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Abstract

Brain age prediction based on imaging data and machine learning (ML) methods has

great potential to provide insights into the development of cognition and mental dis-

orders. Though different ML models have been proposed, a systematic comparison

of ML models in combination with imaging features derived from different modalities

is still needed. In this study, we evaluate the prediction performance of 36 combina-

tions of imaging features and ML models including deep learning. We utilize single

and multimodal brain imaging data including MRI, DTI, and rs-fMRI from a large data

set with 839 subjects. Our study is a follow-up to the initial work (Liang et al., 2019.

Human Brain Mapping) to investigate different analytic strategies to combine data

from MRI, DTI, and rs-fMRI with the goal to improve brain age prediction accuracy.

Additionally, the traditional approach to predicting the brain age gap has been shown

to have a systematic bias. The potential nonlinear relationship between the brain age

gap and chronological age has not been thoroughly tested. Here we propose a new

method to correct the systematic bias of brain age gap by taking gender, chronologi-

cal age, and their interactions into consideration. As the true brain age is unknown

and may deviate from chronological age, we further examine whether various levels

of behavioral performance across subjects predict their brain age estimated from

neuroimaging data. This is an important step to quantify the practical implication of

brain age prediction. Our findings are helpful to advance the practice of optimizing

different analytic methodologies in brain age prediction.
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1 | INTRODUCTION

Brain maturity is a complex process that involves cortical thinning

(Gogtay et al., 2004), synaptic pruning (Purves & Lichtman, 1980), and

axon myelination (Benes, Turtle, Khan, & Farol, 1994) as a result of

both genetics and postnatal experience. The developmental processes

result in considerable and broadly structural changes of gray matter

and white matter (Brown et al., 2012; Davis et al., 2009; Tamnes

et al., 2010) as well as morphological (Corps & Rekik, 2019) and func-

tional connectivity changes across the brain (Davis et al., 2009; Dose-

nbach et al., 2010). These changes are associated with various aspects

of cognition, emotion, and mental disorders. For example, frontal lobe

gray matter thinning has been found to be related to verbal and visuo-

spatial memory (Sowell, Delis, Stiles, & Jernigan, 2001). Development

of working memory capacity is positively correlated with frontal-

parietal connectivity (Nagy, Westerberg, & Klingberg, 2004). There is
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also evidence showing aberrant brain development in patients with

psychiatric disorders such as autism (Hazlett et al., 2011; Hazlett

et al., 2017; Schumann et al., 2010), dementia (Davatzikos, Xu, An,

Fan, & Resnick, 2009) and schizophrenia (Gur et al., 1998;

McGlashan & Hoffman, 2000). Thus, understanding brain develop-

ment provides insights into the development of cognition and mental

disorders.

1.1 | The brain age gap

Brain age prediction has drawn great interest among researchers in

recent years. Using machine learning (ML) methods, an age prediction

model is first built with brain imaging features from a training data set

and then applied to estimate the age of new individuals in an indepen-

dent test set. It has been shown ML models can achieve a correlation

coefficient between the predicted and chronological age of around

.90 (Ashburner, 2007; Brown et al., 2012; Dosenbach et al., 2010;

Franke, Ziegler, Klöppel, & Gaser, 2010). The predicted age based on

brain imaging data is often referred to as brain age, which may serve

as a potential biomarker for development-related mental disorders or

a brain development index for healthy individuals. The difference

between predicted age and chronological age is often referred to as

the brain age gap, which is helpful for quantifying delayed or

advanced development for youth as well as accelerated or slowed

aging for elderly people.

As an index of deviation from a healthy brain-aging trajectory, the

brain age gap has the potential to suggest age-associated brain dis-

ease or cognitive aging with both neuroscientific and clinical implica-

tions (Cole & Franke, 2017). For example, accelerated brain aging was

found in patients with Alzheimer's disease (Franke et al., 2010;

Franke & Gaser, 2012), traumatic brain injury (Cole, Leech, & Sharp,

2015), and psychiatric disorders such as schizophrenia and major

depression disorders (Chung et al., 2018; Koutsouleris et al., 2014). In

a longitudinal study, accelerated brain aging was found to be an indi-

cator of conversion from mild cognitive impairment to Alzheimer's dis-

ease (Gaser et al., 2013). For adults aged between 19 and 79 years,

lower brain age suggests healthy aging that benefits from education

and physical activity (Steffener et al., 2016), whereas for youth aged

8–21 years, higher brain age is related to better cognitive perfor-

mance (Erus et al., 2015).

1.2 | The bias of brain age estimates

Unfortunately, a systematic bias of the estimated brain age gap,

manifested as a negative correlation between brain age gap and chro-

nological age (Aycheh et al., 2018; Cole & Franke, 2017; Le et al.,

2018; Pardoe & Kuzniecky, 2018), limits its potential applications.

Specifically, brain age tended to be underestimated for older subjects

and overestimated for younger ones, leading to systematic bias of the

estimated brain age gap (Aycheh et al., 2018; Cole & Franke, 2017;

Pardoe & Kuzniecky, 2018). The potential reasons for this bias are

under debate, including regression toward the mean (Liang, Zhang, &

Niu, 2019), and nongaussian distribution of subject ages (Smith,

Vidaurre, Alfaro-Almagro, Nichols, & Miller, 2019). This systematic

bias tends to introduce a confounding effect of chronological age

when the brain age gap is examined as a biomarker for a mental dis-

ease or cognition development. Recent studies used linear and

nonlinear models to correct the bias in the brain age gap (Chung et al.,

2018; Le et al., 2018; Liang et al., 2019).

The nonlinear relationship between the brain age gap and chrono-

logical age has not been explored thoroughly. Although a moderation

effect of gender in brain development has been reported (Erus et al.,

2015; Goyal et al., 2019), few studies took gender and its interaction

with chronological age into consideration in bias correction of the

brain age gap. Furthermore, most studies of age prediction used the

brain age gap as a biomarker for brain aging or developmental delay.

There was no direct comparison between brain age and chronological

age in terms of their relationship with cognitive performance. This is

an important step in brain age prediction to check if our proposed

method is able to capture the cognitive behavior with brain age rela-

tive to chronological age.

1.3 | Multimodal imaging features

Studies have investigated brain age prediction with features derived

from single imaging modality, such as T1-weighted MRI (Franke et al.,

2010; Tamnes et al., 2010), diffusion tensor imaging (DTI) (Mwangi,

Hasan, & Soares, 2013) and resting-state fMRI (Dosenbach et al.,

2010). It is promising that age prediction performance can be further

improved with multimodal brain imaging features. There is evidence

for the advantage of multimodal features in age prediction. For exam-

ple, it has been shown that combining imaging features from all three

modalities (T1- and T2-weighted MRI as well as DTI) yielded higher

prediction accuracy than did a single-modality (Brown et al., 2012).

The combination of T1-weighted features and resting functional con-

nectivity features also yielded higher prediction performance than

single-model features (Liem et al., 2017). The multimodal brain imag-

ing data including T1-weighted MRI, DTI, and resting-state fMRI fea-

tures has been used in brain age prediction (Liang et al., 2019). In this

work, we follow up with the initial study (Liang et al., 2019) with more

subjects.

1.4 | Machine learning algorithms for estimating
brain age

Different ML algorithms have been used for brain age prediction,

which include support vector regression (SVR) (Dosenbach et al.,

2010; Erus et al., 2015; Franke et al., 2010; Koutsouleris et al., 2014;

Liem et al., 2017), Gaussian process regression (GPR) (Aycheh et al.,

2018; Cole et al., 2015, 2017), relevance vector regression (RVR)

(Franke & Gaser, 2012; Gaser et al., 2013; Mwangi et al., 2013), ridge

regression (Chung et al., 2018) and elastic net (Khundrakpam, Tohka, &
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Evans, 2015). Overall, these ML models showed comparable perfor-

mance on age prediction (Liang et al., 2019). It has been shown that

SVR, RVR, ridge regression and elastic net performed similarly on the

prediction of the motor and cognitive scores with resting-state func-

tional connectivity features (Cui & Gong, 2018). However, no studies

systematically and directly compared them on age prediction. Deep

neural networks (DNNs) have also been applied to brain age predic-

tion recently. With recent advances in deep learning, DNNs are

expected to improve prediction performance (Cole & Franke, 2017).

However, most studies showed DNN yielded similar prediction per-

formance to traditional ML methods (Aycheh et al., 2018; Cole et al.,

2017). For example, a convolutional neural network (CNN) achieved

comparable prediction accuracy (r = .96) to GPR (Cole et al., 2017).

Though prediction performance was not significantly improved, one

advantage is that DNN is directly applicable to raw imaging data. This

makes DNN appropriate for brain images with gross pathology, for

which standard imaging preprocessing pipeline does not perform well.

In that study (Cole et al., 2017), only T1-weighted MRI was used. It

remains unknown whether DNN trained with multimodal imaging data

outperforms traditional ML methods.

1.5 | Linear and nonlinear estimations

So far, most studies only examined a linear relationship between chro-

nological age and brain age and used Pearson's correlation to evaluate

prediction performance (Erus et al., 2015; Franke et al., 2010; Goyal

et al., 2019). It is well known that brain imaging features for adults do

not change with chronological age as quickly as they do for adolescents.

Studies have reported a nonlinear relationship between chronological

age and multimodal brain imaging features of gray matter, white matter,

and functional connectivity (Brown et al., 2012; Dosenbach et al., 2010;

Schumann et al., 2010). To our knowledge, only one study examined a

nonlinear relationship between chronological age and predicted brain

age based on functional connectivity data (Dosenbach et al., 2010). No

studies examined the potential nonlinear relationship between chrono-

logical age and predicted brain age using structural or multimodal brain

imaging features. Therefore, in this study, we aim to investigate the

nonlinear relationship between chronological age and brain age

predicted by multimodal imaging features. As a linear relationship is not

assumed, we propose to use the R2 from quadratic regression between

chronological age and brain age as a metric to evaluate model prediction

performance. Furthermore, as true brain age is unknown and may devi-

ate from chronological age, it is not recommended to use chronological

age as the gold standard to evaluate model prediction accuracy. There-

fore, we instead examine the proportion of explained variance in brain

age by subjects' performance in various cognitive behavioral tasks.

1.6 | Anxiety disorder

Anxiety disorder is known to be related to brain development in mice

(Desrumaux et al., 2018; Fujita et al., 2017) and humans (Fuhrmann,

Knoll, & Blakemore, 2015). Youth with post-traumatic stress disorder

(PTSD) showed increased amygdala activation with age and decreased

connectivity between the amygdala and ventral medial prefrontal cor-

tex in emotional tasks (Keding & Herringa, 2016; Wolf & Herringa,

2016). A recent longitudinal study revealed that youth with PTSD

showed aberrant development of gray matter volume (GMV) in the

dorsolateral prefrontal cortex (PFC), and decreased ventrolateral PFC-

hippocampus and ventromedial PFC-amygdala connectivity (Heyn

et al., 2018). In addition, patients with specific phobia showed higher

activations in the medial prefrontal cortex, anterior cingulate cortex,

amygdala, insula, and thalamus in response to phobia-related condi-

tioned stimuli (Del Casale et al., 2012). Response to social-affective

stimuli in the amygdala, striatum and the frontal areas of children with

social anxiety disorder showed complex developmental trajectories in

adolescents (Haller, Cohen Kadosh, Scerif, & Lau, 2015). However, lit-

tle is known about whether these alterations reflect delayed develop-

ment (Herringa, 2017). To further evaluate the performance of our

proposed model for brain age prediction, we apply the optimized ML

model to a group of adolescents with anxiety disorders.

1.7 | Overview

In summary, we investigated brain age prediction with different ML

models and brain features from multiple imaging modalities. Addition-

ally, we considered a nonlinear relationship between chronological

age and brain age and suggested a new approach to evaluate model

performance by comparing the R2 from a quadratic regression model.

Furthermore, the quadratic regression model was employed to pro-

vide a way to correct for the bias of the brain age gap. We further

examined whether the brain age and the bias-corrected brain age gap

are related to behavioral performance. Findings from our study have

the potential to advance the practice of optimizing different analytic

methodologies in brain age prediction. In addition, we applied the pro-

posed brain age prediction model to a group of adolescents with anxi-

ety disorders and tested whether patients with anxiety disorders

showed altered brain development compared to healthy controls.

2 | METHODS

2.1 | Participants

Subjects were selected from the Philadelphia Neurodevelopmental

Cohort (PNC) study (Gur et al., 2010). The PNC study is a large-scale

research initiative, aiming to understand how brain maturation and

genetics mediate the development of cognition on healthy people and

patients with psychiatric illness (Satterthwaite et al., 2014). Details of

subject recruitment and study procedures can be found in published

papers (Gur et al., 2010; Satterthwaite et al., 2014). After excluding

17 subjects with severe general medical problems, the current study

selected 839 subjects (331 females) with multimodal brain imaging

data available which include T1 weighted MRI, DTI, and resting-state
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fMRI. These subjects were 8–21 years of age with a mean age of

14.20 years (SD = 3.29). Among them, there were 60 healthy controls

(HCs; 29 females) aged 8–21 years (mean = 14.42, SD = 3.84), 70 sub-

jects with PTSD (50 females) aged 9–21 years (mean = 15.51,

SD = 2.74), 185 subjects with specific phobia (120 females) aged

8–21 years (mean = 13.60, SD = 3.19), and 142 subjects with social

phobia (82 females) aged 8–21 years (mean = 14.46, SD = 2.83). The

remaining subjects had other mental disorders such as depression,

psychosis, and ADHD. The disorder symptoms were assessed using a

computerized, structured interview (GOASSESS) that was adminis-

tered to probands, caregivers or legal guardians depending on the age

of subjects (Calkins et al., 2015). Data used in this study are publicly

available through the database of Genotypes and Phenotypes

(dbGaP). The R and Python codes for implementing ML methods in

the paper are available upon request.

2.2 | Computerized neurocognitive battery

All the participants completed a 1-hr Penn Computerized Neurocognitive

Battery (CNB), which consists of 14 neurocognitive tests including

abstraction and mental flexibility (ABF), attention (ATT), working mem-

ory (WM), verbal memory (VMEM), face memory (FMEM), spatial mem-

ory (SMEM), language reasoning (LAN), nonverbal reasoning (NVR),

spatial processing (SPA), emotion identification (EMI), emotion differen-

tiation (EMD), age differentiation (AGD), sensorimotor processing speed

(SM), and motor speed (MOT). All the tests include measures of both

accuracy and speed except for the SM and MOT tests that only mea-

sure speed. In our analysis, the speed measures were multiplied by −1

to make higher value reflect better performance. A detailed description

of tasks and assessment procedures can be found in a previous study

(Gur et al., 2010).

2.3 | MR image acquisition

Imaging data were acquired using a Siemens Tim Trio (Erlangen, Ger-

many) 3T scanner equipped with 40 mT/m gradients and 200 mT/m/s

slew-rates. RF transmission utilized a quadrature body-coil and recep-

tion using a 32-channel head coil optimized for parallel imaging. The T1-

weighted protocol utilized a 3D, inversion-recovery, magnetization-

prepared rapid acquisition gradient echo (MPRAGE) with TI/TR/

TE = 1100/1810/3.51 ms, flip angle = 9�, matrix = 256 × 192,

FOV = 240 × 180 mm, slices = 160, and slice thickness = 1 mm. DTI

images were acquired with a twice-refocused spin-echo single-shot

EPI sequence and a custom 64-direction diffusion set, with b-values

of 0 and 1,000 s/mm2. The b = 0 scans were repeated 6 times, each

b = 1,000 scan was acquired once at each direction, for a total of

70 repetitions. The acquisition parameters were TR/TE = 8,100/82 ms,

matrix = 128 × 128, FOV = 240 mm, slices = 70, slice thickness = 2 mm

and GRAPPA factor = 3. Resting-state BOLD scans were acquired with

a single-shot, interleaved multi-slice, gradient-echo, echo planar imaging

(GE-EPI) sequence, with a repetition time (TR) = 3,000 ms. 46 slices

with a voxel resolution of 3 × 3 × 3 mm were obtained. The total dura-

tion of the resting-state fMRI was 6.3 min. More details of MRI scan

protocols and scanner stability for T1-weighted imaging, DTI and rs-

fMRI were described in a previous study (Satterthwaite et al., 2014).

2.4 | Image preprocessing

The GMV was obtained from the T1-weighted images with CAT v12.5

toolbox in SPM12 under MATLAB. The preprocessing steps included

bias correction, affine registration, global intensity correction, and seg-

mentation. Then Dartel registration was run with the MNI 152 tem-

plate. The GMV was averaged based on the neuromophormetrics

atlas. DTI images were preprocessed with a pipeline tool, PANDA

(Cui, Zhong, Xu, He, & Gong, 2013). Processing steps included skull

removal, correction of eddy current distortion, and building diffusion

tensor models. Fractional anisotropy (FA) and mean diffusivity

(MD) values were calculated and averaged based on the Johns Hop-

kins University (JHU) white-matter tractography atlas. We chose the

25%-threshold sub-template which contains 20 major tracts and

50 major labels. Resting-state fMRI data were processed using the

software Data Processing Assistant for Resting-State fMRI (DPARSF;

Yan & Zang, 2010). Processing steps included slice timing correction,

realignment, co-registration with T1 image, segmentation, and normal-

ization. Global signal regression was performed before extracting the

signal. After obtaining the amplitude of low-frequency fluctuation

(ALFF) and regional homogeneity (ReHo), atlas-based features were

extracted based on the BN246 atlas (Fan et al., 2016).

2.5 | The rationale of brain age prediction

Unlike other applications of ML studies, the outcome variable -true

brain age - was unknown. This naturally raises the question of why

the predicted age is interpreted as brain age when chronological age

was used to train the age prediction model. Here we clarified the

rationale of brain age prediction using the following two equations.

The first equation represents that true brain age (yb) differs from chro-

nological age (yc) by a small amount (i.e., the brain age gap ε1).

yb = yc + ε1

The second equation below illustrates that true brain age (yb) can

be expressed as a function of different brain imaging features (X) with

a small prediction error (ε2).

yb = f Xð Þ+ ε2

Combining the above two equations yields the following relation-

ship between chronological age and the predicted brain age (f(X)).

yc = f Xð Þ−ε1 + ε2
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Thus, the estimated brain age gap (i.e., f(X) − yc) is a mixture of

true brain age gap (ε1) and prediction error (ε2). When ε1 is relatively

large and ε2 is relatively small, the estimated brain age gap is closer to

true brain age gap. When ε1 is relatively small and ε2 is relatively large,

the estimated brain age gap contains mostly prediction error. To con-

firm the estimated brain age gap is meaningful, we examined whether

the brain age gap was significantly correlated with cognitive behav-

ioral scores.

2.6 | Machine learning methods

As previously done in Liang et al. (2019), we compared four popular

ML models including ridge regression, SVR, GPR, and DNN with the

chronological age as the outcome variable. Based on the above ratio-

nale, the predicted age was interpreted as the brain age. The scikit-

learn library v0.19 (Pedregosa et al., 2011) was used to implement

ridge regression, SVR and GPR. DNN was implemented with PyTorch

v0.4 (Paszke et al., 2017). Ridge regression minimizes the sum of

squared prediction error and L2-norm regularization term. Nested

cross-validation (CV), with 10-fold outer CV and threefold inner CV,

was conducted to evaluate the prediction performance. The regulari-

zation parameter λ controlling the bias-variance trade-off was tuned

in the inner loop CV. In each outer CV, 90% of the data were selected

as a training set, with the remaining as a test set. Feature normaliza-

tion was conducted on the training set and then applied to the test

set. As the robustness of prediction accuracy improves with a larger

sample size (Cui & Gong, 2018), we used data from all 839 subjects

for model evaluation and feature selection.

SVR (Smola & Schölkopf, 2004) aims to find a function based on a

subset of the training samples (support vectors) by ignoring the pre-

diction error which is less than a threshold (ε) while minimizing the

complexity of the function. The current study used the radial basis

function kernel which maps the original features into a higher dimen-

sional space. This enables the model to fit a nonlinear relationship

between imaging features and age. A parameter C, which controls the

trade-off between prediction accuracy on training samples and maxi-

mization of the decision function's margin, was tuned in the inner loop

CV (Zhang, Wang, Kim, Todd, & Wong, 2015). Nested CV, parameter

tuning, and feature normalization were conducted in a way similar to

what has been described above for ridge regression.

GPR (Rasmussen, 2004) uses kernels to define the covariance of

a prior distribution over the target functions and uses the observed

training data to estimate a likelihood function. Based on Bayes theo-

rem, a Gaussian posterior distribution over target functions is defined

and its mean is used for prediction. We conducted the nested CV,

parameter tuning, and feature normalization similar to what has been

described above for ridge regression.

Deep learning refers to computational models composed of multi-

ple layers of processing units (LeCun, Bengio, & Hinton, 2015). Each

layer of neurons uses nonlinear modules to transform the representa-

tion of data to different levels of abstraction. This structure allows the

neural network to learn hierarchical feature representations which

makes it a useful tool to fit the complex brain growth patterns

(Hazlett et al., 2017). DNNs with different structures were con-

structed for single and multimodal features. Hyperparameters (i.e., the

number of neurons and regularization parameters in each layer) were

tuned using CV. Data were randomly split into a training set (90% of

the data) and a test set. This process was repeated 10 times with

stratified shuffle split. Each time a different seed was used. The opti-

mized loss values were averaged. After the hyperparameters were

tuned, a 10-fold CV was conducted to evaluate the model perfor-

mance. The structure of DNN for GMV, ALFF, ReHo, and multimodal

features had five hidden layers with 400, 150, 50, 30, and 5 units from

the first to the last hidden layer, respectively. The first and last hidden

layers were linear models with a rectified linear unit activation func-

tion. Other layers were linear models with a sigmoid activation func-

tion. In each CV, Nesterov stochastic gradient descent (Dozat, 2016)

was used to train the model in multiple epochs until the loss was less

than .5, with the initial learning rate of .001, weight decay of 1e-3 and

momentum of .9. To decrease random jittering of loss curve, a multi-

step learning rate was applied. The learning rate decayed by .5 when

the epoch exceeded 500, 1,000, 1,500, 3,000 and 6,000 epochs. For

FA and MD, the DNN had hidden layers with 100, 50, 20 units in each

layer. Other parameters were tuned similarly as above.

To quantify the contribution of individual neuroimaging feature

to age prediction, we extracted the absolute value of the coefficients

of the ridge regression model using the multimodal brain imaging fea-

tures. For SVR, GPR, and DNN, we removed one feature at a time

from the model and calculated the change in prediction accuracy. A

higher reduction of prediction accuracy indicated higher contribution

to age prediction. Additionally, we examined the correlation of feature

contribution across brain regions between each pair of the four ML

models using Kendall's Tau.

2.7 | Statistical analysis

To examine and compare different ML methods and brain imaging

features from different modalities, we trained four ML models (ridge

regression, SVR, GPR, DNN) with single-modal and multimodal

brain imaging features. The multimodal features included structural

features (GMV, FA, and MD), a combination of GMV and rs-fMRI

features (GMV, ALFF, and ReHo), a combination of DTI and rs-

fMRI features (FA, MD, ALFF and ReHo), and a combination of all the

single model features (GMV, FA, MD, ALFF, ReHo). This yielded 36 dif-

ferent combinations of ML models and imaging features, which were

then systematically compared in this study. We used a large data set

with 839 subjects to train and evaluate model performance. The large

sample size was essential for prediction robustness (Cui & Gong,

2018). The prediction accuracy was computed using 10-fold CV to

avoid overfitting.

The optimal combination of the ML model and imaging features

identified by the comparison outlined above was then used for brain

age prediction for all 839 subjects. The predicted age was interpreted

as brain age. The brain age gap was computed as the difference
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between brain age and chronological age. In accordance with previous

studies, a positive brain age gap referred to advanced brain develop-

ment. To account for the systematic bias in brain age prediction (Liang

et al., 2019), the nonlinear brain development trajectory (Dosenbach

et al., 2010), as well as potential gender difference (Goyal et al., 2019),

we extended the linear model (Liang et al., 2019) by using the

nonlinear formula below to control for the confounding effects of

chronological age and gender. Importantly, to fit the formula below,

brain age was estimated from an independent test set using brain

imaging data and ML methods.

brain age = β0 + β1*age+ β2*age
2 + β3*gender + ε ð1Þ

Where the term age was used to account for the systematic bias

(i.e., brain age tended to be overestimated for younger subjects and

underestimated for older ones). The quadratic term age2 was included

to model the nonlinear brain development trajectory. The potential

gender difference in brain age was also modeled by adding the term

gender. Thus, the term ε represented the difference between brain

age and chronological age after controlling for the confounding fac-

tors including the linear and quadratic effects of chronological age and

gender. We refer to it as the corrected brain age gap.

To further account for the gender difference in brain develop-

ment trajectory, we proposed to add gender and its interactions with

chronological age to the model below:

brain age= β0 + β1*age+ β2*age
2 + β3*gender

+ β4*gender*age + β5*gender*age
2 + ε ð2Þ

Where the interaction between gender and age denoted the gender

difference in the linear brain development speeds. The interaction

between gender and age2 was used to account for the gender difference

in the nonlinear brain development trajectory. The term ε was interpreted

as the corrected brain age gap controlling for the effects of gender, linear

and quadratic age terms as well as their interactions. The remaining terms

were similar to what was outlined above for Formula (1).

Comparison of different brain age prediction models has been pri-

marily based on metrics such as Pearson's correlation coefficient and

mean absolute error (MAE) calculated between predicted brain age

and chronological age in the literature (Erus et al., 2015; Franke et al.,

2010; Goyal et al., 2019). As we incorporated the nonlinearity and

gender difference in the bias correction step for brain age gap, we

proposed to use R2 of the fitting curve (i.e., formula (2)) for model

comparison. In this case, the prediction evaluation and bias correction

were unified in a single model. We then calculated the Pearson's cor-

relation between the corrected or uncorrected brain age gap and

chronological age to quantify the prediction bias. As gender difference

is prominent in brain development (Erus et al., 2015; Goyal et al.,

2019), the prediction performance was also separately evaluated for

males and females to examine gender difference in brain development

trajectory. It should be noted that brain age is likely to deviate from

chronological age especially for disorder groups. Therefore, existing

comparison metrics are limited by the fact there is no gold standard to

evaluate brain age prediction performance as true brain age is

unknown. As such, additional validation measures such as cognitive

behavioral scores were used to evaluate the usefulness of the esti-

mated brain age gap, as outlined below.

To examine whether brain age prediction reveals more informa-

tion about cognitive development than chronological age, we con-

ducted a stepwise linear regression to predict the brain age and

chronological age using cognitive behavioral task scores. As the true

brain age is unknown and may deviate from chronological age, this

was an essential step to quantify the practical implication of brain age

predicted by neuroimaging data. The R2 of the stepwise regression

was computed to examine whether the brain age was more closely

related to behavioral performance than chronological age. In addition,

we examined whether the corrected brain age gap (the ε term in For-

mula (2)) was associated with behavioral performance. The stepwise

regression was conducted using the R package MASS (Venables &

Ripley, 2002), with gender, the speed and accuracy scores of behav-

ioral tasks in the CNB as predictors.

To illustrate the broad application of the analytic approach we

developed, we applied the optimized brain age prediction model out-

lined above to a group of adolescents with anxiety disorders including

specific phobia, social phobia, PTSD. To examine whether adolescents

with anxiety disorders show different brain development trajectory

compared to HCs, we compared their brain age gap predicted by our

proposed model with that of HCs using two-sample permutation test

(Ludbrook & Dudley, 1998).

3 | RESULTS

3.1 | Multimodal features yielded the highest
prediction performance

We evaluated four popular ML models on single- and multimodal

brain imaging features. The prediction performance on all samples

(N = 839) of ridge regression, SVR, GPR, and DNN was summarized in

Table 1. The result showed that multimodal brain imaging features

achieved the best prediction performance across all four ML models

(Figure 1a). The highest prediction accuracy obtained from 10-fold

CV was achieved by GPR using multimodal features (R2 =

.774, MAE = 1.384). The prediction accuracy of ridge regression

(R2 = .766, MAE = 1.414), SVR (R2 = .756, MAE = 1.426), and DNN

(R2 = .753, MAE = 1.381) using multimodal brain imaging features

were close to that of GPR (Figure 1a). In addition, we calculated the

adjusted R2 of stepwise regression models using behavioral scores to

predict brain age (Figure 1b). Findings were consistent across the two

panels of Figure 1. Among the unimodal features, GMV yielded the

highest prediction performance, followed by MD, ALFF, and ReHo.

The prediction performance with FA was the lowest among all the

features. Additionally, though DNN yielded comparable prediction

performance on multimodal features, it did not perform as well as tra-

ditional ML methods on unimodal features, especially for FA and MD

that had a limited number of features.
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Brain imaging feature importance obtained from the DNN model

was visualized in Figure 2. GMV widely across the brain contributed

positively to brain age prediction. This suggests that removing individual

GMV feature from the DNN model led to a large reduction of predic-

tion accuracy. Features in other modalities with a positive contribution

to brain age prediction were also widely distributed across the brain.

ReHo in the occipital and parietal cortex had a negative contribution to

brain age prediction. Comparison of neuroimaging feature importance

identified across different ML methods showed consistent patterns

across Ridge, SVR, and GPR (Figure S1). The feature contribution of

DNN had a relatively low correlation with those obtained from other

ML models. The predictive imaging features that were commonly

selected across the four ML methods include the following: (a) GMV of

the bilateral pallidum, precuneus, hippocampus, right posterior cingulate

gyrus, posterior insula, and temporal pole, (b) FA of the corpus callosum,

corticospinal tract, external capsule, longitudinal fasciculus, internal cap-

sule, cerebellar peduncle, and posterior thalamic radiation, (c) MD of the

bilateral cerebral peduncle, left posterior internal capsule, posterior

corona radiata, and cingulum, (d) ALFF of the bilateral inferior frontal

gyrus, left amygdala, cingulate gyrus, right insular gyrus, fusiform gyrus,

inferior parietal lobe, and superior frontal gyrus, and (e) ReHo of the

right superior temporal gyrus, superior frontal gyrus, left precentral

gyrus, hippocampal gyrus, postcentral gyrus, and middle frontal gyrus.

These were commonly ranked as top imaging features that contributed

positively to brain age prediction. Top 100 neuroimaging features con-

tributed positively to brain age prediction across the four ML models

were summarized in Tables S1–S5.

3.2 | The brain age gap with bias correction was
orthogonal to chronological age

As shown in Figure 3, there was a clear nonlinear relationship

between brain age gap and chronological age. Thus, we used a qua-

dratic model to correct for the systematic bias of the brain age gap

with gender and chronological age (i.e., Formula (1)). Residuals from

the fitted model were interpreted as the corrected brain age gap. The

corrected brain age gap was orthogonal to chronological age

(Figure 3). However, when we examined males and females sepa-

rately, the bias still existed. The corrected brain age gap was positively

correlated with the chronological age for males and negatively corre-

lated to the chronological age for females (Figure 4). To further

remove this bias embedded in gender, we added interaction terms of

gender and chronological age in the quadratic model (i.e., Formula (2)).

With interaction terms in the bias correction, the brain age gap was

orthogonal to chronological age for both males and females (fourth

row in Figure 4).

3.3 | Prediction of brain age with the behavioral
performance for all subjects

After the brain age was obtained, we examined how the brain age

and chronological age were associated with behavioral perfor-

mance. Stepwise linear regression was conducted with the gender

and CNB scores to predict brain age and chronological age sepa-

rately. We used the adjusted R2 to examine the predictability of

CNB scores for brain age and chronological age. As shown in

Table 2, the adjusted R2 of the stepwise regression for chronologi-

cal age was larger than that for the brain age predicted by the four

ML models. The accuracy scores of attention (ATT, p < .01) and

age differentiation (ADI, p < .001) tasks as well as the speed

scores of attention (ATT, p < .001) and spatial memory (SMEM,

p < .05) tasks were significant positive predictors for brain age.

The speed score of sensory-motor (SM, p < .001) task was a signif-

icant negative predictor for brain age. This result was consistent

across all four ML models. There were more significant predictors

for chronological age than those for brain age. The accuracy

scores of verbal memory (VMEM, b = −.087, p < .05) and emotion

identification (EDI, b = .191, p < .05) as well as the speed scores of

TABLE 1 Prediction performance of four regression models on all samples

Ridge SVR GPR DNN

R squared MAE R squared MAE R squared MAE R squared MAE

GMV 0.678 (0.069) 1.662 (0.156) 0.640 (0.102) 1.699 (0.188) 0.673 (0.069) 1.649 (0.153) 0.581 (0.096) 1.837 (0.199)

ReHo 0.574 (0.075) 1.929 (0.207) 0.565 (0.069) 1.931 (0.197) 0.579 (0.073) 1.924 (0.211) 0.569 (0.068) 1.934 (0.163)

ALFF 0.606 (0.046) 1.788 (0.135) 0.608 (0.053) 1.803 (0.150) 0.621 (0.044) 1.770 (0.128) 0.592 (0.065) 1.811 (0.096)

FA 0.524 (0.103) 1.959 (0.171) 0.510 (0.082) 2.003 (0.164) 0.533 (0.097) 1.965 (0.159) 0.399 (0.107) 2.392 (0.145)

MD 0.608 (0.048) 1.829 (0.150) 0.587 (0.079) 1.949 (0.113) 0.621 (0.053) 1.845 (0.158) 0.474 (0.071) 2.177 (0.241)

GMV&DTI 0.772 (0.042) 1.396 (0.129) 0.747 (0.052) 1.440 (0.106) 0.768 (0.046) 1.395 (0.129) 0.737 (0.052) 1.436 (0.120)

GMV&rsfMRI 0.726 (0.049) 1.473 (0.132) 0.722 (0.070) 1.519 (0.123) 0.732 (0.051) 1.463 (0.143) 0.713 (0.045) 1.465 (0.129)

DTI&rsfMRI 0.715 (0.052) 1.550 (0.157) 0.706 (0.061) 1.520 (0.144) 0.722 (0.053) 1.512 (0.147) 0.694 (0.047) 1.520 (0.157)

Multimodal 0.766 (0.044) 1.414 (0.143) 0.756 (0.060) 1.426 (0.135) 0.774 (0.043) 1.384 (0.129) 0.753 (0.053) 1.381 (0.119)

Note: Prediction accuracy of age prediction is defined as the r squared of the quadratic fitting for prediction age (brain age) with chronological age and

gender. Values in brackets are standard deviation across 10-fold CV. MAE is the absolute value of the difference between the predicted age and

chronological age.
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face memory (FMEM, b = −.201, p < .05) and nonverbal reasoning

(NVR, b = −.110, p < .05) tasks were significant predictors for

chronological age. However, none of them was selected in the

stepwise regression model for brain age. The ADI speed score was

a significant negative predictor for brain age estimated from SVR

and DNN, but not for chronological age.

F IGURE 1 Prediction performance
using all brain imaging modalities with
four ML models and all subjects
included. The multimodal brain
imaging features yield higher
prediction accuracy than any of the
single modal features. (a) The
prediction accuracy is defined as the R
squared of quadratic regression with

chronological age, gender and their
interaction terms as predictors for the
predicted age (brain age). The error bar
is the 95% confidence interval
generated by bootstrapping on the
10 folds cross-validation. (b) The
prediction performance is evaluated by
the adjusted R squared of the stepwise
regression using behavioral scores to
predict brain age

F IGURE 2 Brain imaging feature
importance. The color bar indicates the
feature importance that is the
reduction of prediction accuracy (R2 of
the quadratic regression model) with
each feature removed from the DNN
model. Brain features with positive
contribution to age prediction include
GMV widely distributed across the
whole brain, FA and MD in the corpus
callosum and cerebellar peduncle,
ALFF in the frontal and occipital
cortex, and ReHo in the frontal and
temporal cortex. ReHo features in the
parietal and occipital region contribute
negatively to age prediction
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F IGURE 3 Scatterplots of brain age/brain age gap (y-axis) and chronological age (x-axis) of four ML models. The first row shows the
relationship between the brain age and chronological age on multimodal brain imaging features. Color indicates samples in different folds of
cross-validation. The second row shows a negative correlation between the brain age gap (predicted age–chronological age) and chronological
age. The third and fourth row show the corrected brain age gap is orthogonal to chronological age. The corrected brain age gap is the difference
between the brain age and the fitted brain age with a quadratic function of chronological age, gender, and with (fourth row) or without (third row)
their interaction terms

1634 NIU ET AL.



We then applied stepwise linear regression to predict brain

age gap (with bias correction using Formula (2)) with gender and

CNB scores. A significant association between CNB scores and

corrected brain age gap controlling for gender would suggest that

the corrected brain age gap contains meaningful information on

brain development. The corrected brain age gap of SVR shared the

largest variance with behavioral scores (Table 3). The accuracy

score of language (LAN, p < .001), the speed scores of attention

(ATT, p < .001), and verbal memory (VMEM, p < .01) tasks were

significant negative predictors for brain age gap. The speed scores

of face memory (FMEM, p < .001) and sensory-motor (SM,

p < .001) tasks were significant positive predictors for brain age.

These results were consistent across all four ML methods. As the

brain age gap estimated from SVR shared the largest variance with

behavioral scores, we used brain age calculated from SVR for the

following analyses.

3.4 | Brain age prediction for HCs and anxiety
disorder patients

In addition, we compared prediction performance between HCs and

each of the three anxiety disorder groups. Similarly, we observed a

nonlinear trend between chronological age and brain age (Figure 5).

F IGURE 4 Scatterplots of brain age/brain age gap (y-axis) and chronological age (x-axis) of four ML models separately for males and females.
The first row shows the brain age and chronological age for males and females. The second row shows a negative correlation between the brain
age gap and chronological age. The third row shows the brain age gap with bias correction model without interaction terms. The fourth row
shows that with interaction terms of gender and chronological age in the bias correction model, the corrected brain age gap is orthogonal to
chronological age for both males and females
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TABLE 2 Stepwise linear regression on brain age and chronological age for all subjects

Ridge SVR GPR DNN
Chronological age

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

(intercept) 0.271 0.006 0.244 0.012 0.240 0.020 0.128 0.287 0.012 0.915

SexM −0.058 0.000 −0.072 0.000 −0.059 0.000 −0.077 0.000 −0.055 0.000

Accuracy_ABF −0.054 0.067 −0.063 0.056 −0.060 0.054 −0.078 0.054 −0.067 0.050

Accuracy_ADI 0.317 0.000 0.357 0.000 0.341 0.000 0.468 0.000 0.383 0.000

Accuracy_ATT 0.129 0.002 0.153 0.001 0.146 0.001 0.178 0.002 0.157 0.001

Accuracy_EDI - - - - - - - - 0.191 0.018

Accuracy_LAN 0.057 0.133 0.094 0.015 0.068 0.087 0.102 0.034 0.129 0.003

Accuracy_SPA 0.063 0.080 - - 0.066 0.079 - - 0.068 0.104

Accuracy_VMEM - - - - - - - - −0.087 0.043

Speed_ABF −0.091 0.148 - - −0.093 0.158 - - - -

Speed_ADI −0.106 0.109 −0.162 0.022 −0.122 0.077 −0.181 0.039 - -

Speed_ATT 0.311 0.000 0.366 0.000 0.335 0.000 0.471 0.000 0.418 0.000

Speed_FMEM - - - - - - - - −0.201 0.041

Speed_MOT −0.077 0.122 - - −0.075 0.151 - - −0.085 0.149

Speed_NVR - - - - - - - - −0.110 0.020

Speed_SM −0.364 0.000 −0.416 0.000 −0.374 0.000 −0.525 0.000 −0.424 0.000

Speed_SMEM 0.120 0.014 0.163 0.001 0.138 0.007 0.170 0.008 0.112 0.066

Speed_VMEM 0.142 0.099 - - 0.143 0.114 - - 0.324 0.005

Adjusted R2 0.488 0.481 0.499 0.483 0.603

Note: Values in the table are regression coefficients of stepwise linear regression with the brain age as the dependent variable. The last row is the adjusted

R squared of the regression model. Empty values indicate the predictors are not selected in the model. Bold values indicate statistically significant

difference (p-value ≤0.01 - ≥0.001) and (p-value ≤0.001).

TABLE 3 Stepwise linear regression on the bias-corrected brain age gap for all subjects

Ridge SVR GPR DNN

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

(intercept) 0.254 0.002 0.361 0.000 0.242 0.006 0.525 0.000

SexM 0.046 0.000 0.051 0.000 0.046 0.000 0.047 0.000

Brain age 0.715 0.000 0.715 0.000 0.698 0.000 0.573 0.000

Accuracy_ADI - - −0.210 0.000 - - −0.201 0.000

Accuracy_ATT - - −0.065 0.088 - - −0.074 0.053

Accuracy_EDI −0.160 0.000 - - −0.162 0.000 - -

Accuracy_LAN −0.141 0.000 −0.126 0.000 −0.140 0.000 −0.136 0.000

Accuracy_VMEM 0.059 0.063 0.059 0.075 0.061 0.068 0.064 0.053

Speed_ATT −0.217 0.000 −0.207 0.000 −0.225 0.000 −0.197 0.000

Speed_EDI - - - - - - 0.062 0.098

Speed_FMEM 0.191 0.009 0.253 0.001 0.195 0.009 0.177 0.018

Speed_NVR 0.052 0.134 - - - - - -

Speed_SM 0.219 0.000 0.233 0.000 0.251 0.000 0.233 0.000

Speed_SMEM −0.063 0.156 - - - - - -

Speed_VMEM −0.241 0.004 −0.323 0.000 −0.283 0.001 −0.331 0.000

Speed_WM 0.095 0.057 - - 0.100 0.061 - -

Adjusted R2 0.423 0.449 0.402 0.444

Note: Values in the table are regression coefficients of stepwise linear regression with the brain age gap as the dependent variable. The last row is the

adjusted R squared of the regression model. Empty values indicate the predictors are not selected in the model. Bold values indicate statistically significant

difference (p-value ≤0.01 - ≥0.001) and (p-value ≤0.001).
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We calculated the prediction accuracy for HCs (R2 = .801,

MAE = 1.562), the specific phobia group (R2 = .751, MAE = 1.435),

the PTSD group (R2 = .669, MAE = 1.485), and the social phobia group

(R2 = .652, MAE = 1.521).

To examine how brain age was differently related to behavioral per-

formance for HCs and different disorder groups, we conducted a stepwise

regression with gender and behavioral scores to predict brain age for each

group separately. For HCs, the accuracy score of emotion differentiation

(EDI, b = .716, p = .010) task, the speed scores of attention (ATT, b = .270,

p = .043) and emotion differentiation (EDI, b = .371, p = .030) tasks were

significant positive predictors (Table 4). There were no significant negative

predictors for HCs. For specific phobia, the accuracy scores of age differ-

entiation (ADI, b = .449, p = .002) and emotion identification (EID,

b = .151, p = .028) tasks, and the speed score of attention (ATT, b = .475,

p < .001) task were significant positive predictors. The accuracy scores of

verbal memory (VMEM, b = −.157, p = .043) and sensory motor (SM,

b = −.263, p = .005) tasks and gender (b = −.103, p < .001) were signifi-

cant negative predictors. For PTSD, the accuracy scores of attention (ATT,

b = .427, p = .013), face memory (FMEM, b = .317, p = .010), and working

memory (WM, b = .312, p = .016) tasks, and the speed scores of attention

(ATT, b = .365, p < .012) and motor praxis (MOT, b = .452, p = .009)

tasks were significant positive predictors. The accuracy scores of

abstract flexibility (ABF, b = −.312, p = .016), nonverbal reasoning (NVR,

b = −.278, p = .027), spatial ability (SPA, b = −.239, p = .027), and verbal

memory (VMEM, b = −.275, p = .015) tasks, and the speed score of age

differentiation (ADI, b = −.232, p = .015) task were significant negative

predictors. For social phobia, the accuracy score of emotion identifica-

tion (EID, b = .264, p = .017) and the speed score of attention

(ATT, b = .357, p = .005) task were significant positive predictors. The

speed score of sensory motor (SM, b = −.373, p = .002) task and gender

(b = −.116, p < .001) were significant negative predictors.

We further examined how brain age gap with bias correction

using Formula (2) was related to behavioral performance controlling

for brain age. We conducted a stepwise regression with brain age,

gender and behavioral scores to predict the bias-corrected brain age

gap for each group separately. The result showed that the model

explained largest variance of the corrected brain age gap for HCs

(adjusted R2 = .904). As shown in Table 5, for HCs, the accuracy

scores of emotion differentiation (EDI, b = .242, p < .001) and lan-

guage (LAN, b = .148, p = .011) tasks, and the speed scores of atten-

tion (ATT, b = .212, p < .004) and verbal memory (VMEM, b = .129,

p = .046) tasks were significant positive predictors. The speed score

of abstract flexibility (ABF, b = −.115, p < .037) was a significant nega-

tive predictor. For specific phobia, the accuracy score language (LAN,

b = .154, p = .002) task and speed scores of the verbal memory

(VMEM, b = .252, p = .001) task were significant positive predictors.

The accuracy score of verbal memory (VMEM, b = −.150, p = .003)

task and speed score of sensory motor (SM, b = −.130, p < .025) task

were significant negative predictors. For PTSD, the accuracy scores of

age differentiation (ADI, b = .200, p < .001) and nonverbal reasoning

(NVR, b = .204, p = .005) tasks as well as the speed scores of age dif-

ferentiation (ADI, b = .198, p < .006), attention (ATT, b = .302,

p = .001) and verbal memory (VMEM, b = −.191, p < .049) tasks were

significant positive predictors. The accuracy score of face memory

(FMEM, b = −.127, p = .042) task and speed score of emotion differenti-

ation (EDI, b = −.185, p < .018) task were significant negative predic-

tors. For social phobia, the accuracy scores of age differentiation (ADI,

b = .210, p = .004), attention (ATT, b = .158, p = .028), emotion identifi-

cation (EID, b = .131, p = .020) tasks and the speed score of attention

(ATT, b = .283, p = .003), and verbal memory (VMEM, b = .196,

p = .050) tasks were significant negative predictors. The accuracy score

of verbal memory (VMEM, b = −.130, p = .012) as well as the speed

scores of face memory (FMEM, b = −.171, p = .038) and language (LAN,

b = −.208, p = .020) tasks were significant negative predictors.

To compare each disorder group with HCs, we conducted a permuta-

tion test on chronological age, uncorrected brain age gap, corrected brain

age gap using Formulas (1) and (2). As shown in Figure 6, for the specific

phobia group, the chronological age of females was marginally signifi-

cantly lower than that in HCs (d = −1.388, p = .054). The uncorrected

brain age gap was significantly higher than that of HC (d = .768, p < .01).

With bias correction, the brain age gap was not significantly different

from that of the HCs, regardless of which formula was used. For the PTSD

group, the chronological age of males in the PTSD group was significantly

higher than that in HCs (d = 2.615, p = .026). The uncorrected brain age

gap was not significantly different from that of HCs (d = .280, p = .425).

The corrected brain age gap using Formula (1) was significantly higher than

that of HCs (d = .474, p = .042). The corrected brain age gap using Formula

(2) was marginally significantly higher than that of HCs (d = .460, p = .088).

For the social phobia group, no comparisons were significant.

To further evaluate our bias correction approach for brain age

prediction, we conducted additional analyses with two separate parts.

F IGURE 5 Scatterplots of the brain age and chronological age for
the HC and anxiety disorder groups. The shaded area along the
regression curve indicates the 95% bootstrapped confidence interval
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In the first part, we selected the HCs in the PNC study (n = 60) and

built all four ML models with multimodal brain imaging features. The

ML models were trained and tested using threefold CV. Findings were

similar to what was described above. As shown in Figure S2, there

was a nonlinear relationship between brain age and chronological age.

After applying our bias correction methods, the corrected brain age

gap was orthogonal to chronological age. In the second part of the

analyses, we applied the ML models trained using only HCs to inde-

pendent test sets (i.e., data from three disorder groups including spe-

cific phobia, PTSD, and social phobia). Figure S3 showed a nonlinear

relationship between brain age and chronological age across different

ML models and disorder groups. The consistent findings on the sys-

tematic bias of the estimated brain age gap suggested the importance

of bias correction for brain age prediction.

4 | DISCUSSION

In this work, we showed that multimodal brain imaging features

derived from MRI, DTI, and rs-fMRI yielded higher brain age

prediction accuracy than single-modal features. A new method to cor-

rect the bias of the brain age gap was proposed, which accounts for

the nonlinearity and gender difference of the brain development tra-

jectory. The brain age was found to share a large variance with behav-

ioral scores. The corrected brain age gap was uncorrelated with

chronological age and was highly associated with behavioral perfor-

mance. The bias correction of brain age gap also removed potential

confounding factors that may cause the altered brain development of

the patients with disorders.

This study was a follow-up to the initial work (Liang et al., 2019)

to combine three modalities of T1-weighted MRI, DTI and resting-

state fMRI features in brain age prediction. In ML, noninformative fea-

tures often deteriorate prediction performance on an independent

validation set. Thus, more features do not guarantee better prediction

performance. Though the multimodal brain imaging features are likely

to contain complementary information, combining all features derived

from the three imaging modalities unpreventably introduces additional

noise and increases the chance of overfitting. Thus, feature selection

is a common practice to improve prediction performance, especially

when a large number of features are included. Here we showed that

TABLE 4 Stepwise linear regression on the brain age for healthy control and disorder groups (SVR)

HC Specific phobia PTSD Social phobia

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

(intercept) 0.387 0.102 0.110 0.516 0.297 0.327 0.301 0.069

SexM −0.115 0.054 −0.103 0.000 - - −0.116 0.000

Accuracy_ABF - - - - −0.228 0.046 - -

Accuracy_ADI −0.433 0.126 0.449 0.002 - - - -

Accuracy_ATT - - - - 0.427 0.013 - -

Accuracy_EDI 0.716 0.010 −0.262 0.071 - - 0.264 0.017

Accuracy_EID 0.186 0.135 0.151 0.028 0.169 0.152 - -

Accuracy_FMEM - - - - 0.317 0.010 0.137 0.100

Accuracy_NVR - - 0.124 0.094 −0.278 0.027 - -

Accuracy_SPA - - - - −0.239 0.027 - -

Accuracy_VMEM - - −0.157 0.043 −0.275 0.015 - -

Accuracy_WM - - −0.123 0.127 0.312 0.016 - -

Speed_ABF - - - - - - −0.164 0.067

Speed_ADI −0.219 0.152 - - −0.323 0.015 - -

Speed_ATT 0.270 0.043 0.475 0.000 0.365 0.012 0.357 0.005

Speed_EDI 0.371 0.030 −0.139 0.097 0.225 0.059 - -

Speed_LAN - - 0.235 0.071 - - - -

Speed_MOT - - −0.153 0.077 0.452 0.009 - -

Speed_SM −0.334 0.102 −0.263 0.005 −0.308 0.062 −0.373 0.002

Speed_SMEM - - - - - - 0.152 0.118

Speed_SPA - - - - −0.217 0.080 - -

Speed_VMEM - - 0.228 0.069 - - - -

Speed_WM - - 0.181 0.089 −0.268 0.171 - -

Adjusted R2 0.491 0.539 0.514 0.417

Note: Bold values indicate statistically significant difference (p-value ≤0.01 - ≥0.001) and (p-value ≤0.001).
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combining multimodal brain imaging features improved prediction

accuracy without additional feature selection procedures. By quantify-

ing the prediction contribution of each feature in terms of the reduc-

tion of prediction accuracy when the feature was removed, we found

age-related brain changes are widely distributed across brain regions

and are captured by both structural and functional imaging modalities.

In addition, these features were consistent across different ML

methods, especially for Ridge, SVR, and GPR. For example, most of

the features contributed positively to brain age prediction were GMV,

ALFF, and FA and most of the features contributed negatively to brain

age prediction were the ReHo and MD. Interestingly, though the DTI

features alone yielded worse prediction performance than rs-fMRI

features in single modality analysis, the DTI features yielded higher

prediction accuracy than rs-fMRI features when each type of features

was combined with GMV features. This implies that the changes in

the gray matter and white matter are likely to interact during brain

development.

We also found a clear and consistent nonlinear trend of brain

development across all analyses. These results support the idea that

predicted brain age contained additional information on brain devel-

opment and aging beyond chronological age. However, this nonlinear

trend of brain age growth has been reported in only a few studies.

One potential reason might be that subjects in most of the previous

studies have a larger age range (Cole et al., 2015, 2017; Mwangi et al.,

2013; Schnack et al., 2016). For a population with a larger range of

age, the age-related brain changes involve both maturation and aging

effects which have opposite rate of changes. Specifically, the matura-

tion process is fast in youth and gets slower for adults and elderly

people, whereas the aging process is slow for youth and adults and

gets faster for elderly people. When an ML model was built on sub-

jects across a wider life span, the opposite trends of brain changes

were rarely taken into consideration. In addition, though we propose

R2 of the nonlinear fitting was a better way to quantify the brain age

prediction performance, it is worth noting that the improvement is rel-

atively small, thus it does not change the ranking of the different ML

models in terms of prediction accuracy. We chose the quadratic

regression model to account for nonlinear brain development trajec-

tory. The nonlinear trend shown in Figures 3, 4, and 5 also supported

our modeling strategy. Because ages ranged from 8 to 21 for subjects

in the PNC study, we did not expect a more complex brain develop-

ment trajectory that may occur across a wider life span. Nonparamet-

ric methods hold great potential for modeling brain development

TABLE 5 Stepwise regression on the bias-corrected brain age gap for HC and disorder groups (SVR)

HC Specific phobia PTSD Social phobia

Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

(intercept) −0.149 0.017 0.072 0.424 −0.285 0.004 0.092 0.503

SexM - - −0.068 0.000 −0.050 0.079 −0.046 0.049

Brain age 0.606 0.000 0.654 0.000 0.620 0.000 0.546 0.000

Accuracy_ABF - - - - 0.098 0.095 - -

Accuracy_ADI - - - - 0.200 0.001 0.210 0.004

Accuracy_ATT - - 0.071 0.150 - - 0.158 0.028

Accuracy_EDI 0.242 0.000 - - - - - -

Accuracy_EID - - - - - - 0.131 0.020

Accuracy_FMEM - - - - −0.127 0.042 0.106 0.071

Accuracy_LAN 0.148 0.011 0.154 0.002 - - - -

Accuracy_NVR - - - - 0.204 0.005 - -

Accuracy_SPA 0.090 0.082 - - 0.087 0.130 0.076 0.121

Accuracy_VMEM - - −0.150 0.003 - - −0.130 0.012

Speed_ABF −0.115 0.037 - - −0.102 0.127 - -

Speed_ADI - - −0.093 0.077 0.198 0.006 - -

Speed_ATT 0.212 0.004 0.118 0.099 0.302 0.001 0.283 0.003

Speed_EDI - - - - −0.185 0.018 - -

Speed_FMEM - - −0.122 0.072 −0.136 0.084 −0.171 0.038

Speed_LAN - - - - - - −0.208 0.020

Speed_NVR - - - - 0.142 0.052 - -

Speed_SM - - −0.130 0.025 - - −0.160 0.070

Speed_VMEM 0.129 0.046 0.252 0.001 0.191 0.049 0.196 0.050

Speed_WM −0.092 0.074 - - - - - -

Adjusted R2 0.904 0.811 0.834 0.757
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trajectory due to their flexibility to approximate complex curves with-

out assuming any specific parametric form. Compared to more com-

plex modeling approach, the quadratic regression offered a good

balance between model complexity and interpretability. Future

research is needed to evaluate the application of nonparametric

methods in brain age estimates.

Our results provided the first direct comparison between brain age

and chronological age in terms of their relationship to behavioral perfor-

mance. As true brain age is unknown and is likely to deviate from chro-

nological age, regression based metrics (e.g., correlation coefficient,

MAE, and R2) are limited. Thus, additional validation measures such as

cognitive behavioral scores are essential for comparing different brain

age prediction models. We showed that brain age was significantly

related to behavioral performance. However, we failed to find a higher

variance explained by behavioral performance for brain age than chro-

nological age. One potential reason might be that the high level of noise

in brain imaging data could be detrimental to the brain age prediction

accuracy. Besides, some behavioral scores in the CNB might not be

related to brain development but postnatal experiences, which are more

closely related to chronological age. We also examined whether the

bias-corrected brain age gap was related to CNB scores. Our result

showed that with the brain age controlled, face memory (FMEM) accu-

racy and sensory-motor (SM) speed scores were positively related to

the brain age gap. This is consistent with a previous study (Erus et al.,

2015). Additionally, we found the language (LAN) accuracy scores,

attention (ATT), and verbal memory (VMEM) speed scores were nega-

tively related to the brain age gap. Interestingly, we found some behav-

ioral scores exhibited the opposite direction in their relationship with

the brain age gap and brain age/chronological age. For example, SM

speed score was negatively related to the brain age and chronological

age but positively related to the brain age gap, whereas the LAN accu-

racy score was positively related to the brain age gap and chronological

age but negatively related to brain age gap. Considering the bias-

corrected brain age gap is orthogonal to chronological age, the opposite

relationships are unlikely due to the systematic bias (i.e., negative corre-

lation between brain age gap and chronological age). One potential

explanation is that brain age gap contains information on both brain

development and aging, even for youth. The decomposition of the two

opposite components in brain age gap is of great challenge and impor-

tance in the future work.

We also showed that bias correction removed the confounding

effects of chronological age and gender when brain age gap was com-

pared between the HC and disorder groups. For example, the

uncorrected brain age gap of the specific phobia group was signifi-

cantly higher than that of the HC. However, there was no significant

difference in bias-corrected brain age gap between the two groups. In

the comparison of the HC and PTSD groups, there was a nonsignifi-

cant difference in the brain age gap between the two groups without

bias correction. But it was significant with bias correction (Formula

(1)). Since the PTSD group had more female subjects compared to the

HC group, it is possible that the unbalanced distribution of age and

gender in the PTSD group could introduce potential confounding

effects. This is partially supported by a marginally significant bias-

corrected brain age gap including the interaction between chronologi-

cal age and gender (Formula (2)).

Although the PTSD group showed higher brain age gap, it was

not related to better behavioral performance compared to the HC

group. Results from stepwise regression analysis showed that brain

F IGURE 6 Chronological age and
brain age gap for HC and groups with
anxiety disorders. Chronological age of
the PTSD group is significantly higher
than that for the HCs for males
(p < .05). Without bias correction, the
brain age gap is significantly higher
than HCs for the specific phobia group
(p < .01) and marginally significantly

higher than HCs for the social phobia
group (p = .073). Using bias correction
without interaction terms, the brain
age gap for the PTSD group is
significantly higher than HCs
(p = .042). When interaction terms of
gender and chronological age is
included in bias correction, the result is
marginally significant (p = .088)
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development of the HCs and anxiety disorder groups were differen-

tially related to the behavioral changes. Based on the coefficients esti-

mated in the stepwise regression models, we see the accuracy and

speed scores of EDI task increased with the brain age for HCs, but

not for specific phobia and PTSD groups. This is consistent with previ-

ous studies indicating emotional dysregulation on anxiety disorders

(Etkin & Wager, 2007). Furthermore, we also showed that with the

brain age controlled, a higher brain age gap was associated with better

performance in EDI for the HCs but not for the anxiety disorder

groups. The anxiety disorder groups showed deteriorated perfor-

mance on social cognition and complex cognition tasks with increasing

brain age. In summary, our results suggest a slower or even reversed

cognitive development in the anxiety disorder groups, and that their

brain age may reveal more about aging than development.

Compared to traditional ML methods, one advantage of using

DNN in brain age prediction is to build the model directly with the

raw imaging data (Cole et al., 2017; LeCun et al., 2015). In addition,

DNN is able to learn more complex nonlinear brain growth patterns

with hierarchical structure progressively coding representations from

simple to complex (Hazlett et al., 2017). Our result showed similar

performance in brain age prediction between DNN and other tradi-

tional ML methods. With an increasing number of samples and more

powerful computing resources for more layers, DNN may show supe-

riority over the traditional ML methods. However, the low interpret-

ability of DNN limits its application.

In conclusion, our result suggests brain-based age prediction benefits

from multimodal imaging features. Brain age shows a nonlinear develop-

ment trajectory with gender difference. It is also closely associated with

behavioral performance. This association for the anxiety disorder patients

is altered compared to the HCs, which may reflect accelerated aging of

their brain. The brain age of the PTSD patients is older than that of the

HCs and it is related to deficits in the performance of social cognition

tasks. As the age range of our research is limited, future studies can exam-

ine the effectiveness of bias correction on a wider age range and explore

how to build ML models to dissociate the maturity and aging effects of

the brain. Additionally, to what extent genetics determines the brain

development trajectory is also an intriguing topic.
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