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Abstract
Purpose A variety of diagnostic methods are available to validate the performance of population pharmacokinetic models.
Internal validation, which applies these methods to the model building dataset and to additional data generated through Monte
Carlo simulations, is often sufficient, but external validation, which requires a new dataset, is considered a more rigorous
approach, especially if the model is to be used for predictive purposes. Our first objective was to validate a previously published
population pharmacokinetic model of darunavir, an HIV protease inhibitor boosted with ritonavir or cobicistat. Our second
objective was to use this model to derive optimal sampling strategies that maximize the amount of information collected with as
few pharmacokinetic samples as possible.
Methods A validation dataset comprising 164 sparsely sampled individuals using ritonavir-boosted darunavir was used for
validation. Standard plots of predictions and residuals, NPDE, visual predictive check, and bootstrapping were applied to both
the validation set and the combined learning/validation set in NONMEM to assess model performance. D-optimal designs for
darunavir were then calculated in PopED and further evaluated in NONMEM through simulations.
Results External validation confirmed model robustness and accuracy in most scenarios but also highlighted several limitations.
The best one-, two-, and three-point sampling strategies were determined to be pre-dose (0 h); 0 and 4 h; and 1, 4, and 19 h,
respectively. A combination of samples at 0, 1, and 4 h was comparable to the optimal three-point strategy. These could be used
to reliably estimate individual pharmacokinetic parameters, although with fewer samples, precision decreased and the number of
outliers increased significantly.
Conclusions Optimal sampling strategies derived from this model could be used in clinical practice to enhance therapeutic drug
monitoring or to conduct additional pharmacokinetic studies.

Keywords Population pharmacokinetics . Darunavir . HIV . External validation . Optimal sampling strategy . Limited sampling
strategy

Introduction

We previously developed a population pharmacokinetic (PK)
model for darunavir (DRV), an HIV-1 protease inhibitor used
in antiretroviral therapy (ART), based on data collected in a
large cohort of ambulatory patients using cobicistat- (COB) or
ritonavir- (RTV) boosted DRV [1]. DRV PK are characterized
by major inter-individual variability. Among investigated co-
variates, those that contributed the most to this variability were
alpha-1 acid glycoprotein (AAG), sex, CYP3A5*3, and
SLCO3A1 rs8027174 variants. This PK model was used to
conduct simulations of alternative dosage regimens, including
a reduction of the daily dose from 800 mg q24h to 600 mg
q24h, 400 mg q24h, or 800 mg 5 days in a row followed by
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2 days of treatment interruption. The model was evaluated and
validated using standard goodness of fit metrics (precision,
shrinkage) and graphical methods (plots of predictions and
residuals), normalized prediction distribution errors (NPDE),
and bootstrapping. These techniques are considered sufficient
in most cases, but so-called external validation methods,
which require a new dataset, remain the superior approach
when one wishes to ensure the quality of model predictions,
which is paramount when this model is to be used for predic-
tive purposes [2]. To provide additional information regarding
the accuracy and robustness of our model, we decided to per-
form external validation using a new dataset. Based on this
model, we will also derive optimal sampling strategies (OSSs)
that would allow one to obtain accurate estimates of PK pa-
rameters with as few samples as possible. A single concentra-
tion, such as the trough concentration (C0), may not be suffi-
cient to reliably assess individual exposure, but as the number
of collected samples increases, so do laboratory and personnel
costs, not to mention the inconvenience it represents for the
patient. Therefore, an OSS is necessary to strike a balance
between accuracy and convenience/feasibility, both in terms
of the optimal number of samples and the optimal timing of
sample collection. Onemethod for obtaining OSSs is based on
multiple regression models [3]. However, these have several
limitations: they are not PK models and usually only predict
one variable (e.g., AUC), they do not explicitly take inter- and
intra-individual variability into account, they cannot be used
to extrapolate to different types of patients, and the OSS can
only include timepoints that were included in the original de-
sign. Bayesian methods are a more elegant and efficient ap-
proach that has been introduced to population PK. Among
them, D-optimal design, which is based on optimization of
the Fisher information matrix, is the most frequently
employed [4, 5]. DRV OSSs will be calculated according to
a D-optimal design and then further evaluated through Monte
Carlo simulations.

Materials and methods

Population PK model

The model used throughout the present paper has been exten-
sively described in a previous publication [1]. Briefly, this
model was developed using NONMEM (version 7.4.3) [6]
based on a dataset comprising 127 HIV-positive patients
(learning set). DRV PK was described by a one-
compartment model with first-order absorption and first-
order elimination. The final model included the following co-
variates: AAG, sex, CYP3A5*3, and SLCO3A1 rs8027174. A
prior distribution had been set on all fixed effects and inter-
individual random effects, based on a subset of rich pharma-
cokinetic data.

Validation dataset

The validation set was composed of data collected between
November 2012 and April 2016 at the Cliniques universitaires
Saint-Luc (Brussels, Belgium) as part of a study by Belkhir
et al. [7]. Original approval for data collection was granted by
the local ethics committee (Comité d’Ethique Hospitalo-
Facultaire des Cliniques Saint-Luc, approval number
B403201214460). One hundred eighty DRV plasma concen-
trations were measured in 164 individuals (one sample per
dose interval) using the same liquid chromatography-diode
array detector method that was used for the learning set [8].
One concentration was excluded because the post-intake time
was unknown. Genotypes were unavailable in 18 subjects
(11.0%), whereas AAG was not available at all. Genetic co-
variates were assumed to be missing at random for baseline
covariate analysis and then substituted by the most frequent
genotype for the patient’s race for PK modeling and simula-
tion. Drug-drug interactions that could alter DRV concentra-
tions were summarized for each patient by the presence or
absence of at least one drug belonging to each of the following
groups: CYP3A inhibitors, CYP3A inducers, and P-
glycoprotein inhibitors, using the methodology outlined in
our previous publication [1]. There was some patient overlap
between the datasets: 51 individuals contributed data to both
studies. Baseline covariates were compared using Fisher’s ex-
act test for categorical covariates or Wilcoxon’s rank-sum test
for continuous ones. Statistical analyses were conducted in R
(version 3.5.2) [9].

External validation

An external validation procedure similar to the one used in
Krekels et al. [10] was applied. First, the model was refitted to
the validation data with all parameters fixed to their final es-
timates, Bayesian estimation was performed, and the good-
ness of fit was assessed. PsN (version 4.7.0) was used for
handling NONMEM runs [11]. NPDE, which are a more ap-
propriate metric for validation compared to standard weighted
residuals, were computed for the validation set based on 1000
simulations from the final model, by means of the npde pack-
age (version 2.0) [12–14]. Their distribution was compared to
the reference distribution using graphical methods and appro-
priate statistical tests: the Wilcoxon signed-rank test (H0:
mean = 0), Fisher variance test (H0: variance = 1), and
Shapiro-Wilk test (H0: normal distribution). Additionally, a
prediction-corrected visual predictive check (pcVPC) was
constructed from these 1000 simulations, and the observed
concentrations from the validation set were overlaid on the
prediction intervals. Finally, the validation and learning sets
were merged, and the model refitted to this combined dataset.
For subjects who contributed data to both studies, their data

608 Eur J Clin Pharmacol (2021) 77:607–616



points were considered separate occasions. 95% CIs were
computed from 1000 bootstrapped datasets.

Optimal sampling strategy

Sampling strategies were evaluated according to the D-
optimality criterion in PopED for R (version 0.4.0) using a
sequential combination of adaptive random search, line
search, and BFGS algorithms [15, 16]. Because both the learn-
ing and the validation set were primarily composed of PK data
collected at random timepoints, there was no initial design in
the traditional sense of the word (as in, a specific set of
timepoints for observations). Consequently, it was not possi-
ble to evaluate and optimize it using D-optimality without
making strong assumptions. However, the subset of rich PK
data, which was originally used to define a prior distribution
on all parameters, could be used as a substitute for the full
learning set. Therefore, the initial design in PopED mirrored
the rich PK substudy in terms of measured parameters, sample
size, sampling scheme, and dose regimens: 12 patients treated
with DRV 800 mg q24h, sampled 8 times over 6 h (C0, C0.5,
C1, C2, C3, C4, C5, C6) at PK steady-state. Designs could
include up to four points, sampling times were constrained
to be identical in all subjects, and other aspects of the design
(e.g., sampling density, population size, dose regimens) were
kept fixed. Sensitivity analysis was conducted by perturbing
each fixed effect by ± 30%, one at a time.

To further evaluate these strategies, the final model in
NONMEM was used to perform Monte Carlo simulations in
order to generate a new virtual population. Two hundred fifty
PK profiles were generated for each subject from the learning
set, using their baseline covariate values to derive their PK
parameters. The reference area under the curve over 24 h
(AUCref) was obtained from each individual’s daily dose
and clearance. Individual Bayesian estimates of clearance
were then computed using the timepoints selected in PopED
(rounded to the nearest discrete value to obtain near-optimal
timepoints), and the corresponding AUCs were derived
(AUCOSS). The performance of each strategy was assessed
by calculating Spearman’s ρ between AUCref and AUCOSS

for all n subjects, as well as prediction errors (PEs), the mean
percentage error (MPE), and the root mean square percentage
error (RMSPE) using the following equations:

PE ¼ AUCref−AUCOSS

AUCref

MPE ¼ 100%� 1

n
∑PE

RMSPE ¼ 100%�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑PE2

r

Values of 15% RMSPE were considered acceptable [3,
17]. Additionally, the proportion of AUCs predicted within
± 15% of the reference value was computed.

Results

Datasets

Summary statistics of the learning and validation sets are
provided in Table 1. All subjects in the validation set
were using RTV-boosted DRV since this data was collect-
ed prior to the commercialization of COB, while subjects
in the learning set used COB-boosted DRV for the most
part (85.8% of subjects). In both cases, DRV 800 mg
q24h was the most frequent dosage (91.3% and 67.1%
of individuals in the learning and validation sets, respec-
tively), followed by 600 mg q12h (7.9% and 29.3%).
Concomitant antiretrovirals differed significantly, in part
due to the different time frames in which the two studies
were conducted: the most frequent combinations in the
learning set were lamivudine/dolutegravir/DRV (18.1%),
tenofovir/emtricitabine/DRV (18.1%), and dolutegravir/
DRV (17.3%), while in the validation set, tenofovir/
emtricitabine/DRV (48.2%) and abacavir/lamivudine/
DRV (16.5%) made up a majority of ARTs. Genotype
frequencies were comparable. Finally, while the valida-
tion set only included single concentration data collected
at random post-intake times, the learning set also included
12 PK profiles over 6 h (Fig. 1). On average, post-intake
times were longer in the validation set.

External validation

Since AAG was not available in the validation set, this
covariate had to be removed from the final model, which
led to a 43 points increase in the objective function value
(OFV), and this reduced model was validated instead. It
was considered preferable to remove AAG entirely be-
cause imputation methods could not be easily applied to
substitute all the missing values without distorting the
AAG distribution that would have been observed, also
keeping in mind the possibility of correlation between
AAG and other variables. Other than the increase in
OFV, this reduced model was very similar to the final
model in terms of goodness of fit, with only one individ-
ual prediction being noticeably shifted (Online Resource 1
and Online Resource 2).

Standard goodness of fit plots obtained after fixing all
parameters to their final estimates are displayed in Fig. 2.
With the exception of two high concentrations (13.6 and
14.01 mg l−1) that were severely underpredicted, there
was decent agreement between observations and
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Table 1 Summary characteristics
of the learning and validation sets Learning set Validation set p

Patients 127 164
Samples 405 180
DRV dosage < 0.05*
300 mg q12h

600 mg q24h

600 mg q12h

800 mg q24h

900 mg q24h

1200 mg q24h

0

0

10

116

0

1

0%

0%

7.9%

91.3%

0%

0.8%

1

1

48

110

1

3

0.6%

0.6%

29.3%

67.1%

0.6%

1.8%
Booster < 0.05*
RTV

COB

18

109

14.2%

85.8%

164

0

100%

0%
Post-intake delay (h) < 0.05*
Median (range)

q24h dosing

q24h dosing (sparse only)

q12h dosing

6.3 (0.5–29)

6.9 (0.5–29)

12.3 (1–29)

3.8 (2.2–27.5)

14.8 (2–31.5)

16.2 (2.3–31.5)

16.2 (2.3–31.5)

13.7 (2–25.8)
Age (years) < 0.05*
Median (IQR) 55 (13) 48 (14)

Sex 0.62
Male

Female

85

42

66.9%

33.1%

105

59

64.0%

36.0%
Race 0.26
Caucasian

African

Other

67

55

5

52.8%

43.3%

3.9%

101

60

3

61.6%

36.6%

1.2%
Concomitant ARVs < 0.05*
Tenofovir

Emtricitabine

Lamivudine

Abacavir

Nevirapine

Etravirine

Rilpivirine

Dolutegravir

Raltegravir

Maraviroc

35

28

42

8

0

7

7

79

7

21

27.6%

22.0%

33.1%

6.3%

0%

5.5%

5.5%

62.2%

5.5%

16.5%

92

84

46

29

2

18

0

4

43

15

56.1%

51.2%

28.0%

17.7%

1.2%

11.0%

0%

2.4%

26.2%

9.1%
Drug-drug interactions 0.66
CYP3A inhibitors

CYP3A inducers

P-glycoprotein inhibitors

3

7

5

2.4%

5.5%

3.9%

8

21

8

6.3%

16.5%

6.3%
CYP3A5 g.6986A>G 0.58
*1/*1

*1/*3

*3/*3

Missing

33

33

58

3

26.0%

26.0%

45.7%

2.4%

37

32

77

18

22.6%

19.5%

47.0%

11.0%
SLCO3A1 g.91941607G>T 0.73
GG

GT

TT

Missing

105

18

0

4

82.7%

14.2%

0%

3.1%

127

19

0

18

77.4%

11.6%

0%

11.0%

ARVs antiretrovirals

*Statistically significant difference (p < 0.05). All covariates given at baseline, except post-intake delay (given for
all timepoints)

610 Eur J Clin Pharmacol (2021) 77:607–616



pred ic t ions , a l though t rends toward over - and
underprediction were noted for the lower and upper ends
of the concentration range, respectively. No obvious trend
was apparent in the conditional weighted residuals.
Meanwhile, NPDE deviated from their expected normal
distribution (Fig. 3). The p values for the Wilcoxon
signed-rank test, Fisher variance test, and the Shapiro-
Wilk test were 0.1, 0.39, and 0.01, respectively. Thus,
the global adjusted p value (accounting for multiple test-
ing) was 0.04. A pcVPC of the final model predictions
versus the validation data is presented in Fig. 4: most
observations lied within the 95% prediction interval, but
due to the low number of data points at higher concentra-
tions, these were characterized by a large uncertainty, es-
pecially during the absorption phase.

Merged data analysis

Model parameters remained similar after re-estimation on the
merged learning/validation set (Table 2). Median
bootstrapped parameters were comparable, with noticeably
large CIs on ka and the effect of SLCO3A1 genotype on
V/F. The difficulty in obtaining accurate estimates of ka can
be attributed to the lack of samples in the absorption phase.
Goodness of fit was similar to that of the learning set, with a
trend toward underprediction of high concentrations and, in
the case of NPDE, a departure from normality (Online
Resource 3 and Online Resource 4).

Optimal sampling strategy

Adesign including three points was found to be equivalent to the
base design of our clinical study. The D-optimal design included
C1, C4, and C19, with a correlation coefficient of 0.93, anMPE of
1.4%, an RMSPE of 12.1%, and 81.2% AUCs predicted with
less than 15% prediction error (Table 3). Late post-intake times

may not be convenient for sampling, as a patient who usually
takes their medication early in the morning would need to either
be sampled during the night or change their drug-taking habits;
hence, we also assessed the effect of substituting C19 by a pre-
dose sample (C0). The objective functions calculated when eval-
uating a C1-C4-C19 and C0-C1-C4 design in PopED were com-
parable (delta = 0.081), and the latter strategy yielded similar
results in NONMEM as well (Table 3), showing that the C19

may be substituted with a C0 if it is more convenient. It was
not possible to compute the objective function in PopED for a
one- or two-point design, perhaps indicating that these were not
sufficiently informative. Regardless, potential one- and two-point
OSSs were evaluated in NONMEM by assuming they would
include the same times selected for the three-point OSS (i.e.,
one-point designs were C0, C1, or C4, and two-point designs
were C0-C1, C0-C4, and C1-C4). The MPE remained low in all
evaluated scenarios, likely due to positive and negative predic-
tion errors canceling each other out (Fig. 5). Meanwhile, the
RMSPE was less than 15% for both three-point OSSs, as well
as the C0-C1 and C0-C4 two-point OSSs. The percentage of
AUCs predicted within ± 15% of the reference value increased
substantially with the number of samples: from 55with a C1 only
to 81.2% with the optimal design (Table 3, Fig. 5). 86.8% of
AUCref within a clinically meaningful range of 50 to
130mg h l−1 (equal to the 95% prediction interval in the learning
set) were accurately predicted with the optimal design, while bias
grew for AUCs outside of this range for every strategy.
Prediction errors did not appear to be correlated with individual
covariate values based on visual inspection (data not shown).
Lastly, sensitivity analysis showed that estimates of CL, V, and
ka in the initial design mostly affected the timing of the last
sample, which ranged from 16 to 24 h, depending on the case.

Discussion

Basic goodness of fit metrics and internal validation techniques
relying on Monte Carlo simulations are the norm for the valida-
tion of population PK models, while external validation is more
rarely conducted, despite contributing a useful piece of informa-
tion [2]. The validation set used for the present work was similar
to the learning set in terms of sample size, which allowed us to
capture the magnitude of the inter-individual variability that is
observed in clinical practice, and thus to assess the robustness of
our model over a wide range of concentrations. However, the
two datasets differed in several ways. The first major difference
was the lack of COB users in the validation set since it predates
the introduction of this booster in the therapeutic arsenal.
However, the results of the external validation actually show that
a model developed mostly on DRV/COB data can reliably be
used to predict individual parameters in DRV/RTV users. The
second differencewas the absence ofAAG,which had been used
as a covariate in our original model. This meant that external

Fig. 1 Pharmacokinetic data in the learning and validation sets.
Observations from the learning set are represented with black circles
and validation set with white circles
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validation had to be performed not on the final model, but on an
earlier iteration that did not include AAG. Despite a significant
increase in the objective function when this covariate was re-
moved from the model, the goodness of fit remained comparable
in terms of visual trends on standard plots, parameter estimates,
and precision. PK data from the validation set was also charac-
terized by slightly longer post-intake times, although this was
partly due to the presence of twelve 6-h PK profiles in the learn-
ing data, which skewed the median. Nevertheless, there were
fewer samples available during the early PK phase for that
dataset. The last major difference was in the ARV backbone
and concomitant medications. Since most coadministered
ARVs are not known to cause major PK interactions with
DRV, disparities in ART should not be an issue as far as model

predictions are concerned [18]. The only exception is etravirine,
which was the perpetrator drug in all cases of CYP induction in
the learning set and in 86% of cases in the validation set (follow-
ed by nevirapine, 9.5%, and amiodarone, 4.8%), and which was
used twice as often in the validation set compared to the learning
set. Although the model did not incorporate a drug interaction
component, the number of subjects with potentially induced
CYP metabolism was low, and their individual predictions did
not appear biased.

After fixing model parameters, the goodness of fit was re-
assessed with the validation data. General trends were captured
well, but concentrations at the upper end of the observed range
(≥ 10mg l−1) were poorly predicted. Thismodel misspecification
may have been due to the lack of data at high concentrations or

Fig. 2 Goodness of fit plots for the validation set. a Population
predictions (PRED) versus observed concentrations. b Individual predic-
tions (IPRED) versus observed concentrations. c Conditional weighted
residuals (CWRES) versus PRED. d CWRES versus time after dose.

Dashed line is the line of identity (panels a and b) or the reference
CWRES range assuming a normal distribution (panels c and d), and
continuous line is the LOESS fit line (all panels)
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Fig. 3 NPDE for the validation set. a Q-Q plot. b Histogram of NPDE.
Theoretical distribution represented as shaded bars. c NPDE versus time
after dose (TAD). Prediction intervals represented as shaded areas.

Observations plotted as circles and observation percentiles as solid lines.
d NPDE versus PRED

Fig. 4 Prediction-corrected visual
predictive check for the validation
set. Circles represent observed
concentrations, solid line is the
median of simulations, dashed
lines are the 5th and 95th
percentiles of simulations, and
shaded areas represent CIs around
simulation percentiles
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the lack of a key covariate that could explain these outliers.
Simulation-based diagnostics such as the NPDE and VPC
yielded more nuanced results, showing moderate deviation from
the reference normal distribution in the case of NPDE, and large
CIs in the case of the VPC. The large CIs could be due to the
heterogeneous sampling design, as few sampleswere collected in
certain time ranges, which also made it difficult to find an appro-
priate binning strategy. Meanwhile, parameter estimates
remained almost unchanged by the addition of the validation
set to the learning set, confirmingmodel robustness. In any event,
this analysis highlights the usefulness of simulation-based diag-
nostics in assessing model performance.

Using this model, we then evaluated limited sampling strate-
gies for DRV,which could be used to enhance TDMor to design
further PK studies. To our knowledge, no such strategies have
been proposed in the literature. Should the clinician only need a
rough idea of patient adherence, a single C0 can readily be used
and interpreted according to recommended levels for PI-naïve or
PI-pretreated patients. However, due to the important inter-

individual variability that exists for DRV, this C0may be difficult
to interpret, and low concentrations would not necessarily be
indicative of low adherence. Furthermore, if a C0 cannot be
obtained at the time of TDM, a population model may be used
to extrapolate it from available information or to derive a more
complete measurement of drug exposure, which could for in-
stance be used to assess whether the patient is eligible for alter-
native dosage regimens or to investigate possible causes of
under- or over-exposure. The model we previously proposed is
applicable to any HIV patient under DRV-based therapy, regard-
less of concomitant antiretrovirals, but requires AAG measure-
ment and genotyping for two single nucleotide polymorphisms.
In case additional laboratory costs and analysis time are an issue,
a model without these covariates may also be used without a
significant loss of predictive power, as we have shown in the
present paper by validating a model which did not feature
AAG. In any event, to obtain a precise estimate of individual
PK parameters, samples should be as informative as possible—
this is where an OSS can come in useful. Different strategies
were evaluated using D-optimal design and keeping practical
limitations in mind. While it is possible to first derive an OSS
and to then evaluate it on a new validation set by comparing the
parameters one obtains using the entire validation set with those
obtained using only the previously determined optimal times,
this requires the validation data to include all points selected in
the OSS. This was unfortunately not the case here, as only sparse
concentrations were collected in our patients, whereas the OSS
included multiple points per individual. Instead, a simulation
approach was used: AUCs were simulated based on the learning
set (once again, the validation set could not be used due to the
lack of AAG), and we assessed how accurately this parameter
could be predicted using each strategy of interest. The AUCwas
chosen as the parameter to be estimated because it reflects total
exposure and it (or CL) is the parameter one would mostly be
interested in predicting, although, from a clinical point of view, it
has yet to be convincingly demonstrated that AUC is a better
marker of exposure than the C0 or, for that matter, that there is a
correlation between DRV exposure and efficacy [1, 19, 20]. If
only a single sample can be obtained, C0 was found to be the best
choice. The two-point OSS was C0 and C1, while the three-point

Table 3 Comparison of sampling
strategies with regard to AUC
calculation

Strategy ρAUC MPEAUC (%) RMSPEAUC (%) AUCs < 15% PE (%)

C1-C4-C19 0.93 1.4 12.0 81.2

C0-C1-C4 0.92 0.7 12.8 79.2

C0-C1 0.88 − 0.9 14.7 73.2

C0-C4 0.90 0.4 13.7 75.3

C1-C4 0.75 0.1 18.8 58.9

C0 0.82 − 1.7 17.1 65.0

C1 0.69 − 1.5 20.7 55.3

C4 0.72 − 0.2 19.7 56.2

Table 2 Comparison of model parameters with learning, merged, and
bootstrapped data

Parameter Learning set Merged set Bootstrapped data

CL/F (l h−1) 12.6 12.4 12.3 [11.1–13.8]

ωCL (sd) 0.238 0.248 0.240 [0.162–0.291]

V/F (l) 137 147 144 [110–170]

ωV (sd) 0.353 0.308 0.292 [0.069–0.427]

ka (h
−1) 0.545 0.724 0.704 [0.371–1.419]

ωka (sd) 0.575 0.712 0.826 [0.335–1.762]

θsex on CL − 0.198 − 0.151 − 0.153 [− 0.258 to − 0.046]
θCYP3A5 on CL − 0.192 − 0.126 − 0.131 [− 0.230 to − 0.029]
θSLCO3A1 on V 0.991 0.697 0.756 [0.230–1.848]

σexponential (sd) 0.306 0.334 0.325 [0.265–0.382]

σadditive (sd) 0.611 0.539 0.548 [0.349–0.715]

Parameters given as fixed or random effect. Bootstrapped parameters
given as median [95% CI]. CL/F, apparent clearance; V/F, apparent vol-
ume of distribution; ka, absorption rate constant; ω, inter-individual var-
iability; σ, residual variability
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OSSwasC0, C1, andC4.AlthoughC1-C4-C19was initially found
to be the optimal strategy, sensitivity analysis showed some var-
iation in the timing of the last sample depending on input param-
eters, but using a C0 instead did not appear to have much influ-
ence, and a C0 is likely the most convenient option for clinicians.
All three OSSs were found to be adequate in terms of bias and
precision, but extreme values of AUCwere more poorly predict-
ed with sparser designs (although AUCs within a clinically rele-
vant range were more often predicted accurately). The three-
point design, while imperfect, provided the most information
over a larger range of AUCs.

Conclusion

A previously published population PK model for DRV was val-
idated using an external dataset. Results confirm its robustness
and lend more credibility to model-derived predictions. Several
sampling strategies were evaluated, among which a three-point

strategy (either C0, C1, and C4 or C1, C4, and C19) was the most
adequate. These strategies could be used as a starting point for the
design of further PK studies in order to maximize the amount of
information that can be gathered, especially in resource
constrained settings.
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