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ABSTRACT
In recent years, nanocarriers based on nucleic acids have emerged as powerful and novel nanocarriers that
are able to meet the demand for cancer-cell-specific targeting. Functional dynamics analysis revealed good
biocompatibility, low toxicity and programmable structures, and their advantages include controllable size
and modifiability.The development of novel hybrids has focused on the distinct roles of biosensing, drug
and gene delivery, vaccine transport, photosensitization, counteracting drug resistance and functioning as
carriers and logic gates.This review is divided into three parts: (i) DNA nanocarriers, (ii) RNA nanocarriers
and (iii) DNA/RNA hybrid nanocarriers and their applications in nanobiology delivery systems. We also
provide perspectives on possible future directions for growth in this field.
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INTRODUCTION
Cancer treatment still relies heavily on chemother-
apy, and despite substantial progress we still see
severe damage to normal cells and various side ef-
fects, including pain, for patients [1–4]. To over-
come these obstacles, scientists are eagerly pursuing
drug delivery strategies that are safer and more se-
lective. In particular, the use of nanocarriers based
on nucleic acids (NCNAs), as nanopharmaceutical
carriers have attracted increasing attention owing to
their ability to overcome many existing limitations.
Progress has been made in elucidating their per-
formance [5–8]. NCNAs are a class of nanostruc-
tures containing nucleic acids (DNA,RNAor both).
They include nucleic acid self-assembly origami and
nucleic-acid-decorated nanoparticles (NPs). They
strictly follow the principle of complementary base
pairing, allowing easy construction of a targeting
nanocarrier by changing the order or type of base
[9–12]. Nucleic acids can be produced easily and
quickly by commercial DNA and RNA synthesizers.
Therefore, NCNAs have become a highly promising
nanomaterial for use in the field of nanomedicine.

To date, researchers have designed many differ-
ent nanocarriers, such as gold NPs combined with

a very wide range of inorganic systems [11,13–15],
biofilm-modified nanoplatforms [16] and liposome-
based systems obtained through organic synthesis
[17,18]. The nanocarriers mentioned above have
achieved much in the field of nanomedicine, but
they also face some limitations in medical devel-
opment. For example, cationic polymer surfaces
are cytotoxic, dendritic polymer nanocarriers are
prone to increased immunotoxicity in vivo and
inorganic NP residues in the body are difficult to
catabolize [3]. Therefore, the low toxicity and high
programmability of nucleic acids have attracted
increasing attention, and a series of self-assembled
NCNAs have been screened for bioimaging, cargo
loading and transport, diagnostic logic gates, and
other fields [4,19–28]. In addition, as biological
macromolecules, nucleic-acid-based nanomaterials
can be combinedwith various nanomaterials to form
multilevel nanopharmaceutical carriers [29,30].The
NCNAs base can be assembled through a
biomimetic drug-loading system, improved
with erythrocyte membranes [16], modified by
peptides or active proteins [26,31,32], incorporated
into nanomaterials for aptamer assembly and used
in drug-loading systems based on siRNA [10].
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NCNAs can facilitate surface functionalization.
The nucleic acids, a type of biomacromolecule,
are self-assembled from the ATCGU nucleotides,
strictly following the Watson-Crick pairing princi-
ple.Thenumber andposition of each atomandbond
are clearly defined, giving nucleic acids atomic-level
precision and the ability to precisely self-assemble.
The spatial addressability of NCNAs can locate the
position ofmolecules by adjusting the sequence. Ac-
cordingly, aptamers and nucleic acid nanostructures
allow functional molecules such as aptamers, folic
acid and bovine serum albumin to be precisely in-
tegrated into specific locations of NCNAs [1]. For
example, NCNAs with modified transferrin can
specifically recognize the transferrin receptor on
cells, resulting in strong targeting [32]. Hence, re-
searchers can buildNCNAswithmultiple functions,
such as precise identification, targeted delivery and
intelligent control of drug release [24,25].

In this review, we consider the latest develop-
ments in NCNA systems. We attempt to illumi-
nate the properties of DNA and RNA nanocarriers
and the merits of NCNAs. We summarize the latest
progress on NCNAs in the field of nanomedicine,
focusing on biocompatibility, targeting capability,
programmability etc. and looking at applications in
biosensing, cargo transport and logic gates (Fig. 1).

DNA NANOCARRIERS
As the basis of life, DNAmolecules offer diverse bio-
logical characteristics, such as programmability, low
toxicity, biocompatibility and selectivity [33–35].
Double-stranded DNA hybridizes in strict accor-
dance with the principle of base pairing, forming
a double-helix-like antiparallel structure. Therefore,
desired nucleic acid structures can be designed by
changing the type or sequence of bases. Increasing
interest in DNA nanotechnology has opened doors
in the field of nanomedicine [36].

Since DNA materials are synthesized according
to the principle of base complementation, we can
use this principle to design various DNA sequences.
The use of a DNA synthesizer can make the pro-
cess simple and easy, safe and controllable. DNA
has the characteristics of programmability, sequence
specificity and spatial addressability and can accu-
rately functionalize NCNAs to realize the recogni-
tion and detection of individual molecules [37–40].
DNA nanocarriers are herein classified into two
categories—self-assembled DNA and NPs deco-
rated with DNA—and they play important roles in
various chemical reactions, bioimaging and targeted
delivery [41–44].

DNA can be used to construct multicomponent
nanocarriers by hybridization, covalent bonding
or coupling to different materials, such as NPs
[13–15,45], proteins [22], peptides [46,47] and
liposomes [17,18]. During synthesis, gemcitabine
was used in the deoxycytidine state based on its
similar functionality [48]. The DNA sequence
containing Ge is used as the synthetic raw material
for the construction and functionalization of the
vector through hybridization. It is well known
that this type of cytosine-rich DNA nanostruc-
ture can respond to pH. Therefore, NCNAs can
realize drug delivery and intelligent drug release
through changes in environmental pH (Fig. 2a).
This method of constructing DNA nanostructures
by hybridization is relatively simple and has been
widely used. In recent years, researchers have used
similar principles to design spherical nucleic acids
(SNAs), complex DNA tetrahedrons [21,49,50],
DNA prisms [12], DNA nanocages [51] and some
self-assembled complex nanomaterials [23,52–54].
The typical DNA tetrahedron has high assembly
efficiency and structural rigidity, which also means
high stability and structural controllability, and has
non-negligible potential in gene regulation, drug
delivery, biological imaging, targeted recognition
and other aspects. A classic example is the DNA
tetrahedron constructed by Zhan et al. for drug
delivery during cancer therapy [21]. The DNA
tetrahedrons were co-incubated with the cells for
12 hours, and drug intake in the cells was analyzed
by flow cytometry. The data showed that the
percentage of drugs in cells was nearly 40%, which
fully proved the stable and efficient drug delivery
ability of the DNA tetrahedron (Fig. 2b). SNA is a
kind of nanomaterial that has attracted increasing
attention in recent years. Rolling circle amplification
(RCA) is a common method for constructing
DNA nanocarriers, and SNA with a predetermined
sequence was synthesized by researchers using
the RCA technique [55]. Based on the precise
functionalization of DNA, SNA was combined
with magnetic NPs (MNPs) to form NCNA,
which was applied in the field of biological imag-
ing. However, there are still some problems with
this SNA construction method. Typically, SNAs
are constructed using monolayers of dsDNA or
ssDNA as the carrier, a design that limits the
therapeutic efficacy of the drugs and prevents the
scaling up of their production. Therefore, Li et al.
proposed a new strategy for the construction of
DNA nanocarriers, namely, the self-assembly of two
alternating shortDNAblocks and the preparation of
long-strand DNA nanostructures by supersandwich
hybridization. The SNA carrier loaded with a large
number of double-stranded structures provides
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Figure 1. NCNAs for application in nanobiology delivery systems. NCNAs are divided
into DNA nanocarriers, RNA nanocarriers and DNA/RNA hybrid nanocarriers. These
nanostructures are constructed by methods such as self-assembly and combination
with nanoparticles, including DNA nanocage [78], DNA tetrahedron [49], Se/Ru/siRNA
nanomicrotubule [67], FA/MNP/RNA nanoflower [69] and Ge-containing nanogel [48].
DNA nanocage reprinted with permission from ref. [78]. Copyright 2020, Springer
Nature. DNA tetrahedron reprinted with permission from ref. [49], Copyright 2018,
American Chemical Society. Se/Ru/siRNA nanomicrotubule reprinted with permission
from ref. [67]. Copyright 2017, American Chemical Society. FA/MNP/RNA nanoflower
reprinted with permission from ref. [69]. Copyright 2017, American Chemical Society.
Ge-containing nanogel reprinted with permission from ref. [48]. Copyright 2019, Amer-
ican Chemical Society.

the same number of doxorubicin (DOX) loading
sites, which greatly improves the drug-carrying
capacity of the nanocarrier [11]. The combination
of these nucleic acid nanostructures with gold NPs
further increases the rigidity of nanomaterials and
reduces the toxicity and side effects of chemical
drugs on normal tissues and cells [11,37]. DNA
nanocarriers have produced good results in the
stable delivery of drugs and the improvement of
drug delivery efficiency, but there are still aspects to
be further improved. For example, at present, many
nanocarriers still exhibit insufficient selectivity
and limited application effects. The existence of
DNA adapters can solve this problem to a certain
extent. Although the screening process of aptamers
is complex, they are easily internalized in vivo,
and their modification can effectively improve the
targeting of nanocarriers and reduce off-target side
effects [56,57]. Some researchers conducted ex-
periments using aptamers. For example, the cyclic
bivalent aptamer designed by Zhou et al. showed

high stability and strong targeting [44]. In addition,
another significant task is to modify bifunctional
aptamers toNPs, which enables the nanosome to re-
spond to both target cells and ATPmolecules in tar-
get cells at the same time, thus further improving the
accuracy of targeting [58]. Undoubtedly, this kind
of aptamer-modified DNA nanostructure has great
application prospects with regard to improving
selectivity. In conclusion, functionalized DNA
nanocarriers have the ability to accurately deliver
drugs to targets, tightly encapsulate drugs and
effectively reduce toxicity and side effects of drugs
in vivo and in vitro. However, in terms of structural
control and performance enhancement of DNA
nanomaterials, we believe that further development
is needed [43,59].

RNA NANOCARRIERS
Similar to DNA, RNA is an important biological
macromolecule in nature that guides protein syn-
thesis [60]. It also plays a role in carrying the ge-
netic information of certain bacteria and viruses and
is a promising nanomaterial [26,61]. RNA is a sin-
gle strand transcribed with one strand of DNA as
a template. By changing the sequence and type of
bases, researchers can design and adjust the overall
structure of RNA nanocarriers [7,8]. Unlike DNA,
RNA nanotechnology can transcend the limitations
of the double helix structure to forma large variety of
structures and multiple types of circular-structured
modules, facilitating thedesignof a series of complex
and controllable nanocarriers [62]. In addition to
the three main types of RNA, namely, rRNA, tRNA
and mRNA, many other RNAs comprise the RNA
family. In recent years, the role of RNA interference
mechanisms caused by small-molecule RNA in tu-
mor treatment has attracted the attention of many
researchers [63]. When foreign genes, such as viral
genes and transposons, enter cells, they usually pro-
duce double-stranded RNA. Endonucleases in cells
immediately cut them into siRNAs with a specific
structure and size. Antisense siRNA combines with
certain enzymes to form a complex that not only
cleaves homologous single-stranded RNA but also
binds to the target RNA to produce more double-
stranded RNA under the action of the enzyme un-
til the mRNA is completely eliminated [64]. With
this principle, we can use RNA-based vectors to in-
ject specific dsRNA into cells for tumor therapy.
This is more effective, more accurate and faster than
traditional methods of specifically suppressing tar-
get genes and can be designed to address different
needs. Different dsRNA andRNAnanocarriers have
met the demands of personalized treatment [65].
There are twomainways to buildRNAnanocarriers:
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Figure 2. Construction and experimental characterization of DNA nanocarriers. (a) Schematic illustration of Ge-containing DNA nanogel self-assembly
and acid-triggered disassembly of the pH-responsive nanogel and intracellular drug release process. Reprinted with permission from ref. [48]. Copyright
2019, American Chemical Society. (b) The cytotoxicity and characterization of a DNA tetrahedron loaded with 5-fluorouracil. Reprinted with permission
from ref. [21]. Copyright 2019, American Chemical Society.

RNA self-assembly and RNA decoration on NPs,
which are both now widely used in biological imag-
ing, drug delivery and gene silencing [66].

To circumvent the defects in chemotherapy, we
look to new strategies for constructing nanocarriers
with high selectivity and low cytotoxicity. The ex-
cellent biocompatibility of RNA and the unique ef-
fect of RNA interference have attracted increasing
attention [61]. RNAcan be used as amodifiedmate-
rial, but also as small RNAs in vivo to silence specific
genes, especially those related to target tumors, and
effectively inhibit tumor growth and spread [9,26].
RNA is unstable and easily degraded in the blood.
To address this problem, researchers have combined
RNA with polyethylene glycol [8], inorganic NPs
[61,67], glue bundles [4], carbon nanospheres [68],
peptides [31], proteins [32] and other materials
to form RNA composite nanocarriers. For exam-
ple, MNPs were introduced into an RNA nanoflu-
orescence agent to form MNP/RNA-NF, followed
by modification with folic acid (FA). Then, RNA-
NF was combined with DOX and a photosensitizer
to form nanomaterials (FA/MNP/RNA-NF/D/T)
[69].This RNA composite carrier had high selectiv-
ity and stability, and it protected its RNA compo-
nents from degradation. In addition, increasing at-
tention has been given to the advantages of com-
bining RNA with metal NPs, inorganic NPs and
other traditional NPs. Traditional NPs have led to
remarkable progress in the field of nanomedicine,
but they also inevitably have limitations. However,
the combination with RNA breaks through these
limitations, and the RNA nanocarriers formed have

higher selectivity and better therapeutic effect, truly
achieving the effect of 1 + 1 > 2. For example, a
nanocarrier composed of Se/Ru metal-organic NPs
and siRNA effectively enhanced cell uptake and pro-
moted siRNA escape from endosomes/lysosomes
under surface coordination. It plays a synergistic
role in the treatment process to kill cancer cells
[67] (Fig. 3a). Some researchers have tried to use
pH-sensitive carbonate apatite NPs and siRNA to
form nanodrug loading systems, another effective
way to prevent drug resistance. A similar example
is the combination of apatite NP carbonate with
siRNA [70]. We observed that this RNA compos-
ite vector had stronger cytotoxicity than NPs in
the cell activity assay. Both in vivo and in vitro
experiments showed that the RNA vectors were
more satisfactory (Fig. 3b). We believe that RNA
nanomaterials will play an important role in future
nanomedicine [71].

DNA/RNA HYBRID NANOCARRIERS
Another class of NCNAs is nanocarriers based
on DNA/RNA hybrids. These nanocarriers con-
tain both DNA and RNA, which is a relatively
common method of constructing and functional-
izing nanocarriers. Researchers designed a folate-
derived DNA dendrimer nanocarrier combined
with anti-HuR siRNA [72]. This carrier had the
fastest synthetic approach and high selectivity in tar-
geted tumor therapy in vivo, making further study
worthwhile. In addition, Ruan et al. introduced SNA
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ref. [67]. Copyright 2017, American Chemical Society. (b) The therapeutic effect of RNA
nanocarriers in vivo and in vitro. Reprinted with permission from ref. [70]. Copyright
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nanocarriers with siRNA grafted onto their spheri-
cal surface [73].These nanocarriers were quickly ab-
sorbed by more than 60 kinds of cells and protected
siRNA from enzymatic digestion, enabling safe de-
livery to cells.The siRNA broke out under the cleav-
age of an intracellular Dicer enzyme and exerted
an effect on cancer cells. This type of DNA/RNA
nanocomposite can also be used to load chemother-
apeutic drugs while exerting gene therapy effects.
Under the premise of fulfilling the expected func-
tion, the toxicity can be minimized.

The precise design of NCNAs can fully reflect
the advantages of nucleic acids in functional regu-
lation. The precise functionalization of NCNAs by
DNA/RNA hybridization can prevent the residual
toxicity and side effects of some nanocarriers,
and realize the construction and application of
more intelligent drug carriers. For instance, Zhu
designed nanocapsules formed by the self-assembly
of DNA/RNA in the same system [74]. In addi-
tion to ensuring biosafety, this biologically stable
NCNA can effectively co-deliver and induce T
cell memory, which has great potential in tumor
therapy (Fig. 4a). In addition, the combination
of DNA/RNA and NPs provides the potential
to construct intelligent nanomaterials. Intelligent
DNA/RNA nanocarriers with responsive and
active targeting are helpful for drug accumula-
tion and release at target sites—for example,
NCNAs composed of DNA nanorobots, gold
NPs and RNA accumulated in the tumor site, and
controlled drug release in vivo under the guidance
of near-infrared (NIR) light [75] (Fig. 4b). This

intelligent nanocarrier is obviously in line with the
needs of modern nanomedicine. We believe that
DNA/RNA nanocarriers will show increasingly
broad prospects.

BIOLOGICAL APPLICATIONS
OF FUNCTIONALIZED NCNAs
NCNAs provide various prospective advantages,
including low toxicity, biocompatibility and high
selectivity. They have led to intensive research in
nanomaterial technology, resulting in progress in
bioimaging, cargo loading and transport, and the
diagnostic application of logic gates [76].

Bioimaging
Bioimaging is a common application of NCNAs.
Researchers have used DNA nanofluorophores,
which can effectively cross the blood-brain barrier
and have been used to enhance the fluorescence
imaging of brain tumors in the NIR-II region, and
innovatively combined the DNA amphiphilic block
polymer PS-b-DNA as a nanocarrier for organic lu-
minescentNPs [77]. Comparedwith the commonly
used PS-b-PEG carrier, PS-b-DNA has better per-
formance in tumor imaging, diagnosis and treat-
ment, but needs further study. NCNAs have also
been explored for biological detection and tracking.
For example, the nanocarrier DNA precision guided
missile (D-PGM) was loaded with fluorescent sub-
stances and DOX. The fluorescence property of D-
PGM allows the trajectory of the drug to be tracked
[27].Throughconfocal fluorescence imaging experi-
ments, theCEM,Ramos andHeLa cells treatedwith
D-PGM were observed to show high-intensity flu-
orescence. A flow cytometric assay was used to de-
tect CEM, Ramos and HeLa cells treated with D-
PGM,which showedobvious fluorescence (Fig. 5a).
Obviously, D-PGM has excellent capabilities in bi-
ological imaging. In Fu’s research, nucleic acid nan-
otechnology was applied to increase accuracy. Nu-
cleic acid probes were encapsulated in the internal
cavity of the backbone nucleic acid. Small target
molecules could enter the cavity for effective molec-
ular recognition, while large molecules could not
[78] (Fig. 5b). This system not only delivered ma-
ture microRNA and precursor microRNA into cells,
but also effectively prevented nuclease degradation.
In biosensors, with the expansion of spatiotempo-
rally controllable signals, the amplification method
can control the time and amplification process, en-
abling sensitive mRNA imaging of live cells selected
at specified intervals of the cell life cycle. Duan’s re-
search work used NIR light to precisely control and
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trigger the light-controlled nucleic acid amplifica-
tion of the entire process [79] (Fig. 5c). DNA-based
nanotechnology enables us to identify and analyze
target materials more accurately and effectively in
the field of biosensors. It is clear that NCNAs have
potential that is worthy of further exploration and
application [55].

Cargo loading and transport
Chemotherapy drug
Traditional chemotherapy and radiation therapy
are forms of cancer treatment with the disadvantage
of inevitably causing severe damage to normal
tissue cells. Functionalized NCNAs have very high
selectivity, which can address this issue. In recent
years, functionalized NCNAs have been widely
used in combination with peptides, chemotherapy
drugs and other substances to achieve controlled
release with changes in magnetic, photothermal
and pH conditions [80]. A new SNA vector was
modified by aptamer AS1411 to enter tumor cells
by nucleoside-mediated endocytosis, after which
the structure changed, releasing the loaded drug
through interaction with ATP [11]. Furthermore,
this spherical DNA polymer combined with
gold NPs through short-distance self-assembly.
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With a supersandwich hybridization reaction to
increase drug loading, it was considered a promis-
ing drug delivery vehicle (Fig. 6a). However,
there is still much room for optimization of SNA
construction technology. DNA-functionalized
MoS2 nanomaterials [64] provided another vector
construction idea. This DNA/MoS2/aptamer
delivered the drug DOX to the target cell and
disintegrated under stimulation by ATP (Fig. 6b).
This NCNA achieves accurate release in drug
delivery and serves as a typical demonstration for
the construction of stimuli-responsive NCNAs.
In addition, there are many amazing NCNA de-
signs for drug delivery, such as DNA nanocages
containing DOX [51] and DOX ampules [23].

Genes
Gene silencing is a phenomenon inwhich genes can-
not be expressed or are insufficiently expressed in
organisms for some reason, and it is also a mech-
anism for removing abnormal RNA from eukary-
otic cells.Thecommonprinciple of siRNA-mediated

gene silencing is the same as that of the RNA in-
terference effect described above. siRNA combines
with proteins and enzymes to form a silencing com-
plex. The helicase divides RNA into a sense strand
and an antisense strand. The sense siRNA binds to
the target mRNA to degrade it and synthesize new
siRNA, while the direct mRNA is completely elim-
inated after circulation. The rational use of gene si-
lencing can target the intendedgenemore accurately
and achieve faster and more effective treatment of
cancer. Gene silencing technology has a wide range
of applications in nucleic acid nanomaterials.

However, because of the short half-life of siRNA
in the blood, researchers have designed NCNAs
to ensure the integrity of siRNA and the smooth
progress of gene silencing [81,82]. He et al. pro-
posed a lipid-bound NCNA system that is degrad-
able in acidic environments, which not only greatly
promotes endosomal siRNA escape but also pre-
vents unnecessary drug release in normal tissues
in vivo [81] (Fig. 7a). The structure is simple and
easy to control. One drawback is that lipid-based
nanomaterials tend to be large, unstable and eas-
ily dispersed drug molecules. Accordingly, NCNA
with a DNA tetrahedron as the main body seems
to be a better choice. DNA tetrahedrons contain-
ing nucleo-targeting peptides and antisense oligonu-
cleotides enter the cell in a more stable state to
silence proto-oncogenes, increasing nuclear and cy-
toplasmic downregulation by selecting target mR-
NAs [49] (Fig. 7b). In contrast, theNCNAstructure
and size are more controllable.

We know that the strategy of using chemicals as
drugs for tumor treatment is widely applied. In com-
parison, gene therapy is more targeted and has bio-
logical safety advantages with which chemotherapy
cannot compete. Researchers used NCNAs to de-
liver genes into mice for treatment. In comparison
with the control group, they showed that this de-
livery strategy can effectively inhibit tumor growth.
The weights of the mice in the experimental group
did not fluctuate much, which proved that the tox-
icity and side effects were not obvious. The use of
H&E, TUNEL apoptosis, cleaved caspase 3, prolif-
eration and PLK1 staining further proved the excel-
lent biosafety of NCNA [16] (Fig. 7c). Obviously,
the application of NCNAs in the field of gene deliv-
ery has achieved good results, and nucleic acids are
a nanomaterial category worthy of further attention
[83].

Vaccines
Using the body’s immune system to treat cancer
is a strategy worth trying. We used NCNAs to de-
liver vaccines into organisms and kill cancer cells
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Figure 7. The functionalization of NCNAs and their application in gene delivery. (a) Schematic illustration of the synthesis
of nanotransformers and the delivery mechanism. Reprinted with permission from ref. [81]. Copyright 2018, American Chem-
ical Society. (b) Structure of a multifunctional double-bundle DNA tetrahedron and its cellular uptake fate. Reprinted with
permission from ref. [49]. Copyright 2018, American Chemical Society. (c) In vivo experiments of gene delivery through NC-
NAs to explore therapeutic effects and biological safety. Reprinted with permission from ref. [16]. Copyright 2020, American
Chemical Society.

through the immune system, thereby achieving tu-
mor treatment. Liposome spherical nucleic acids
(LSNAs) have many advantages, such as adjustable
chemical structure and rapid access to cells without
the aid of transfectants. They are also an attractive
platform for gene regulation and immunomodula-
tion therapy. Researchers have designed two func-
tional LSNA vectors [5]. The new form of LSNA
exhibited faster cell uptake and higher sequence-
specific flux after entering the cell, achieving func-
tions such as receptor activation, which made it a
promising candidate for immunotherapy and for the
use of vaccines in new treatment approaches. How-
ever,we look forward tobuilding amore efficient and
convenientNCNA.Researchers used lipid-modified
nucleotides binding to DNA strands to form mi-
celle nanocarriers of uniform size [17]. In a sepa-
rate self-assembly step, micelles could be equipped
with immunoadjuvant agents (CpGs), and fluores-
cent probes of DNANPs could be made into multi-
functional carrier systems for in vivo and in vitro im-
mune stimulation.Thedose-dependent activation of
splenic dendritic cells (DCs) by CpG and NP was

accompanied by a significant upregulation of cos-
timulatory molecules and cytokines. Therefore, re-
searchers were inspired to use the carrier to trans-
port a vaccine into the body to stimulate an immune
response against a tumor. In Yoshizaki’s research,
two compound methods (premixing and postmix-
ing) were used to match Toll receptor 9 in DC
endosomes [18]. The combination of CpG-DNA
andmGlu-HPGmodified cationic liposomes consti-
tuted a drug delivery system that further activated
antigen-specific immunity. These liposomes could
promote the production of DC cytokines and the
expression of costimulatory molecules in vitro to
induce antigen-specific immune responses in vivo.
Compared with traditional pH-sensitive polymer-
modified liposomes, premixed and postmixed lipo-
someshada stronger antitumor effect.Thestudyalso
confirmed the importance of designing effective vac-
cine vectors byusing appropriateCpG-DNAcoordi-
nation methods.

As mentioned above, NCNAs exhibit extraor-
dinary performance in the field of vaccine delivery.
Researchers have continued to explore and have
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produced a new idea. Based on the DNA origami
nanostructure, a bionic membrane channel was
designed to organize cell origami clusters (COCs)
with controlled geometry and intercellular commu-
nication [84] (Fig. 8a). T cells and cancer cells were
assembled in a certain ratio and structure, and the
resulting COCs could carry out immune responses
in vitro. This research provides a novel strategy for
cancer immunotherapy. Another classic example
is mRNA lipid-NP vaccines, which can activate
systemic and intratumoral myeloid cells [34].
RNA-NPs entering the tumor induce PD-L1 to
trigger a wide range of immune responses (Fig. 8b).
From this perspective, the use of NCNA-based
immunotherapy as an effective and safe treatment is
worthy of further study.

Photosensitizers
NCNAs can be used for photodynamic ther-
apy (PDT) or photothermal therapy (PTT).
NCNA-based phototheranostics have superior
performance in terms of safety, adaptability and
selectivity.

PDT uses a laser of a specific wavelength to il-
luminate a photosensitizer. Photosensitizers trans-
fer energy to surrounding oxygen, producing highly
reactive singlet oxygen, which is cytotoxic to tumor
cells and kills them. At present, some researchers
have explored the application of NCNAs in PDT
therapy, such as the combination of NCNAs con-
taining photosensitizers and porphyrins containing
iron [85] (Fig. 9a). This kind of NCNA can over-
come the limitation of hypoxic conditions and bet-
ter exert the PDT effect to kill tumors. In addition, a
novel NCNA consisting of smart copper (II), gold
NPs and platinum has been designed, which will
be combined with PDT and PTT therapy to signif-
icantly improve efficacy [86]. Better still, it can work
against a wide range of tumors without concerns

about drug resistance. In the field of nanomedicine,
the application of NCNAs in PDT is undoubtedly a
direction worth exploring.

The goal of PTT is to deliver high-efficiency pho-
tothermal conversion materials to the body. These
materials are concentratednear the tumor, andwhen
irradiated by an external light source, they convert
light energy into heat energy, thereby killing can-
cer cells. We know that using heat to kill cancer
cells requires a very high temperature. When PTT
is applied directly to the human body, high temper-
atures can cause serious harm to patients. So the
researchers engineered NCNA with an outer layer
of dopamine. It not only delivers siRNA safely to
the target, avoiding degradation by enzymes, but
also produces PTT effects at relatively low temper-
atures and achieves good therapeutic effects, killing
two birds with one stone [87].This provides a strat-
egy worth considering for killing tumors at relatively
low temperatures. In addition, NCNAs with poten-
tial for PTT therapy could also be endowed with
the ability to deliver drugs intelligently. For exam-
ple, DNA-modified double-reaction microgels con-
trol the release of drugs under the guidance of NIR
light [43]. The results show that the DNA-modified
microgel can control the drug release rate underNIR
light, and the longer the irradiation time, the higher
the drug release rate. This conclusion was further
confirmed by cell experiments (Fig. 9b). In a more
complex effort, Wang et al. have designed a double-
reactivemicrogel that converts light energy into heat
when applied toNIR light, not only enabling the car-
rier to effectively release its payload, but also killing
cancer cells using the light-induced effect. We be-
lieve that the application of NCNAs in photothera-
nostics provides a new technology for the construc-
tion of intelligent nanomaterials and the diagnosis
and treatment of tumors, which is worth looking for-
ward to.
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Figure 9. Representative examples of NCNAs for photosensitizer delivery. (a) A schematic illustration for synthesis of
Ca-AS1411/Ce6/hemin@pHis-PEG. Reprinted with permission from ref. [85]. Copyright 2018, American Chemical Society.
(b) Drug release efficiency of NIR-light-responsive magnetic DNA microgels and their effect on cell viability. Reprinted with
permission from ref. [43]. Copyright 2017, American Chemical Society.

Codrugs
To kill cancer cells more safely and effectively, we
often use a variety of mechanisms for combined
treatment, so researchers have extensively explored
the use of NCNAs to transport codrugs. Codrugs
exert a synergistically therapeutic effect on tumors
in the body through a variety of mechanisms and do
not easily cause drug resistance while killing cancer
cells. As shown in Fig. 10a, Hai et al. constructed
an NCNA for codrug delivery [80] based on NIR
light-sensitive DNA-modified hollow mesoporous
silica NPs loaded with indocyanine green (ICG)
and DOX. The NCNA releases ICG and DOX
into target cells to produce chemotherapy and pho-
tothermal therapy triggeredbyNIR light.Compared
with a single treatment strategy, this collaborative
treatment method has a stronger killing effect on
cancer cells. From this perspective, this superior
treatment effect has also played a certain role in
avoiding the problem of drug resistance caused
by poor treatment effects. In addition, many re-
searchers have explored the therapeutic effects of a
combination of multiple drugs. A typical example is
a composite nanosystem that simultaneously loads

DOX and polo-like kinase I (plk1) siRNA [2]. In
cell experiments, with increasing DOX content,
the effect of this synergistic treatment became
more obvious. The drugs were injected into mice.
Then it was observed that the tumors in the
treatment group containing both DOX and
plk1-siRNA were significantly inhibited in
each control group, and the survival rate of the other
groups was significantly higher than that group
(Fig. 10b). In addition, the FA-modified magnetic
RNA nanoflowers (RNA NFs) proposed in Guo’s
research work were combined with the anticancer
drug DOX and a photosensitizer. It can not only be
used as a probe for detecting cancer cells but also
for the intracellular quantification and diagnosis
of other biomolecules, which is an interesting
possibility (Fig. 10c). At present, the potential
of NCNAs in the field of cancer diagnosis and
treatment is only the tip of the iceberg [88]. In
terms of cancer treatment strategies, we believe
that NCNAs with multiple therapeutic mechanisms
will be the future trend and that the use of NCNAs
to achieve codrug delivery has broad application
prospects.
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Diagnostic logic gates
Through continuous exploration, NCNAs have
achieved increased drug delivery efficiency.
However, many substances constantly change
dynamically during the course of disease and are
present in normal cells. This phenomenon hinders
the treatment of diseases and calls for logic-based
multi-response materials. Nucleic acids are the
most promising scaffolds for constructing highly
programmable logic devices. They can be rationally
designed at the molecular level and are based
on gene chains, metal ions, small molecules and
receptors. The NCNA body is the input, which is
calculated by strand replacement, enzyme cleavage
and aptamer recognition, thereby enabling rapid
progress in drug delivery, cell imaging, genome
editing and information storage [89]. For example,
cell targeting mostly uses certain receptors on the
cell surface for recognition and targeting. However,
the variability and quantity of cell surface materials
vary greatly, and a change in one factor may cause
changes in cell characteristics. Moreover, normal
cells and diseased cells share most cytokines.
Therefore, we can logically analyzemultiple markers
in each subgroup to achieve a more precise iden-
tification of individual cell characteristics so that

the presence or absence of multiple membrane
receptors will enable accurate spectral analysis. A
programmable universal platform based on a series
of aptamer codes and OR, or non-logic gates, can
screen various abnormalities on the surface of the
cell, and Boolean operations that support these
logical operations can be further programmed to
build more complex AND logic systems with higher
functionality. Researchers introduced a general
method of assembling these modular logic gates to
program the identification of multiple coexisting
cell surface markers, including multiple markers
found on cancer cells, higher-order analysis and
diagnostic signal reporting and/or positioning
functions [89]. With the rapid development of
computer technology, we can design a logic device
that can automatically identify and analyze cellular
material and mark target cells with markers to
accurately identify cells. In addition, some classic
cases, such as the multi-aptamer DNA logic device
shown in Fig. 11a, can accurately identify cancer
cells [56] and analyze for similar cells via the
presence or absence of different biomarkers. Xiao’s
group adopted a hybridization chain reaction to
generate SNA gel. Due to a compact DNA shell
decorated with aptamers, this SNA gel can prolong
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blood circulation and improve targeting in the
body [35] (Fig. 11b). The application of logic gates
enables NCNAs to more accurately identify and
treat diseased cells. It is one of the most critical
technologies for the future of precision medicine,
and it still requires in-depth exploration.

SUMMARY AND OUTLOOK
This review presents an overview of research into a
new type of specific nanocarrier, the NCNA, which
has a variety of unique functions that can acceler-
ate many important biomedical applications and ad-
dress future challenges.We have discussed the latest
developments in structural characteristics and capa-
bilities in dynamic enhancements.

Nucleic acids have programmability and se-
quence specificity, allowing the construction of
nanostructures through self-assembly. Therefore,
NCNAs can be precisely functionalized, and
through sequence changes, they can be integrated

Table 1. List of abbreviations.

No. Full name Abbreviation

1 Nanocarriers based on nucleic acids NCNAs
2 Nanoparticles NPs
3 Spherical nucleic acids SNAs
4 Rolling circle amplification RCA
5 Magnetic NPs MNPs
6 Doxorubicin DOX
7 Folic acid FA
8 DNA nano precision-guided missile D-PGM
9 Liposome spherical nucleic acid LSNA
10 Immunoadjuvant agents CpG
11 Dendritic cells DCs
12 Cell origami clusters COCs
13 Photodynamic therapy PDT
14 Photothermal therapy PTT
15 Indocyanine green ICG
16 Polo-like kinase I plk1
17 RNA nanoflowers RNANF
18 Near-infrared NIR
19 Small interfering RNA siRNA
20 Adenosine tirphosphate ATP
21 Human antigen R HuR
22 CCRF-CEM CEM
23 TdT-mediated dUTP nick-end labeling TUNEL
24 Hematoxylin-eosin staining H&E
25 3-Methylglutarylated hyperbranched poly

(glycidol)
mGlu-HPG

26 MicroRNAs miRNA

with multifunctional molecules such as aptamers,
peptides and antibodies to achieve application in the
fields of target recognition, biosensing, molecular
detection and therapy. In recent years, NCNAs,
as a smart material, have led to breakthroughs in
diagnostic logic gates that use the programmability
of nucleic acids to design NCNAs, use molecules
as input, and change dynamically in response
to specific molecules or the environment. This
NCNA-based computer-aided calculation has high
accuracy and is in line with the current demand for
high-precision research.

However, the complex structure of NCNAs also
means that the effects in vivo are difficult to pre-
dict. Currently, we do not fully understand the phar-
macokinetics of NCNAs, such as circulation, ex-
cretion and decomposition, or their physical and
chemical properties, such as surface charge and ge-
ometry. Moreover, nanocarriers generally rely on
endocytosis to enter cells, but cells are always un-
dergoing dynamic changes, and slight changes will
change the physical and chemical properties.There-
fore, constructing a fully controllable and highly ac-
curate NCNA and reducing non-selective uptake by
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certain organs and cells has become the focus of re-
cent research.

There is an urgent need for accurate and effec-
tive measures in the treatment of major diseases. Al-
thoughmany researchers havemade significant con-
tributions [90,91], we are still in the early stages of
clinical practice and there is still a long way to go.
Researchers should strive to improve the therapeu-
tic effect and detection accuracy of nanomedicine,
and maintain biological safety to the greatest extent.
In response to these problems, the NCNAs we re-
viewed exhibit great potential [92–95]. In the long
run, our researchers need to achieve a deeper un-
derstanding of the characteristics of nucleic acids
and further study the construction and application
of NCNAs.

All abbrevaviations are summaried in Table 1.
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