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Abstract

Ilex paraguariensis is a well-known plant that is widely consumed in South America, pri-

marily as a drink called mate. Mate is described to have stimulant and medicinal proper-

ties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an

extract of this plant as a possible modulator of fat storage to control lipid metabolism in

worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenor-

habditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous

extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of con-

sumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein

16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral

parameters, body length, total body energy expenditure and overall survival were ana-

lyzed. Total body energy expenditure was determined by the oxygen consumption rate in

N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knock-

out, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression

20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respec-

tive control group, without affecting bacterial growth and energetic balance, while nhr-49

(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguarien-

sis increased the oxygen consumption in N2 worms, but not in mutant strains, increased

N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We

demonstrate for the first time that I. paraguariensis can decrease fat storage and increase

body energy expenditure in worms. These effects depend on the purinergic system

(ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of

ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other
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studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and

energy consumption.

1. Introduction

A number of plants are used as complementary or alternative medicines in regular diets world-

wide [1]. Ilex paraguariensis St. Hil. Var. paraguariensis (Aquifoliaceae), the yerba mate, is

widely used in southern Brazil, northern Argentina, Paraguay, and Uruguay [2] as a drink

called chimarrão, tererê, or mate. Its consumption has been popular for centuries because/ of

its stimulant and medicinal properties [3]. The effects of the consumption of I. paraguariensis
include central nervous system stimulation [4], increased antioxidant defense [5], antioxidant

properties in vitro [6], and thermogenic properties [7].

The prevalence of obesity is increasing worldwide, and has drawn the attention of public

health institutions, as it is commonly associated with various metabolic disorders such as

hypertension, dyslipidemia, type II diabetes, and insulin resistance [8]. In 2011–2012, 34.9% of

adults aged 20 years and over were obese in the United States of America [9], indicating the

urgent need for new treatments. Many methods are used to treat obesity, most of which are

pharmaceuticals, which can cause collateral effects, like psychiatric disorders, heart attack, and

stroke [10], and are often associated with rebound weight gain and potential drug abuse [11].

In this context, natural extracts are potential alternatives to pharmaceuticals and should be

investigated for new anti-obesity treatments or for nutraceutical prevention for obesity, as they

often cause less adverse effects and are easily added to the diet [12].

Previous studies have reported that the main compound found in aqueous extracts of I.
paraguariensis are methylxanthines. The primary methylxanthine is caffeine [13, 14], which is

a thermogenic agent that acts through the adenosine receptor [15] to increase metabolic rates

[16–18], induce fat oxidation [19–21], stimulate respiratory centers [16], and increase resting

energy expenditure [22].

Herein, we studied the modulation of fatty acid metabolism by I. paraguariensis extract in
vivo using Caenorhabditis elegans as an animal model. This nematode has been described as a

widely accepted and used model organism for studies of a variety of biological processes and

diseases that can be defined on a molecular basis, e.g., obesity and fat metabolism, because

many proteins involved in the synthesis, oxidation, and transport of lipids are highly con-

served between C. elegans and mammals [23].

In C. elegans, adenosine receptor ortholog (ADOR-1), nuclear hormone receptor (NHR-

49), and adipose triglyceride lipase (ATGL-1) can be studied to evaluate the purinergic system

[24], the regulation of β-oxidation [25] rate-limiting genes, and fat mobilization from stored

triglycerides (TAGs) [26], respectively. This study aimed to investigate whether these pathways

are involved in I. paraguariensis modulation of fat metabolism in C. elegans.

2. Materials and methods

2.1. Chemical, apparatus and general procedures of analytical grade

Methanol, formic acid, gallic acid, chlorogenic acid and caffeic acid were purchased from

Merck (Darmstadt, Germany). Quercetin, theobromine, caffeine, rutin, catechin, epigallocate-

chin and kaempferol were acquired from Sigma Chemical Co. (St. Louis, MO, USA). High per-

formance liquid chromatography (HPLC-DAD) was performed with a Shimadzu Prominence

Auto Sampler (SIL-20A) HPLC system (Shimadzu, Kyoto, Japan), equipped with Shimadzu

Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0204023 September 25, 2018 2 / 20

31, grant number 0737/2018]. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0204023


LC-20AT reciprocating pumps connected to a DGU 20A5 degasser with a CBM 20A integra-

tor, SPD-M20A diode array detector and LC solution 1.22 SP1 software.

2.2. Plant material and aqueous extract preparation

Minced leaves of Ilex paraguariensis from Ervateira Seiva-Pura1 used in this study were pur-

chased from local market in Santa Maria, Rio Grande do Sul (Brazil). The extraction was car-

ried out by pouring 100 mL of boiled distilled water on plant sample [27]. After extraction at

room temperature (10 min), the aqueous extract was filtered using a sterilization filter with

0.22μm pore size.

2.3. Quantification of compounds by HPLC-DAD

Reverse phase chromatographic analyses were carried out under gradient conditions using C18

column (4.6 mm x 250 mm) packed with 5μm diameter particles. The mobile phase was water

containing 1% formic acid (A) and methanol (B), and the composition gradient was: 15% of B

until 10 min and changed to obtain 20%, 30%, 50%, 60%, 70%, 20% and 10% B at 20, 30, 40, 50,

60, 70 and 80 min, respectively, following the method described by Abbas et al. (2014) with

slight modifications [28]. Ilex paraguariensis aqueous extract was analyzed at a concentration of

20 mg/Mr. The presence of ten compounds was investigated: Gallic acid, chlorogenic acid, caf-

feic acid, catechin, epigallocatechin, quercetin, rutin, kaempferol, caffeine and theobromine.

Identification of these compounds was performed by comparing their retention time and UV

absorption spectrum with those of the commercial standards. The flow rate was 0.7 ml/min,

injection volume 40 μL and the wavelength were 257 nm for gallic acid, 270 nm for theobro-

mine, 280 nm for catechin, epigallocatechin and caffeine, 327 nm for caffeic and chlorogenic

acids, and 366 nm for quercetin, rutin and kaempferol (Table 1). All the samples and mobile

phase were filtered through 0.45 μm membrane filter (Millipore) and then degassed by ultra-

sonic bath prior to use. Stock solutions of standards references were prepared in the HPLC

mobile phase at a concentration range of 0.030–0.250 mg/ml for kaempferol, quercetin, cate-

chin, epigallocatechin, rutin, caffeine and theobromine; and 0.045–0.300 mg/ml for gallic, caf-

feic and chlorogenic acids. The chromatography peaks were confirmed by comparing its

retention time with those of reference standards and by DAD spectra (200 to 600 nm).

Table 1. Composition of Ilex paraguariensis aqueous extracts.

Compounds Ilex paraguariensis LOD LOQ

mg/g % μg/mL μg/mL

Gallic acid 1.27 ± 0.01a 0.12 0.015 0.049

Catechin 2.98 ± 0.03b 0.29 0.032 0.105

Chlorogenic acid 3.71 ± 0.01b 0.37 0.008 0.027

Caffeic acid 9.15 ± 0.02c 0.91 0.021 0.070

Caffeine 8.86 ± 0.01d 0.88 0.029 0.095

Theobromine 3.65 ± 0.01b 0.36 0.007 0.023

Epigallocatechin 6.01 ± 0.03e 0.60 0.016 0.052

Rutin 7.43 ± 0.02f 0.74 0.026 0.086

Quercetin 3.12 ± 0.01b 0.31 0.035 0.115

Kaempferol 5.95 ± 0.03e 0.59 0.019 0.063

Results are expressed as the mean ± standard deviation (SD) of three determinations.

Averages followed by different letters differ by Tukey test at p < 0.05.

LOD, limit of detection; LOQ, limit of quantification.

https://doi.org/10.1371/journal.pone.0204023.t001
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Calibration curve for gallic acid: Y = 13057x + 1285.4 (r = 0.9998); catechin: Y = 12728x +

1197.5 (r = 0.9995); epigallocatechin: Y = 11893 + 1357.2 (r = 0.9995); chlorogenic acid:

Y = 12659x + 1287.8 (r = 0.9993); caffeic acid: Y = 11962x + 1326.2 (r = 0.9997); caffeine:

Y = 13276x + 1297.6 (r = 0.9999); theobromine: Y = 12473x + 1175.8 (r = 0.9996); rutin:

Y = 13805 + 1195.7 (r = 0.9999); quercetin: Y = 13627x + 1362.1 (r = 0.9999) and kaempferol:

Y = 12583x + 1274.8 (r = 0.9997). The limit of detection (LOD) and limit of quantification

(LOQ) were calculated based on the standard deviation of the responses and the slope using

three independent analytical curves. LOD and LOQ were calculated as 3.3 and 10 σ/S, respec-

tively, where σ is the standard deviation of the response and S is the slope of the calibration

curve [29].

2.4. C. elegans strains

Wild-type C. elegans strain N2 wild-type (var. Bristol), STE68 nhr-49(nr2041), VS20 (hjIs67
[atgl-1p::atgl-1::gfp + mec-7::RFP]) and CL2070 dvIs70 Is[hsp-16.2::gfp; rol-6(su1006)] were pro-

vided by the Caenorhabditis Genetics Center (University of Minnesota, USA). EG6870 strain,

ador-1(ox489), was kindly supplied from Dr. Erik Jorgensen laboratory (University of Utah,

USA). This strain has a deletion from 1kb upstream and the first three exons of the ador-1

gene, and was outcrossed six times. All strains were maintained at 20˚C.

2.5. Growth conditions and Ilex paraguariensis treatment

Treatment plates were prepared diluting Ilex paraguariensis aqueous extract in distilled auto-

claved water and spreading it with Escherichia coli OP50 as food source to the surface of dry

nematode grow media (NGM) agar plates [30] to final concentrations of 0, 0.25, 0.5 and 1 mg/

mL. Control plates were prepared with water and bacteria at the same proportions. Plates were

incubated overnight at 37˚C to allow bacteria growth. Synchronized L1 worms were cultured

onto treatment plates in the presence or absence of aqueous extract and allowed to develop

until the young adult stage at 20˚C.

2.6. Bacterial growth curve

E. coli OP50 growth was evaluated over 4 h in the presence or absence of Ilex paraguariensis at

0.25, 0.5 or 1 mg/mL. The optical density was measured with a spectrophotometer at 600 nm.

Growth curves were normalized with the control group at time zero [31].

2.7. ATGL-1::GFP expression

To determine ATGL-1::GFP expression, young-adults worms from VS20 strain were immobi-

lized with 10 mM sodium azide for image acquisition (Fig 1), and photographed under 60×
objective on a confocal microscope (Fluoview FV101, Olympus, Tokyo, Japan). Images were

processed with the Olympus Image Browser. GFP fluorescence quantification and analyses

of images were conducted with ImageJ software by determining average pixel intensity per

animal.

2.8. C1-BODIPY-C12 staining

C1-BODIPY-C12 conjugated fatty acids (BODIPY) lipid staining was carried out as previously

described [32]. C1-BODIPY-C12 was applied to the surface of NGM plates (10 mL agar)

seeded with E. coli OP50 and 0 or 1 mg/mL of Ilex paraguariensis to a 50 nM final concentra-

tion (Fig 2 or S1 Fig). Synchronized wild-type (N2), nhr-49(nr2041), and ador-1(ox489)
L1-stage worms were transferred to these plates and allowed to develop until adulthood.
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Fig 1. Ilex paraguariensis effects on ATGL-1::GFP expression in Caenorhabditis elegans VS20 strain. (A)

Visualization of ATGL-1::GFP expression and (B) measurement of ATGL-1::GFP expression on young-adult

Caenorhabditis elegans. �p<0.05 and ��p<0.01, statistically significant compared with the untreated group by One-

Way ANOVA followed by Bonferroni post-test (mean, standard error of the mean [SEM], n = 30 worms per group).

The experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0204023.g001
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Young-adult worms were mounted on agar pads and immobilized with 10 mM sodium azide

for image acquisition using identical settings and appropriate filters with a Zeiss Axiovert II

microscope (Thornwood, NY, USA) fitted with a CCD camera. Fluorescence quantification

and analyses of images were conducted with ImageJ software by determining average pixel

intensity of the two first intestinal pairs of cells per animal.

2.9. Pharynx pumping rate

Pharyngeal bulb contractions were measured in young adult worms on their treatment plates.

The number of pharynx pumps in a 10s-interval, in triplicate [33], was assessed with a micro-

scope (Fig 3A).

2.10. Defecation assay

Defecation frequencies were performed by observing young adult worms in their plates of

treatment [34] with a microscope. The defecation cycle length was defined as the duration

between the pubic steps (posterior body muscle contraction) of two consecutive defecations

(Fig 3B).

Fig 2. BODIPY fluorescence decrease induced by Ilex paraguariensis exposition in Caenorhabditis elegans wild-type (N2).

Visualization of lipid droplets evidenced by BODIPY labeling in (A) wild-type young adults, (B) nhr-49(nr2041), and (C) ador-1
(ox489) and fluorescence quantification in (D) wild-type young adults, (E) nhr-49(nr2041), and (F) ador-1(ox489). ���p<0.001,

statistically significant compared with the untreated group by Student’s t-test (mean, SEM, n = 60 worms per group). The

experiment was performed in triplicate.

https://doi.org/10.1371/journal.pone.0204023.g002
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Fig 3. Caenorhabditis elegans wild-type behavior following Ilex paraguariensis treatment. Effect of I. paraguariensis on (A)

pharyngeal pumping rate, (B) defecation cycle length, (C) body bends in wild-type young adults, (D) egg production and (E) body

length in wild-type young-adults. No statistically significant difference was found by Student’s t-test (mean, SEM, n = 30 worms per

group). The experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0204023.g003
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2.11. Body bends frequency

After treatment, young adult worms were randomly transferred to food-free NGM plates

and allowed to freely move for 3 min to adaptation. The number of times each worm changes

the direction of the body was scored with a microscope during a 20s-interval in triplicate [24]

(Fig 3C).

2.12. Egg-production

To assess the number of eggs inside the uterus, young-adult worms were individually picked

into a drop of bleaching solution (1% NaOCl, 0.25 M NaOH). The worms’ cuticles were dis-

rupted and released eggs were counted with a microscope [35] (Fig 3D).

2.13. Developmental evaluation

To evaluate the development of wild-type animals following Ilex paraguariensis treatment,

images of worms from each group were acquired (Fluoview FV101, Olympus, Tokyo, Japan).

Images were processed with the Olympus Image Browser and body length was measured along

the animal axis using ImageJ software (Fig 3E).

2.14. Oxygen consumption

Oxygen consumption rate was measured with a Hansatech Oxymeter (Pentney, Norfolk, UK)

with a Clark-type electrode. The electrode chamber was washed and stabilized for 30 min with

1 mL air-saturated M9 buffer before analysis. Approximately 2,000 young-adult worms of

wild-type (N2), nhr-49(nr2041), and ador-1(ox489) were transferred to a cuvette with 1 mL of

M9, and oxygen consumption was measured for 2–15 min at 20˚C to obtain oxygen consump-

tion rates [36] (Fig 4).

2.15. Oxidative stress resistance assays

Young-adult worms of wild-type (N2), nhr-49(nr2041), and ador-1(ox489) were exposed to

100 uM of juglone, also called 5-hydroxy-1,4- naphthoquinone (IUPAC), a generator of reac-

tive oxygen species (ROS) [37], this concentration is supposed to kill approximately 50% of the

nematodes (LD50), after 1 hour exposure [38]. Juglone was prepared in EtOH (1% final con-

centration). After 1 hour at 20˚C, 100 nematodes per treatment with Ilex paraguariensis were

assessed with a Nikon E200 microscope (Tokyo, Japan). Animals that reacted to a mechanical

stimulus were scored as alive, and non-responding animals were considered to be dead (Fig 5).

Analyses were carried out in five independent assays. Results are shown as percentage of alive

animals.

2.16. Fluorescence measurement of hsp-16.2p::GFP

Fluorescence measurement of hsp-16.2p::GFP was measured at emission 535 nm and excita-

tion 485 nm with 200 worms at young-adult stage [39], using SpectraMax1 i3x microplate

reader (Molecular Devices, Sunnyvale, CA). Analyses were carried out in triplicate and

repeated independently five times (Fig 6A).

2.17. Quantitative real-time polymerase chain reaction (qPCR)

The relative abundance of small heat shock protein (sHSP) hsp-16.2 mRNA was measured in

the N2 wild-type strain by quantitative real-time PCR (qPCR) following a described method

with some modifications [40]. The animals were washed with M9 buffer into Eppendorf tubes,
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resuspended in Trizol reagent (Invitrogen) and allowed to settle on ice. The worm pellet was

followed by chloroform extraction and isopropanol precipitation. Total RNA isolation was

performed accordingly to the manufacturer’s suggested protocol.

Total RNA samples were treated with DNase I (Promega) to eliminate DNA contamination.

Reverse transcription (RT) of approximately 1 μg total RNA was performed with random

primer, dNTPs and M-MLV reverse transcriptase enzyme (Invitrogen), according to the

manufacturer’s suggested protocol. The following gene-specific primers were used: Actin
(Forward—5'-GTGTGACGACGAGGTTGCCGCTCTTGTTGTAGAC-3' and Reverse—
5'-GGTAAGGATCTTCATGAGGTAATCAGTAAGATCAC-3'), and hsp-16.2
(Forward—5'-CTGCAGAATCTCTCCATCTGAGTC-3' and Reverse—5'-AGAT
TCGAAGCAACTGCACC-3') in 10 μl PCR mixture containing 5-μl cDNAs (1:100), 1 X PCR

Buffer, 0,1 mM dNTPs, 0.2 μM of each primer, 3 mM MgCl2, 0.1 X SYBR Green I (Molecular

Probes) and 0,5 U Platinum Taq DNA Polymerase (Invitrogen).

The qPCR conditions were: 94 ˚C for 5 min followed by 40 cycles of 15 s at 94 ˚C, 15 s at

60 ˚C and 40 s at 72 ˚C for extension in a Thermocycler StepOne Plus (Applied Biosystems).

After amplification, samples were heated from 60 to 95 ˚C at a 0.3 ˚C/s temperature gradient

to construct the denaturing curve of the amplified products. All samples were analyzed in

Fig 4. Measurement of oxygen consumption rate in C. elegans treated with I. paraguariensis extract. Oxygen consumption rates

in young-adult worms. (A) Wild type, (B) nhr-49(nr2041), and (C) ador-1(ox489). ��p< 0.01, statistically significant compared with

the untreated group by Student’s t-test (mean, SEM, n = 7). The experiments were performed seven times.

https://doi.org/10.1371/journal.pone.0204023.g004
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Fig 5. I. paraguariensis on resistance to oxidative stress. Survival of young-adult worms exposed to 100 μM juglone

for 1 h. (A) Wild type, (B) nhr-49(nr2041), and (C) ador-1(ox489). Data are expressed as percentage of worms alive.
��p< 0.01, statistically significant compared with the untreated group by Student’s t-test (mean, SEM, n =

approximately 500 worms per group).

https://doi.org/10.1371/journal.pone.0204023.g005
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triplicate with a non-template control also included. SYBR Green fluorescence (Molecular

probes) was analyzed by StepOne Plus Software version 2.0 (Applied Biosystems) and Cq value

(ΔCq) for each sample was calculated and reported using the ΔΔCq method [41]. Briefly, for

each well, a ΔCq value was obtained by the difference in Cq values (ΔCq) between the target

Fig 6. I. paraguariensis on hsp-16.2p::GFP and hsp-16.2 transgene expression. (A) Fluorescence expression of hsp-
16.2p::GFP worms. Data are expressed as arbitrary fluorescence units (AFU). (B) hsp-16.2mRNA levels using a ΔΔCq

method in wild-type (N2). Student’s t-test, p< 0.05. The experiments were performed five times on different days.

https://doi.org/10.1371/journal.pone.0204023.g006
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gene and the reference gene. The ΔCq mean value obtained from the control group of each

gene was used to calculate the ΔΔCq of the respective gene (2-ΔΔCq) (Fig 6B).

2.18. Statistical analyses

Statistical analyses were performed using GraphPad Prism 5.0 (GraphPad Software, San

Diego, CA). The statistical differences between conditions were determined by a by Student’s

T-test, while the statistical differences between different concentrations of Ilex paraguariensis
were determined by a one-way ANOVA followed by Bonferroni’s post-hoc test. Values are rep-

resented as means ± SEM, results were considered statistically significant when p< 0.05.

3. Results

3.1. High performance liquid chromatography analysis of I. paraguariensis
the bioactive compounds

High performance liquid chromatography fingerprinting of Ilex paraguariensis aqueous

extracts revealed the presence of gallic acid (tR = 9.97 min; peak 1), catechin (tR = 15.03 min;

peak 2), chlorogenic acid (tR = 21.38 min; peak 3), caffeic acid (tR = 24.19 min; peak 4), caffeine

(tR = 27.48 min; peak 5), theobromine (tR = 32.65 min; peak 6), epigallocatechin (tR = 35.11

min; peak 7), rutin (tR = 39.45 min; peak 8), quercetin (tR = 49.27 min; peak 9), and kaempferol

(tR = 54.67 min; peak 10) (Table 1).

3.2. Antimicrobial effect of Ilex paraguariensis
Since dead bacteria can provide differences in micronutrients and be responsible for some dif-

ferences in the range of fat stores in C. elegans [42, 43], the antimicrobial activity of I. para-

guariensis extract against Escherichia coli OP50 was tested. No differences were observed in

bacterial growth in the presence of 0.25, 0.5, or 1 mg/mL of I. paraguariensis (data not shown).

3.3. Effects of Ilex paraguariensis on ATGL-1 expression and C. elegans fat

storage

We determined a concentration of I. paraguariensis extract that increased the expression of

ATGL-1 fused with green fluorescent protein (ATGL-1::GFP). We observed that 1 mg/mL of I.
paraguariensis extract increased the expression of ATGL-1::GFP (20.06%) in the VS20 strain

(Fig 1, p< 0.05). No differences were observed between 0.25 mg/mL and control groups, but

0,5 mg/mL decreased the expression of ATGL-1::GFP (15.19%). Moreover, BODIPY, a proxy

for the measurement of fat in C. elegans, was used to evaluate structures in gut epithelial and

hypodermal cells. Ilex paraguariensis treatment decreased (37.57%) the fluorescence levels of

N2 wild-type worms compared with the control group (Fig 2A and 2D, p< 0.001), however,

when the nhr-49(nr2041) and ador-1(ox489) strains were treated, no differences were observed

in the fluorescence levels compared with control group (Fig 2B, 2C, 2E and 2F).

3.4. Developmental and behavior of I. paraguariensis-treated worms

Treatment with I. paraguariensis extract did not affect the pharynx-pumping rate and defeca-

tion cycle length of adult wild-type worms. Both parameters were similar to control groups

(Fig 3A and 3B). The rate of movement was assessed through the frequency of body bends,

and no difference was observed (Fig 3C). Egg production was also assessed in young-adult

worms following extract treatment and there was no difference between control and treated
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worms (Fig 3D). Moreover, there was no difference in body length between control and

treated worms (Fig 3E).

3.5. Oxygen consumption in C. elegans
The oxygen consumption rate was compared between untreated and treated worms with 1

mg/mL of I. paraguariensis of wild-type (N2), nhr-49(nr2041), and ador-1(ox489) strains to

infer body energy expenditure. In the N2-treated group, the oxygen consumption rate was

increased by 70.16% compared with control animals (Fig 4A, p< 0.05). By contrast, when the

nhr-49(nr2041) and ador-1(ox489) strains were treated, no differences were observed in oxygen

consumption rate compared with the control group (Fig 4B and 4C).

3.6. Effect of I. paraguariensis on resistance to oxidative stress

We analyzed if I. paraguariensis extract could reduce the oxidative damage caused by juglone,

which generates reactive oxygen species (ROS) [37]. The 1-h exposure of young adult N2 wild-

type worms to 100 mM of juglone killed 45.16% of worms, and pretreatment with 1 mg/mL of

I. paraguariensis extract increased worm survival following juglone exposure by 22.12% (Fig

5A, p< 0.001), however, when the nhr-49(nr2041) and ador-1(ox489) strains were treated, no

differences were observed in worm survival compared with control group (Fig 5B and 5C).

Following this, we determined the expression of hsp-16.2p in CL2070 worms and the relative

abundance of hsp-16.2 mRNA in N2 wild-type worms. The treatment with 1mg/mL of I. para-
guariensis extract did not alter hsp-16.2p expression in CL2070 worms, neither the hsp-16.2
mRNA levels in N2 worms (Fig 6).

4. Discussion

The main findings of this study indicate that treatment with 1 mg/mL of I. paraguariensis
extract increased worm survival following oxidative stress, reduced fat storage, increased atgl-1
(nr2041) expression and oxygen consumption in N2 wild-type. Taken together, our results

clearly indicate that I. paraguariensis extract can protect against oxidative stress and modulate

fat metabolism by increasing atgl-1(nr2041) expression and oxygen consumption rate in C. ele-
gans. Possible pathways include expression of the nhr-49 gene, a gene linked to β-oxidation

and ador-1, a gene that encodes an ortholog of the human adenosine receptor. The effects on

fat metabolism appear to be unrelated with any behavioral procedure tested here, but are

important for survival, furthermore, the expression of HSPs seems to be unrelated to the

effects on metabolism or survival.

The concentrations of I. paraguariensis used here did not present antimicrobial activity,

thus did not affect the E. coli growth [42, 43]. Moreover, the animals were observed through

the larval stages using a microscope, and all animals achieve the young adult stage at the same

time, and the same length, so it does not alter the development time.

The metabolism of fatty storage is regulated by the synthesis and degradation of fat, mainly

TAG, the storage form of carbohydrate and fat, depicting a highly concentrated form of energy

[44]. The TAG storage and mobilization are general biological process of cells, defined as lipo-

genesis and lipolysis, respectively. The lipogenesis process includes fatty acid synthesis and

subsequent TAG synthesis, and occurs when the total available energy is not immediately

needed for metabolic processes, so, the energy contained in Acetyl-CoA is efficiently stored for

a long time as fat [45]. In contrast, lipolysis encompasses the catabolism of TAG stored into

lipid droplets, to mobilize stored energy [45].

Since the intestine is a major fat storage organ in C. elegans [46], and TAGs are the major

lipids stored in the organism, we determined a concentration of I. paraguariensis extract that

Ilex paraguariensis modulates fat metabolism in Caenorhabditis elegans

PLOS ONE | https://doi.org/10.1371/journal.pone.0204023 September 25, 2018 13 / 20

https://doi.org/10.1371/journal.pone.0204023


would modulate key factors of fat metabolism without suppressing bacterial growth. To mobi-

lize fat stored, TAGs must be hydrolyzed, and this reaction requires two major enzymes, the

adipose triglyceride lipase (ATGL), and the hormone sensitive lipase (HSL) [47]. Here, we

evaluated the expression of atgl-1(nr2041), the major lipase for fat mobilization from TAGs

stored in C. elegans [26]. We found that 1 mg/mL of I. paraguariensis extract increased atrgl-1
(nr2041) expression (Fig 1). This result indicates that the extract, at 1 mg/mL, can act in fat

metabolism of C. elegans, increasing fat mobilization from storage.

Remarkably, 0.5mg/mL of I. paraguariensis extract decreased atgl-1(nr2041) expression (Fig

1) of C. elegans. This effect appears to be caused by a biphasic effect of I. paraguariensis extract.

This kind of effect is well established in pharmacology studies as the U-shaped plot [48]. So

considering the I. paraguariensis extract action at the atgl-1(nr2041) expression–lower concen-

tration has no effect in atgl-1(nr2041) expression, while our medium concentration reduced

the expression and our higher concentration tested here increased the atgl-1(nr2041) expres-

sion–it could be interpreted as an "U-shaped plot”.

Since C. elegans can convert excess energy into TAGs stored in lipid droplets and distrib-

uted throughout the body of the worm [49], we assessed fat storage through BODIPY-conju-

gated fatty acid staining. Despite being a simple procedure, it is reliable, inexpensive, does not

require fixation [50, 51], and allowed us to investigate both intestinal and hypodermal lipid

stores of live animals. We found that 1 mg/mL of I. paraguariensis decreased BODIPY fluores-

cence in N2 wild-type (Fig 2A and 2D). Therefore, 1 mg/mL of I. paraguariensis extract was

the primary concentration tested, since it did not affect bacterial growth, increased ATGL-1::

GFP expression, and decreased BODIPY fluorescence in N2 wild-type (Figs 1 and 2). The

increased expression of atgl-1(nr2041) is consistent with the decrease in fat storage.

Afterwards, we speculate if the decrease in fat storage could be caused by a reduction in

food intake [52], or an increase in the defecation cycle. Our results (Fig 3A and 3B) indicate

that the decrease in fat storage was not related to pharyngeal pumping or the defecation

cycle rate. Alternatively, body movements are also associated with changes in fat storage, the

increase in movement may increase the usage of energetic reserves, leading to a decrease in

fat storage [53]. In addition, increased egg production can also indirectly alter fat metabolism,

because in oocyte production, polyunsaturated fatty acids are transported from the site of fat

metabolism [54]. The results (Fig 3C and 3D) show that the decrease in fat storage was not

related to body movements or egg production. Thus, the increase in fat mobilization or

decrease in fat storage induced by I. paraguariensis seems to be unrelated to any of the changes

in the behavioral parameters tested in this study.

We demonstrate here that I. paraguariensis extract increased the oxygen consumption rate

of the N2 strain (Fig 4A), and increased β-oxidation (nhr-49 modulation) promoting an ace-

tyl-CoA availability for the mitochondrial tricarboxylic acid (TCA) cycle and other com-

pounds that feed the electron transport chain [55]. In order to attend this demand for energy,

C. elegans increases the mobilization of fatty acids (atgl-1) and decrease the fat storage. All of

this effects could be associated with an increase in uncoupling proteins (UCPs) [56, 57], mito-

chondrial transporters present in the inner membrane of mitochondria responsible for ther-

mogenesis [58], that occurs independently of behavioral alterations. This modulation caused

by the extract in the oxygen consumption brings the modulations of fat oxidation and conse-

quently a decrease in fat storage.

To test the involvement of fatty acid oxidation in the lipid-reducing effects of I. paraguar-
iensis extract, we investigated the nuclear hormone receptor, nhr-49, a key regulator gene of

fat oxidation in C. elegans [59]. nhr-49 targets multiple enzymes involved in β-oxidation [25],

and it was previously demonstrated that nhr-49(nr2041) animals have higher fat content [25].

The I. paraguariensis extract did not alter BODIPY fluorescence and neither the oxygen
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consumption rate in nhr-49(nr2041) worms (Figs 2B and 4B). Therefore, the oxygen consump-

tion increase and BODIPY fluorescence decrease in wild-type worms is related to the NHR-49

pathway.

Previous studies have reported that the main compounds identified in the aqueous extract

of I. paraguariensis are methylxanthines, mainly caffeine [13, 14]. Caffeine is a well-known

thermogenic agent related to increased metabolic rates (for a review of the effects of caffeine,

see Harpaz, Tamir [60]). The primary action of caffeine and other methylxanthines occurs via

antagonism of the adenosine receptor, resulting in phosphodiesterase inhibition and increased

lipolysis [61]. Interaction of the adenosine system and caffeine has already been described

[62], and the first knockout of purinergic receptors was recently generated [63]. To confirm

that the purinergic system is involved in the effects induced by the extract, oxygen consump-

tion and BODIPY fluorescence of the ador-1 knockout strain were assessed. Similar to the

experiment with nhr-49(nr2041), I. paraguariensis did not alter BODIPY fluorescence and nei-

ther the oxygen consumption rate of the ador-1(ox489) (Figs 2C and 4C), indicating that the

purinergic system is involved in the effects observed in N2 worms.

Increased oxygen consumption leads to an increase in ROS formation [64]. In general,

plant extracts containing phenolic compounds exhibit intrinsic antioxidant activity or induce

antioxidant pathways [65]. A previous study has already shown that I. paraguariensis extract

reduced ROS levels and increased C. elegans survival [66]. Here, we exposed N2, ador-1(ox489)
and nhr-49(nr2041) worms treated with 1 mg/mL I. paraguariensis to a chemical generator

of ROS, juglone [37], to evaluate the potential antioxidant effects of Ilex paraguariensis. The

extract protected wild-type C. elegans, but not ador-1(ox489) neither nhr-49(nr2041) against

the pro-oxidant effects of juglone (Fig 5).

Goh and cols have already demonstrated that NHR-49 is not only a regulator of lipid

metabolism, but also it is required for the activation of a protective transcriptional response

to oxidative stress [67]. Here we showed that nhr-49(nr2041) is required for juglone resis-

tance. Since fat accumulation is correlated with systemic oxidative stress in humans and

mice [68], we demonstrated that 1 mg/mL of I. paraguariensis extract can protect C. elegans
wild-type against the production of ROS by juglone through NHR-49 pathway and puriner-

gic system.

To test if HSPs, a group of low molecular weight polypeptides induced by environmental

and physiological stress [69], are involved in the oxidative stress protection induced by I. para-
guariensis extract, we assessed hsp-16.2p expression in CL2070 worms and relative abundance

of hsp-16.2 mRNA in N2 wild-type worms. We observed that hsp-16.2 is not involved in the I.
paraguariensis stress response (Fig 6). Here, we showed that I. paraguariensis extract has ther-

mogenic properties and promotes fat oxidation and oxidative stress protection independent of

hsp-16.2 activation.

The I. paraguariensis extract has been linked to various biological activities, which have

been mainly attributed to its large amount of bioactive compounds, including the methylxan-

thines caffeine and theobromine and the phenolic compounds caffeic acid, chlorogenic acid,

and saponins [70]. The use of isolated compounds or active principle(s) from natural extracts

is encouraged by some researchers [71, 72]; nevertheless, this may not be the most effective

method in all cases. For example, Dulloo and colleagues have already shown in both in vitro
and in vivo studies that the increase in thermogenic effects induced by green tea was lost when

the same quantity of isolated caffeine present in the extract was tested [73, 74].

Synergistic interactions are important in phytomedicines, therefore, the effects of the I.
paraguariensis extract on adipose tissue could be lost when a single active ingredient is isolated

and used at low concentrations [75]. In some cases, isolated compounds of plant extracts can

exert the same effect only at higher concentrations, which might be toxic to the organism [76].
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Thus, the results mentioned above of Ilex paraguariensis extract could be lost when a single

active ingredient is isolated at the same concentration found in the extract.

To the best of our knowledge, this is the first demonstration of a decrease in C. elegans
fat storage following treatment with I. paraguariensis extract. Since nhr-49 targets multiple

enzymes involved in β-oxidation [25], this effect could be caused by an increase in the β-oxida-

tion pathway through the nhr-49 gene, inducing overexpression of atgl-1 gene. atgl-1 could

increase the oxygen consumption rate in the respiratory chain, possibly due to an increase in

TCA cycle products, independently of behavioral alterations related to energy expenditure.

Additionally, these effects could also be associated with an increase in hosl-1 (hormone-sensi-

tive lipase orthologue) expression, since hosl-1 overexpression is related with the decreased of

fat accumulation in C. elegans [77, 78].

Furthermore, we clearly demonstrate that the purinergic system is involved in the increased

oxygen consumption rate of C. elegans, and this effect was ador-1-dependent. In addition to

metabolic effects, the extract also exhibited an antioxidant effect that protected C. elegans
against the production of ROS, increasing the survival of worms exposed to juglone in an

HSP-independent manner. These results suggest that C. elegans is a reasonable model for

screening the effects of natural products on lipid metabolism.

Supporting information

S1 Fig. Representative images of lipid accumulation through C1-BODIPY-C12 lipid stain-

ing in (A) N2, (B) nhr-49, and (C) ador-1 worms.
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Núcleos Emergentes” (PRONEM) [grant numbers 16/25510000248-7] and Coordenação de

Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES-PROEX) [Process: 23038.005848/

2018-31, grant: 0737/2018].

Author Contributions

Conceptualization: Marina Lopes Machado, Leticia Priscilla Arantes, Félix Alexandre

Antunes Soares.

Data curation: Marina Lopes Machado, Leticia Priscilla Arantes, Priscila Gubert, Daniele Cor-

adini Zamberlan, Thayanara Cruz da Silva, Tássia Limana da Silveira, Aline Boligon.
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