, etc.) and long-
term metabolic disorders complications (e.g., increased risk of
developing hypertension, Type 2 Diabetes Mellitus (T2DM),
metabolic syndrome, and atherosclerotic, etc.) in both the
offspring and mothers (2–4).

So far, GDM cannot be cured because its pathogenesis is not
well understood (4). Therefore, the emergence of new
multidisciplinary treatment approaches is a necessary
development. Currently, an increasingly compelling body of
research evidence has emerged linking low-grade inflammation
state to GDM (5). The immune activation in state of low-grade
inflammation is known to decrease b cell function and promote
insulin resistance in T2DM (6).

Among these immune activation biomarkers, chemotactic
cytokines (chemokines) network plays an important role in the
pathogenesis of GDM. Preclinical research has classified
chemokines into four subfamilies, namely C, CC, CXC, and
CX3C, which are identified by position and presence of the
cysteine residue (conserved near the N terminus) (7). Evidence
indicates they play an important role in both the immune system
and maternal-fetal interface during physiological and
pathological pregnancies, which interacts with a group of 7-
transmembrane G protein-coupled receptor (GPCRs) (8, 9).
Specifically, chemokines network is concerned with the
interactions among numerous immune activation factors
during pregnancy, including delicate chorus between immune
coordination and cellular migration, maintenance of the
maternal-fetal interface of feto-maternal tolerance, and
attraction of immune cells to the sites of ongoing
inflammation (9–11). Considering their role in immune
coordination and orchestration of the precise spatio-temporal
organization of immune cells, chemokines are prime candidates
for linking physiological and pathological pregnancies
inflammation, and orchestrating pathogenesis of GDM
inflammatory crosstalk.

Although the preceding evidence points to a systemic role of
the state of chemokines network in the pathology pregnancies
inflammation, what is not known is which chemokines are up-
regulated or down-regulated in GDM and their potential role in
the pathogenesis of GDM (11–13). Moreover, it is notoriously
difficult to identify a complete nomenclature coverage of
chemokines, especially from previous older studies because the
chemokines nomenclature has not been uniform (14). To date,
more than 50 chemokines acting on 23 discrete receptors have
been discovered (15). However, existing studies of chemokines in
GDM are frequently underpowered, have mostly disparate
methodologies, and often have conflicting state of chemokines
(16–18). Therefore, we aimed to select historical and current
chemokines potentially involved in the pathogenesis of GDM
through extensive retrieval structure terms utilizing as many
variant chemokines nomenclatures as possible. Then, we
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compared the concentrations of the circulating maternal
chemokines, and placenta or adipose tissue chemokines
between patients with GDM and healthy controls using high-
quality meta-analytical techniques. We also explored sources of
heterogeneity between studies with disparate methodologies, and
improved statistical power using subgroup meta-analysis.
METHODS

Search Strategy and Selection Criteria
This protocol was registered with the International Prospective
Register of Systematic Reviews (PROSPERO: CRD42019148305).
In addition, this systematic review and meta-analysis was
performed in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines and
the Cochrane Handbook (19).

A comprehensive search for articles on chemokines and
GDM, publ i shed in any language , was conducted
systematically on August 1st, 2021 in the following databases:
Web of Science, Embase, Cochrane Library, and PubMed.
Non-English language studies were translated to English. The
complete well-designed search strategy is listed in the
Appendix 1. This was designed by professional librarians who
made it as comprehensive as possible, while using truncation and
wildcards. Boolean operators were also used in the search
strategy to allow for variant historical and current names
of chemokines.

Two independent reviewers (XP and AK) grouped relevant
eligible studies based on title and abstract screening. Inclusion
criteria were defined as: (1) subjects met GDM criteria and
reported the method for diagnosing GDM; (2) blood, placenta
or adipose tissue samples for chemokines measurement were
collected from GDM and healthy controls; (3) the mean and
standard deviation (SD) of chemokine were reported, or these
data could be acquired by contacting the relevant authors.
Exclusion criteria were defined as: (1) letters, reviews,
interventional clinical trials, case reports or comments; (2) in
vitro studies; (3) GDM patients with auto immune and
inflammatory disease; and those whose chemokines
concentrations were influenced by anti-inflammatory or
immunomodulatory drugs for chemokines. Disagreements on
eligibility of studies were settled by involving a third
reviewer (AL).

Data Extraction
All eligible studies were stored in a database established by
EpiData (version 3.0). Duplicates were removed using EndNote
(version X9.1). The following data were extracted from each
eligible study by two independent reviewers (SW and AK) using
a custom data extraction template. Disagreements about data
extraction were settled by consensus. Thus, extracted data
included: (1) the title, year of publication and the first author’s
name; (2) the country; (3) sample size; (4) ethnicity; (5) GDM
cases characteristics such as BodyMass Index (BMI), age, systolic
blood pressure (SBP), diastolic blood pressure (DBP), fasting
plasma glucose (FPG), 2h postprandial blood glucose, insulin,
February 2022 | Volume 13 | Article 705852
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insulin resistance index (HOMA-IR), hemoglobin A1c (HbA1c),
low-density lipoprotein (LDL), high-density lipoprotein (HDL),
cholesterol, and triglycerides; (6) method of chemokine
measurement; and (7) sample material of chemokine and
mean ± SD of chemokine concentrations of GDM cases and
the comparison group. Furthermore, information about the risk
of bias and quality of eligible studies was extracted according to
the Newcastle-Ottawa Quality Assessment Scale (NOS) (20).

Statistical Analysis
To quantitatively summarize the available data, the effect size of
chemokines concentrations on GDM for each study was
calculated using Cohen’s d as the weighted standardized mean
difference (SMD) in chemokines concentrations between GDM
cases and the controls (21). Then, the weighted SMDs and their
corresponding 95% confidence intervals (CIs) were pooled in a
meta-analysis using a random effects inverse variance model (22,
23). Heterogeneity was assessed using the Cochran’s Q statistic
test and quantified using the I² statistic, which measures the
proportion of total variability between studies. Thus, the I² values
of 25% indicate low heterogeneity, 50% moderate heterogeneity
and 75% high heterogeneity (24, 25). Sensitivity analysis was a
method that measures how the impact of uncertainties of
subgroups can lead to uncertainties on the output variables. It
was conducted using the Leave-one-out Method. Subgroup
meta-analyses were conducted to explore sources of
heterogeneity with respect to the following subgroups based on
sample and study characteristics: ethnicity, age, BMI and sample
material of chemokine. Furthermore, the between-study
probability of publication bias was assessed using the degree of
symmetry of funnel plots and the Egger’s Linear Regression Test
(26). The package, meta, from R (version 3.5.0) was used for this
meta-analysis. The significance level for all statistical tests was set
at the 0.05, and all tests were two-sided.
RESULTS

Literature Search
The utilization of the systematic search of four electronic
databases yielded a total of 833 studies. After excluding
duplicate studies, 722 abstracts were reviewed, of which 539
were excluded. Therefore, the full texts of 183 articles were
screened and this led to 17 articles included in this meta-
analysis. A flow diagram describing the process of selecting
eligible studies is shown in Figure 1.

Characteristics of Eligible Studies
Table 1 summarizes the characteristics and quality of eligible
studies. Among the 17 included studies, eleven studies used
maternal blood samples, three studies used cord blood samples,
seven studies used placenta samples, while three studies used
other samples. Also, in terms of the material of chemokines, 13
studies used the protein, while six studies employed the mRNA.
Seven studies used Enzyme-Linked Immunosorbent Assay
(ELISA) to determine chemokines, six studies employed the
polymerase chain reaction (PCR), while four studies used
Frontiers in Immunology | www.frontiersin.org 3
other methods. The average BMI of GDM patients was 28.28 ±
3.83, and the average age was 31.94 ± 2.34. Ten studies were of
high quality, whereas seven were of moderate quality, and the
NOS scores varied between 5 and 8. Moreover, anthropometric
and clinical phenomics characteristics of included studies are
described in the Appendix 2 and 3, including SBP, DBP, FPG, 2h
Post prandial blood glucose, cholesterol, triglycerides, LDL-C,
HDL-C, Insulin, HOMA-IR and HbA1c.

Appendix 4 systematically summarizes the classification of
chemokines and their receptors that may link chemokines to the
pathogenesis of GDM, including forty-six chemokines and
eighteen chemokine receptors. In addition, Appendix 5
summarizes the distribution of the cell type of chemokine
receptors that may link chemokines to the pathogenesis of
GDM in immune microenvironment such as dendric cells,
monocytes, macrophages, natural killer cells, Th2 cells, Th17
cells, Treg cells, basophils, CD4 and CD8 T cells.

Main Outcomes
The eligible studies included nine different chemokines
comparisons involving 5,158 participants (1,934 GDM patients
and 3,224 controls). The forest plots of specific chemokines are
shown in Figure 2. Considering all chemokines involved,
chemokines concentrations were significantly higher in the
GDM patients than in the controls (SMD=0.87; 95% CI: 0.41;
1.32). However, significantly high heterogeneity was observed in
the included studies (I²=98%). Similarly, for CCL2 chemokines
reported in five studies that included 523 GDM patients and 523
controls, the concentrations of CCL2 were significantly higher in
the GDM patients than in the controls (SMD=1.63; 95% CI: 0.72;
2.54). Nevertheless, significant heterogeneity was observed in the
included studies (I²=97%). For CCL4, the concentrations of
CCL4 were significantly lower in the GDM patients than in the
controls (SMD=-3.66; 95% CI: -4.30; -3.03). For CCL11, the
concentrations of CCL11 were significantly lower in the GDM
patients than in the controls (SMD= -1.26; 95% CI: -1.68; -0.83).
There was no significant difference in the concentrations of
CCL3 between the GDM patients and the controls.

Also, for CXC chemokines, CXCL1 concentrations were
significantly higher in the GDM patients than in the controls
(SMD=2.04; 95% CI: 1.61; 2.48); CXCL8 concentrations were
significantly higher in the GDM patients than in the controls
(SMD=1.13; 95% CI: 0.32; 1.94); CXCL9 concentrations were
significantly higher in the GDM patients compared with the
controls (SMD=8.27; 95% CI: 7.17; 9.36); CXCL10
concentrations were significantly lower in the GDM patients
than in the controls (SMD=-1.50; 95% CI: -2.69; -0.32); CXCL12
concentrations were significantly higher in the GDM patients
compared with the controls (SMD=4.38; 95% CI: 3.73; 5.04).
There was no significant difference between the GDM patients
and the controls in the concentrations of CXCL16 and CX3CL1.
The Egger’s Linear Regression tests and funnel plots revealed low
probability of potential publication bias (Figure 3). Sensitivity
analysis indicated that any single eligible study influenced little
change in the effect size of chemokines on GDM patients,
suggesting that the meta-analysis was stable and not driven by
any single study.
February 2022 | Volume 13 | Article 705852
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Subgroup Analysis
Table 2 shows the results of subgroup analysis. Noteworthy,
subgroup analysis in this study was divided into laboratory and
clinical parts. First, subgroup analyses were conducted to
determine the effect of material of chemokines, sample type
and assay methods on concentrations of chemokines. These
laboratory characteristics were considered for subgroup
analyses in view of their well-known effects on chemokines
and their pre-clinical implications. Second, subgroup analyses
were performed to determine the effect of age, ethnicity, and BMI
on concentrations of chemokines. Similarly, these were
considered for subgroup analyses following their well-known
effects on chemokines and their clinical implications.

Regarding sample of chemokines, only maternal blood
chemokines (SMD=1.21; 95% CI: 0.63; 1.80) indicated
significantly higher concentrations of chemokines in the GDM
patients than in the controls. There was no significant difference
in cord blood, placenta or other types of samples. Also, for
material type, only protein (SMD=0.91; 95% CI: 0.37; 1.46)
Frontiers in Immunology | www.frontiersin.org 4
indicated significantly higher concentrations of chemokines in
the GDM patients than in the controls. Studies of mRNA did not
reveal a significant difference. Referring to assay methods for
chemokines, the ELISA method (SMD=1.45; 95% CI: 0.79; 2.11).
Studies of PCR or other types of methods did not reveal a
significant difference.

Considering age of the GDM patients, subgroup meta-
analysis showed that concentrations of chemokines were
increased significantly in the GDM patients with advanced
maternal age (SMD=1.41; 95% CI: 0.50; 2.32). Studies of non-
advanced maternal age did not reveal a significant difference.
Subgroup meta-analysis according to ethnicity showed that both
the Caucasian (SMD= 0.67; 95% CI: 0.07; 1.26) and the
Mongoloid (SMD=1.45; 95% CI: 0.61; 2.29) had significantly
higher concentrations of chemokines in the GDM patients
compared with controls. The effect size in relation to the
Mongoloid ethnicity was significantly higher than that of the
Caucasian ethnicity. Finally, with regard to BMI, subgroup meta-
analysis showed that concentrations of chemokines were
FIGURE 1 | Study selection flow chart. A flow chart demonstrating the selection process of articles included in the analysis as well as in the qualitative summary.
February 2022 | Volume 13 | Article 705852
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increased in overweight/obese patients with GDM (SMD=1.41;
95% CI: 0.50; 2.32). However, there was no significant difference
in the concentrations of chemokines between the non-
overweight/obese GDM patients and the controls.
DISCUSSION
This is currently the first meta-analysis and systematic review of
chemokine ligands and receptors markers in GDM. It found that
concentrations of some chemokines were higher in patients with
GDM than in controls, while other chemokines had lower
concentrations in patients with GDM than in controls.
Specifically, the concentrations of the following chemokines
were significantly higher in patients with GDM than in
controls: CCL2, CXCL1, CXCL8, CXCL9, and CXCL12. On the
other hand, the concentrations of the chemokines, CCL4, CCL11
and CXCL10, were significantly lower in patients with GDM
than in controls. These results suggest that some chemokines
may link immune microenvironment to the pathogenesis of
GDM. Therefore, it is imperative to illustrate the unique role
of chemokines in the immune microenvironment in order to
examine their implications in the pathogenesis, clinical practice
and therapeutic targets of GDM.

Pathogenesis Implications
With regard to the pathogenesis implications, the interactions
between chemokines concentrations and maternal immune
microenvironment antagonize the release of syncytiotrophoblast
debris, which contributes to placental oxidative stress and systemic
inflammation (41). Furthermore, the overnutrition and embryo-
maternal interactions (the balance between immune suppression
and tolerance) during pregnancy can be the major causative factor
for the process that probably causes and perpetuates a state of low-
grade inflammation, which is common in several pregnancy
Frontiers in Immunology | www.frontiersin.org 5
complications, such as preeclampsia, preterm labor, GDM, and
autoimmune diseases (42). These mechanisms of inflammatory
responses during pregnancy may link chemokines to the
pathogenesis of GDM. In addition, chronic and systemic state of
low-grade and sterile inflammation might explain the association
between GDM and pathologic state, in which the immune
imbalance between pro-inflammatory and anti-inflammatory
chemokines has a key role in metabolic abnormalities,
glucolipotoxicity, oxidative stress, and tissue-specific insulin
resistance (IR) (43).

Specifically, pancreatic islets, peri-pancreatic adipose tissue
and immune cells constitute the immune microenvironment of
islets. Thus, glucolipotoxicity occurs when the immune
microenvironment of islets is exposed to an early damage by
genetic or environmental factors, such as overnutrition in the
induction of accumulation of elevated levels of glucose/lipids.
Consequently, glucolipotoxicity induces sustained activation of
various pro-inflammatory and metabolic pathways, and then
starts to secrete numerous chemokines (42, 43). The effect of
chemokines provokes the immune microenvironment of islets in
two aspects. First, chemokines and their receptors are decisively
involved in interfering with insulin signaling transcriptional
mediated molecular and pro-inflammatory pathways.
Moreover, chemokines are one of the major causative factors
of the activation of the Adenosine 5-Monophosphate-Activated
Protein Kinase (AMPK) Pathway. They also lead to the
act ivat ion of nuclear factor-kappaB (NF-kB/IkBa)
transcriptional mediated molecular, which stimulates a pro-
inflammatory condition and blocks the activation of insulin
signaling receptors of b cell (44). Meanwhile, chronic exposure
to chemokines stimulates the activation of reactive oxygen
species/reactive nitrogen species (ROS/RNS) signaling proteins,
which is ultimately involved in the endoplasmic reticulum (ER)
stress, DNA damage and b cell failure (45).
TABLE 1 | Characteristics of the studies included for the meta-analysis.

Study Material Sample Country BMI Age Methods NOS

Chueca 2019 (27) mRNA Amnion Spain 28.00 ± 5.03 36.00 ± 4.06 qPCR 7
Darakhshan 2019 (28) Protein Maternal blood Iran 29.70 ± 1.65 29.60 ± 1.21 ELISA 6
Ebert 2013 (29) Protein Maternal blood Germany 24.50 ± 6.60 31.00 ± 7.50 ELISA 8
Hara 2016 (17) Protein Maternal blood/Cord blood/Placenta (villi/extravilli) Brazil 28.66 ± 4.60 29.55 ± 6.55 CBA 7
Jin 2017 (30) mRNA Placenta/Omental adipose tissues China 28.56 30.13 qPCR 5
Kapustin 2020 (31) Protein Maternal blood Russia 28.80 34.45 ELISA 6
Keckstein 2020 (32) Protein EVT/SCT Germany 28.13 ± 6.96 32.83 ± 4.56 IHC/IF 7
Lappas 2004 (18) Protein Maternal blood Australia 25.70 ± 1.60 35.30 ± 1.60 ELISA 6
Lekva 2017 (33) Protein/mRNA Maternal blood/PBMC Norway 27.80 ± 5.70 33.10 ± 3.70 EIA/RT-qPCR 7
Li 2020 (34) Protein Maternal blood/Cord blood China 28.31 ± 4.63 33.59 ± 5.15 UV 8
Mrizak 2013 (35) mRNA Placenta Tunisia 24.90 ± 2.90 29.50 qPCR 8
Murthy 2018 (16) Protein Maternal blood India 25.70 27.60 ELISA 5
Pan 2021 (36) mRNA Placenta USA 26.65 ± 5.73 33.17 ± 4.65 RT-qPCR 6
Saucedo 2021 (37) Protein Maternal blood Mexico 34.80 32.00 MI 7
Stirm 2018 (38) Protein/mRNA Cord blood/Placenta Germany 30.60 ± 5.60 34.00 ± 4.00 Bio-Plex/qPCR 6
Tang 2021 (39) Protein Maternal blood China 21.32 ± 2.59 32.00 ELISA 8
Zhang 2017 (40) Protein Maternal blood/Placenta China 38.68 ± 9.50 29.13 ± 3.65 ELISA 7
Febru
ary 2022 | Volu
me 13 | Article 70
NOS, Newcastle-Ottawa Scale; IHC/IF, immunohistochemistry and immunofluorescence double staining; RT-qPCR, Quantitative reverse transcription polymerase chain reaction; Bio-
Plex, Bio-Plex Human Cytokine Assays; qPCR, Real-time polymerase chain reaction/quantitative polymerase chain reaction; BMI, Body Mass Index; PBMC, Plasma protein and peripheral
blood mononuclear cells; EIA, Enzyme immunoassay; UV, Ultraviolet spectrophotometry; CBA, Cytometric bead assay; PCR, Polymerase Chain Reaction; MI, Multiplex immunoassay;
ELISA, enzyme-linked immunosorbent assay; NR, not report; USA, The United States of America; UK, United Kingdom.
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Second, chemokines can also lead to the activation of various
vasculature or circulating immune cells that enter into the
immune microenvironment of islets site (7). A number of
these immune cells (i.e., CD8+T cell, CD4+T cell (Th1 cell and
Frontiers in Immunology | www.frontiersin.org 6
Th17 cell), Natural Killer (NK) cell, eosinophil, macrophage,
neutrophil, mast cells, and dendritic cell) are recruited in the
immune microenvironment to further release more pro-
inflammatory cytokines (i.e., IL-1b、IL-6、CRP and IL-1b),
FIGURE 2 | Forest plot of chemokines between GDM patients and controls. Study effect sizes of chemokines differences between GDM and controls. Each data
marker represents a study, and the size of the data marker is proportional to the total number of individuals in that study. The summary effect size for each
chemokines is denoted by a diamond; GDM, Gestational diabetes mellitus; SMD, standardized mean difference.
February 2022 | Volume 13 | Article 705852
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which provoke the pancreatic islet’s apoptosis and b cell damage
by immune attack (14, 15). Figure 4 shows the complicated
chemokines network in the pancreatic islets’ microenvironment
of GDM.
Frontiers in Immunology | www.frontiersin.org 7
Clinical Implications
The findings of subgroup meta-analysis point to a potential
clinical implication in the use of chemokines as biomarkers of
GDM. Moreover, the potential role of chemokines as biomarkers
FIGURE 3 | Egger funnel plots of GDM patients compared to controls. GDM patients chemokine and chemokines receptor compared to patients with controls,
t = 2.03, p-value = 0.061. Egger funnel plots to assess publication bias. Plots show study size as a function of effect size for studies included in the meta-analysis.
The dots represent each study. GDM, Gestational diabetes mellitus.
TABLE 2 | Subgroup analysis of chemokine between GDM participants and controls.

Subgroup SMD 95% CI Heterogeneity

Q I²

Material mRNA 0.59 -0.06 1.24 90.99 90.10%
Protein 0.91 0.37 1.46 1562.68 98.10%

Sample Maternal blood 1.21 0.63 1.80 1015.76 98.00%
Cord blood -0.74 -2.66 1.17 196.45 98.00%
Placenta 0.96 -0.14 2.05 223.31 96.40%
Other 0.66 -0.24 1.56 53.92 90.70%

Age Methods ≥30 0.23 -0.16 0.61 693.91 96.00%
<30 2.34 0.87 3.81 687.51 98.40%
PCR 0.59 -0.06 1.24 90.99 90.10%
ELISA 1.45 0.79 2.11 1105.88 98.40%
Other 0.04 -1.02 1.10 436.51 97.50%

BMI ≥28 1.41 0.50 2.32 1393.98 98.20%
<28 0.05 -0.23 0.34 154.46 90.90%

Ethnicity Caucasian 0.67 0.07 1.26 1050.66 97.30%
Mongoloid 1.45 0.61 2.29 515.35 98.30%
February 2
022 | Volume 13 | Article
Subgroup analyses are performed to compare the concentration of chemokines and chemokines receptors between the GDM and the controls. Heterogeneity was quantified using I2 and
its significance was tested using the Q statistics. GDM, Gestational diabetes mellitus; NR, not report; SMD, standardized mean difference.
Bold showed significant difference (P < 0.05).
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FIGURE 4 | The complicated chemokines network in the pancreatic islets’ microenvironment of GDM. The chemokine system plays a variety of roles in the
pancreatic islets microenvironment of GDM. First, pancreatic islets are exposed to an early damage by genetic or environmental factors. Then, chemokines can also
cause a variety of immune cells to enter the pancreatic islets site to play the role of immune attack. All these processes impact endoplasmic reticulum stress, leading
to a reduction in the ability to secrete insulin. Moreover, GDM progression is characterized by progressive secretion of pro-inflammatory chemokines/cytokines
caused by b cell damage. Due to this process, various immune cell types (i.e., CD8+T cell, CD4+T cell (Th1 cell and Th17 cell), NK cell, eosinophil, macrophage,
neutrophil, mast cells, and dendritic cell) are recruited in the pancreatic tissue. These immune cells further release more innate inflammatory cytokines, which
contribute to a rapid increase b cell death. GDM, Gestational diabetes mellitus; NK, Natural killer. (Drawn by AK).
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 7058528
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is in relation to laboratory detection of biomarkers and clinical
characteristics of patients.

In this regard, there were significant differences in the
concentrations of chemokines between maternal blood, cord
blood and placenta, suggesting that high concentrations of
chemokines in maternal circulation cannot enter the fetus
through the placental barrier (46). High concentrations of
chemokines could be associated with epigenetic changes with
DNA methylation including the genes involved in the pathways
of immune and inflammatory response, cell growth and death
regulation and nervous system development, which increased the
risk of future development of T2DM, CAD, obesity, and
hypertension in the offspring from mothers with GDM (4, 47).

Furthermore, there were significant differences in the
concentrations of chemokines between ELISA, PCR and other
types of methods, suggesting that the concentrations of ELISA
may have high sensitivity (48). Moreover, considering that a
protein is more stable than mRNA, ELISA kit is more convenient
in clinical detection (49). Therefore, we recommend that in
future clinical and laboratory studies, ELISA samples should be
used to detect chemokines in order to obtain more stable results.

Subgroup analysis showed that different ethnicities and ages
significantly affect the concentration of chemokines in GDM
patients. Subgroup analysis revealed that age significantly
affected chemokine circulating concentration in GDM patients.
Previous study has shown that the placental functions, including
senescence-associated secretory-phenotype production and
immune-cell accumulation, gradually decrease in a maternal
age-dependent manner, resulting in a higher rate of GDM (50).
These results are consistent with age related inflammation kinetics
studies, which suggest that patients gradually lose the ability to
control excessive inflammatory response with the increase of age.
Similarly, previous studies showed that the allele frequencies of
single nucleotide polymorphisms of chemokines and their
receptor genes were different among different ethnicities (51,
52). Accordingly, this study showed that Mongoloid had a
higher effect value than Caucasian. Therefore, we speculate that
the genotype-driven treatments in the clinical course of GDMmay
be a unique window of stratification and individualized
pathophysiology-based therapies of GDM patients.

Furthermore, the concentrations of chemokines in this study
differed significantly only in GDM patients with BMI≥28. This is
consistent with previous studies, which suggested that obesity
may contribute to the development and progression of GDM.
Therefore, it is reasonable to speculate that this may be due to the
glucolipotoxicity in obese GDM patients, which further destroys
the homeostasis of immune system and chemokines. Further,
experimental studies on molecular mechanisms have shown that
adipocyte death can activate macrophages and mediate related
inflammation and systemic IR (53). Adipocyte death can lead to
the formation of peroxynitrite (ONOO-) (54). Among them,
ONOO- further induces related inflammation and systemic IR,
mediated by oxidative stress products ROS/RNS (55).

Therapeutic Implications
The development of anti-inflammatory drugs that address
placental oxidative stress and systemic state of low-grade
Frontiers in Immunology | www.frontiersin.org 9
inflammation-lowering CCL2, CXCL1, CXCL8, CXCL9 and
CXCL10 might be of potential value in GDM treatment. The
CCL2 is one of the critical pro-inflammatory chemokines that
belongs to the CC chemokine family. Other names of CCL2
include small inducible cytokine A2 (SCYA2), monocyte
chemoattractant and activating factor (MCAF) or monocyte
chemoattractant protein (MCP)-1. The CCL2 and its cognate
receptor CCR2 play a key role in regulating infiltration and
migration of Th1 cells, basophil, NK cells, monocytes, and
macrophages in the immune microenvironment of islets. Recent
research has shown that higher concentrations of CCL2 in serum
correlated with early IR, carbohydrate metabolism disorder,
obesity development, and preeclampsia development risk (12,
56). CCL2, CCL4, and CCL11 are considered pro-inflammatory
chemokines. CCL2 is a CC chemokine with specificity for CCR2
receptors. CCL4 and CCL11 are exerting a wide range of activities
through the CCR5 receptors (57). This is consistent with our
findings and may suggest that CCL2 is a critical biomarker of
GDM as well as a target for therapeutic intervention.

In GDM patients, with the dysfunction of b cells, even before b
cells are widely damaged, CCL4 concentrations may rise ahead of
time. While resulting in b cells death and early islet graft loss,
inflammatory stimuli with a CD40-CD40L interaction could induce
the secretion of CCL4 through the Raf/MEK/ERK and NF-kB
pathways in pancreatic islets (58). Therefore, CCL4 concentrations
may be caused by the initial inflammatory damage of islet b cells.

As a CXC chemokine, the function of CXCL8 is the induction of
chemotaxis in its target cells, like neutrophil granulocytes,
basophils, T-cells, and adipocytes. There are many receptors
capable of binding CXCL8. Those with the most affinity to
CXCL8 are receptors CXCR1 and CXCR2 (59). Studies have
shown that CXCL8 secreted by adipocytes may be related to
complications such as GDM, which are the accumulation of
excess accumulation of intra-abdominal fat (60). Increasing
evidence suggests that the intra-abdominal fat accumulation is
closely related to decreased insulin sensitivity and increased GDM
pathophysiology (61). The results of our study suggest that GDM
patients have higher concentrations of CXCL8, which is consistent
with the findings of previous research. CXCL8 may mediate the
downregulation of adiponectin in obesity. Adiponectin can prevent
the impairment of insulin signaling, so CXCL8 may plays a crucial
and causal role in obesity-linked IR and GDM (62).

Additionally, both the CXCL9 and CXCL10 are the critical
pro-inflammatory and angiostasis chemokines that belong to the
CXC chemokine family. These chemokines and their cognate
receptor CXCR3 play a key role in regulating infiltration and
migration of basophils, Th1 cells, CD8+T cells, NK cells, and
Treg cells into pancreatic tissue. A clinical study also showed that
the concentrations of CXCL10 in T2DM patients were higher
than that in the controls (63). Moreover, both CXCL9 and
CXCL10 have been attributed to several roles in IR
pathogenesis, such as influencing islet b cell mass and
decreasing b cell viability. Similarly, an animal experiment
showed that both CXCL9 and CXCL10 played a key role in
regulating infiltration and migration of basophils and NK cells
into the immune microenvironment of islets, which impaired
insulin secretion and function in mice with genetic deletion of
February 2022 | Volume 13 | Article 705852
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CXCR3 (64). Besides, CXCL10 leads to the activation of c-Jun N-
terminal kinase (JNK), and protein kinase B (Akt) via chemokine
receptor CXCR3 (65, 66). The CXCL10 also induces the cleavage
of p21-activated protein kinase 2 (PAK-2) and triggering b cell
oxidative stress and destruction (63, 66). However, this is
inconsistent with our findings, possibly due to the small
number of studies included in the meta-analyses. Future
studies should therefore further explore the relationship
between CXCL10 and GDM.

The CXCL1 is one of the critical pro-inflammatory
angiogenesis that belongs to the CXC chemokine family. The
CXCL1 and its cognate receptor CXCR2 play a key role in
regulating infiltration and migration of neutrophils, monocytes,
mast cells, basophils, dendric cells, and NK cells in the immune
microenvironment of islets. A recent clinical study has also
shown higher concentrations of CXCL1 in GDM patients than
in controls. Thus, CXCL1 may be involved in the pathogenesis of
GDM through endothelial damage and TNF-a production (67).
Also, CXCL1 and its cognate receptor CXCR4, and CXCR7 play
a key role in lymphopoiesis and promote angiogenesis in the
immune microenvironment of islets. Moreover, CXCL12 is one
of the critical factors for angiogenesis that belongs to the CXC
chemokine family. A sib-pair study also showed that CXCL12
genetic polymorphisms were associated with T2DM (68).
Therefore, CXCL12 might probably be involved in the GDM
pathophysiologically due to its association with angiogenesis.
This is consistent with a previous study, which reported a close
relationship between angiogeneic chemokines, such as CXCL1
and CXCL12, and endothelium damage and IR (69).

Furthermore, the CXCL16 is one of the pro-inflammatory
single-pass type I membrane protein that belongs to the CXC
chemokine family. The CXCL16 and its cognate receptor CXCR6
play a key role in regulating infiltration and migration of Th1 cells,
Th17 cells, and NK cells in the immune microenvironment of
islets. A clinical study showed elevated concentrations of CXCL16
in T2DM, coronary artery disease (CAD), and GDM in early
pregnancy and after 5 years (70, 71). Moreover, higher levels of
CXCL16 correlated with LDL-C and apoli-poprotein B (apoB)
(72). Also, CXCL16 acts as a scavenger receptor on macrophages,
hence promoting oxidation and internalization of LDL-C, which
may play an important role in the inflammatory response due to
lipid accumulation. However, this is inconsistent with our
findings, perhaps due to the small number of studies included in
the meta-analysis. Future studies need to further explore the
relationship between CXCL16 and GDM.

The main strength of this study is that it has summarized the
effect of as many chemokines as possible on GDM, which was
achieved through a comprehensive search strategy that used
multiple variant names of chemokines in a range of databases
following PRISMA guidelines. Nevertheless, our analysis used a
limited number of studies reporting the effects of the chemokines,
CCL3, CCL4, CCL11 and CXCL12, on GDM, which may lead to
biased or heterogeneous results. Furthermore, this study was
limited by the lack of original research data on confounding
variables at the individual level, such as smoking status, alcohol
consumption, physical activity, blood pressure, or any
combination of these variables. Therefore, these were not taken
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into account in the meta-analysis. Also, this study used the original
data of case-control studies, implying that the findings do not
make any causal inference. Therefore, more fundamental
mechanistic research and longitudinal study designs, taking into
account confounding variables, are essential if we are to truly
understand the distinct pathways involved in chemokine biology
and the pathophysiological mechanisms of GDM.
CONCLUSIONS

In this meta-analysis, several chemokines (CCL2, CCL4, CCL11,
CXCL1, CXCL8, CXCL9, CXCL10 and CXCL12) were found to
be altered in patients with GDM. The contribution of our study
was to summarize latest developments in chemokines molecular
mechanisms leading to the pathophysiology of GDM
development. This allowed future challenges and opportunities
for individualized clinical and therapeutic implications of GDM
in relation to chemokines to be discussed.
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