Targeted gene panel analysis of Japanese patients with maturity-onset diabetes of the young-like diabetes mellitus: Roles of inactivating variants in the *ABCC8* and insulin resistance genes

Tohru Yorifuji^{1,2,3,4}*, Yoh Watanabe¹, Kana Kitayama¹, Yuki Yamada¹, Shinji Higuchi¹, Jun Mori¹, Masaru Kato², Toru Takahashi², Tokuko Okuda³, Takane Aoyama³

¹Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan, ²Department of Genetic Medicine, Osaka City General Hospital, Osaka, Japan, ³Clinical Research Center, Osaka City General Hospital, Osaka, Japan, and ⁴2nd Department of Internal Medicine, Date Red Cross Hospital, Date, Hokkaido, Japan

Keywords

ABCC8, INSR, Maturity-onset diabetes of the young

*Correspondence

Tohru Yorifuji Tel.: +81-142-23-2211 Fax: +81-142-23-5249 E-mail address: yorifuji.tohru.l94@kyoto-u.jp

J Diabetes Investig 2023; 14: 387-403

doi: 10.1111/jdi.13957

ABSTRACT

Aims/Introduction: To investigate the genetic background of Japanese patients with suspected maturity-onset diabetes of the young (MODY).

Materials and Methods: On 340 proband patients referred from across Japan, genomic variants were analyzed using a targeted multigene panel analysis combined with the multiplex ligation probe amplification (MLPA) analysis, mitochondrial m.3243A > G analysis and methylation-specific polymerase chain reaction of the imprinted 6q24 locus. Pathogenic/likely pathogenic variants were listed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Additionally, variants with a population frequency <0.001 and Combined Annotation Dependent Depletion score >20 (CS >20) were listed as rare variants of uncertain significance-CS >20.

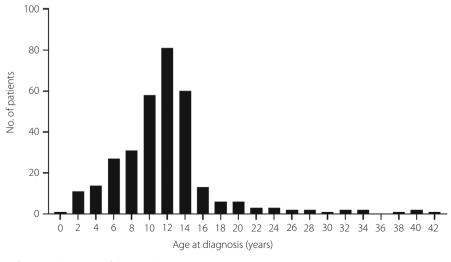
Results: A total of 157 pathogenic/likely pathogenic variants and 44 rare variants of uncertain significance-CS >20 were identified. In the pathogenic/likely pathogenic variants, alterations in the *GCK* gene were the most common (82, 52.2%) followed by *HNF1A* (29, 18.5%), *HNF4A* (13, 8.3%) and *HNF1B* (13, 8.3%). One patient was a 29.5% mosaic with a truncating *INSR* variant. In the rare variants of uncertain significance-CS >20, 20 (45.5%) were in the genes coding for the adenosine triphosphate-sensitive potassium channel, *KCNJ11* or *ABCC8*, and four were in the genes of the insulin-signaling pathway, *INSR* and *PIK3R1*. Four variants in *ABCC8* were previously reported in patients with congenital hyperinsulinism, suggesting the inactivating nature of these variants, and at least two of our patients had a history of congenital hyperinsulinism evolving into diabetes. In two patients with *INSR* or *PIK3R1* variants, insulin resistance was evident at diagnosis. **Conclusions:** Causative genomic variants could be identified in at least 46.2% of clinically suspected MODY patients. *ABCC8*-MODY with inactivating variants could represent a distinct category of MODY. Genes of insulin resistance should be included in the sequencing panel for MODY.

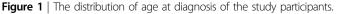
Received 14 July 2022; revised 23 October 2022; accepted 24 November 2022

INTRODUCTION

Monogenic diabetes mellitus accounts for 1–4% of pediatric or young adult diabetes cases¹, and typical clinical presentation includes maturity-onset diabetes of the young (MODY), neonatal diabetes, insulin resistance syndromes, lipodystrophy or other syndromic diabetes.

Diagnosing and differentiating monogenic diabetes mellitus from the vast majority of type 1/type 2 diabetes is important both for the clinical management and genetic counseling of the patients^{2–4}. Particularly, the diagnosis of MODY caused by pathogenic variants in the glucokinase (*GCK*), hepatic nuclear factor 1A (*HNF1A*), hepatic nuclear factor 4A (*HNF4A*) genes or in the *KCNJ11*, *ABCC8* genes coding for the adenosine triphosphate (ATP)-sensitive potassium channel (K_{ATP} channel) could be critical for the management of these patients, with sulfonylureas often being effective for *HNF1A-*, *HNF4A-* or K_{ATP} channel-MODY, whereas no medical intervention is generally required for *GCK-*MODY^{5–8}. The diagnosis of other types of monogenic diabetes also helps properly manage these patients with the accumulated knowledge of comorbidities and the natural course specific for each causative gene⁹.


Unfortunately, monogenic diabetes is currently extremely underdiagnosed^{1,10–13}, especially when the diabetes is not associated with specific clinical features, such as neonatal diabetes, lipodystrophy or syndromic diabetes. Multiple factors make a diagnosis of monogenic diabetes difficult. For example, MODY is generally accepted as diabetes characterized by the earlyonset before 35 years, non-obesity, dominant inheritance and negative pancreatic autoantibodies. However, not rarely, MODY is diagnosed after middle age, in obese patients, or without any affected family members^{14–16}. The diagnosis is particularly difficult for East Asians with inherently diminished insulin secretory capacities. They develop type 2 diabetes at lower body mass index (BMI; >23 for Japanese), as compared with white Europeans^{17,18}, and often, multiple family members are affected. Therefore, differentiating MODY from early-onset type 2 diabetes has always been challenging for this population, resulting in lower rates of mutation identification in previous studies^{19–21}. Additionally, molecular diagnosis is generally not covered by insurance, making the correct diagnosis even more difficult.


In the present study, we report the results of our comprehensive, multigene mutational analysis on 340 proband patients with early-onset, MODY-like diabetes who were referred to us under the diagnosis of suspected MODY. To address the possibility of different monogenic diabetes misdiagnosed as MODY, a broader range of monogenic diabetes genes were sequenced, including those typically presenting with insulin resistance or those associated with progressive endoplasmic reticulum stress.

MATERIALS AND METHODS

Participants

The study participants were 340 proband patients with earlyonset (0-42 years, median 11 years) diabetes who were referred to us between 2005 and 2022 from across Japan under the diagnosis of suspected MODY. All were Japanese, and the age distribution at diagnosis is shown in Figure 1. The diagnoses were made by pediatric or adult diabetologists, and the patients fulfilled at least two of the following criteria of MODY; (i) dominant inheritance of early-onset diabetes; (ii) non-obesity with persistently detectable C-peptide; and (iii) negative pancreatic autoantibodies. Patients with the onset of diabetes before 6 months of age; that is, neonatal diabetes, were excluded. The study protocol was approved by the institutional review board of Osaka City General Hospital (No. 742). Written informed consent was obtained either from the patient or their legal guardians. Molecular and clinical features of a fraction of these patients were previously reported separately^{22–24}.

Methods

Clinical data

For each patient, clinical data including sex, age at diagnosis, hemoglobin A1c at diagnosis, height and weight at diagnosis, and inheritance of diabetes were obtained from the questionnaire to the referral source. For children aged <18 years, the standard deviation score of BMI (BMI-SDS) was determined by using the Excel-based clinical tool for growth evaluation of children available from the Japanese Society for Pediatric Endocrinology (taikakushisu_v3.1, http://jspe.umin.jp/medical/chart_dl.html). For adults, the data from the 2018 National Health and Nutrition Survey by the Ministry of Health, Labor and Welfare were used for the calculation of BMI-SDS (https://www.e-stat.go.jp/dbview?sid=0003224178).

Detection of genomic variants

All analyses were carried out using the DNA extracted from peripheral blood using the QIAmp DNA mini kit (QIAGEN, Hilden, Germany). For patients with maternal inheritance, mitochondrial m.3243A > G mutation was first excluded by the polymerase chain reaction restriction fragment length polymorphism analysis as described²⁵, then the remaining patients underwent the multiplex ligation-dependent probe amplification (MLPA) analysis covering the common MODY genes (SALSA MLPA P241 including the GCK, HNF1A, HNF1B, HNF4A genes, MRC Holland, Amsterdam) and targeted multigene panel sequencing using the Ion-PGM next-generation sequencer (Thermo Fisher, Waltham, MA, USA). To identify patients with monogenic diabetes other than MODYs, the target genes were set broadly to include all exons of the following genes; ABCC8, APPL1, CISD2, EIF2AK3, FOXP3, GATA4, GCK, GLIS3, HNF1A, HNF1B, HNF4A, INS, INSR, KCNJ11, NEUROD1, NEUROG3, PAX6, PCBD1, PDX1, PIK3R1, RFX6, STAT3, WFS1 and ZFP57. The primer sets were generated using the Ion AmpliSeq Designer (Thermo Fisher), and sequencing was carried out using the Ion PGM next-generation sequencer (Thermo Fisher) as per the protocol of the manufacturer. The output data were analyzed using the Ion Reporter system (Thermo Fisher). Identified variants were also visualized using the Integrative Genomics Viewer tool²⁶ (https://software.broadinstitute.org/software/igv/, Broad Institute), and further confirmed by Sanger sequencing when necessary. Patients referred before 2021 mostly underwent the MLPA analysis and Sanger sequencing of exons in the GCK, HNF1A, HNF4A and HNF1B genes taking into consideration the clinical features. Only those without pathogenic (P)/likely pathogenic (LP) variants in these genes underwent the above-described targeted nextgeneration sequencing. Finally, patients without P/LP variants underwent the methylation-specific polymerase chain reaction of the chromosome 6q24 imprinted region, as described previously²³.

Variant assessment

The pathogenicity of identified variants was assessed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) criteria²⁷ using the InterVar website (https://wintervar.wglab.org/)²⁸ and the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), then the P/LP variants were listed as the causative variants. For genes of recessively inherited disorders; that is *CISD2*, *EIF2AK3*, *GLIS3*, *PAX6*, *PCBD1* and *ZFP57*, the P/LP variants were not listed unless they were identified in both alleles. For *RFX6*, variants were not listed unless the identified variant was a truncating variant²⁹, and for *WFS1*, monoallelic variants were not listed unless the variant was previously reported to cause dominantly inherited diabetes³⁰.

In addition, variants classified as variants of uncertain significance (VUS) were separately listed as rare VUS with a Combined Annotation Dependent Depletion (CADD) score >20 (VUS-CS >20) if they were with a population frequency <0.001 in all ethnic groups in the gnomAD database (https://gnomad. broadinstitute.org/) and the Japanese 14KJPN genomic variants database (https://jmorp.megabank.tohoku.ac.jp/202112/variants), and also if they had a CADD score >20 (https://cadd.gs. washington.edu/)³¹. These cut-offs were arbitrarily set, because the incidence of pathogenic variants in the most common, known MODY gene, *GCK*, is approximately one in 1000³², and a cut-off of the CADD score at 10–20 was recommended by the developer³¹.

Finally, the Human Gene Mutation Database professional version (https://digitalinsights.qiagen.com/products-overview/ clinical-insights-portfolio/human-gene-mutation-database/; QIA-GEN) was used to find previous reports of identified variants in association with the disease phenotype.

RESULTS

Of the 340 proband patients, we could identify 157 P/LP causative variants (46.2%; Figure 2a). In addition, we identified 44 variants in 42 patients with a population frequency <0.001 and with the CADD score >20 as rare VUS-CS >20 (12.4%; Figure 2b). Tables 1 and 2 show the details of the identified variants, and the demographic data of those with the P/LP variants and rare VUS-CS >20, respectively. The demographic features of patients without these variants are also shown in Table 3.

In the P/LP causative variants, alterations in the *GCK* gene were the most common (82, 52.2%) followed by *HNF1A* (29, 18.5%), *HNF4A* (13, 8.3%) and *HNF1B* (13, 8.3%). The mitochondrial m.3243A > G variant was found in eight (5.1%), all with maternal inheritance, and variants in the rare MODY genes, *INS*, *KCNJ11* and *ABCC8*, were found in four (2.5%), one (0.6%) and three (1.9%), respectively. As previously reported, abnormalities in the 6q24 imprinted locus were found in three patients (1.9%), and none of these had a history of transient neonatal diabetes, which was confirmed by chart review (details previously reported²³). Additionally, a variant in the *INSR* gene (c.282_283TG > GT, p.TyrGly94_95*Trp), normally associated with type A insulin resistance, was found in a single patient as a mosaic with the wild type.

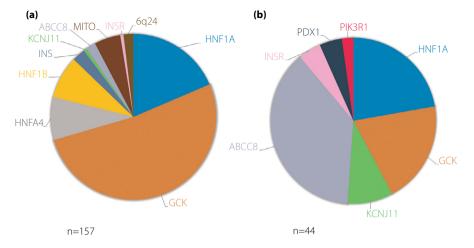


Figure 2 | (a). Breakdown of genes with pathogenic/likely pathogenic (P/LP) variants. (b). Breakdown of genes with variants of uncertain significance of a population frequency <0.001 and the Combined Annotation Dependent Depletion score >20.

The 44 variants in the rare VUS-CS >20 category did not fulfill the ACMG/AMP criteria to reach the P/LP status. However, they are rare and possibly deleterious, with a population frequency of <0.001 and with the CADD score >20. The CADD is a tool for scoring the deleteriousness of singlenucleotide variants, which integrates multiple annotations into one metric, and a score of 20 represents the top 1% of the likelihood of pathogenicity³¹. In fact, 21 of these rare VUS-CS >20 were previously reported in association with the disease phenotype and included in the HGMD professional database. Of these, variants in the ABCC8 gene were the most commonly found in 16 (36.4%), followed by HNF1A (10, 22.7%), GCK (8, 18.2%), KCNJ11 (4, 9.1%) and PDX1 (2, 4.5%) genes. Additionally, three variants in the INSR (p.Thr1181Asn, p.Pro269Leu, p.Lys294Arg) and one in the PIK3RI (p.Ser83Leu) genes, both normally associated with insulin resistance, were found in three patients (patients 191, 192, 193), one of them (patient 191) having variants in both genes.

Compared with the group of patients without these variants, patients with P/LP variants or rare VUS-CS >20 showed significantly lower BMI-SDS at diagnosis (P < 0.0001 by the Kruskal–Wallis test; Figure 3a), whereas there were no significant differences in the age at onset (P = 0.16, Figure 3b). These results suggest that those without P/LP variants or rare VUS-CS >20 are more similar to polygenic type 2 diabetes.

In total, there were four K_{ATP} channel variants (3 *ABCC8*, 1 *KCNJ11*) in the P/LP group, and 21 (17 *ABCC8*, 4 *KCNJ11*) in the rare VUS-CS >20 group. Of these, 11 were listed in the HGMD database. Interestingly, one of the P/LP variants in the *ABCC8* gene was a frameshift, loss-of-function variant (patient 5), and thus, was expected to cause hyperinsulinism. This patient was not obese, with a BMI-SDS of 0.25 and developed diabetes at the age of 7 years. His fasting C-peptide was not diminished at 1.8 nmol/L, and the homeostatic model assessment for insulin resistance (HOMA-IR) was 7.1, suggesting the

presence of insulin resistance. Additionally, of the ABCC8 variants in the rare VUS-CS >20, four (p.Arg1420His, patient 161; p.Arg1486Lys, patient 162; p.Gly1378Ser, patient 163; p.Asp1030Asn, patient 170) were listed in the HGMD database in association with congenital hyperinsulinism. The unique clinical course of patient 161 was previously reported by Saito-Hakoda *et al.*³³ Briefly, the patient was born large-forgestational-age (4,244 g after 36 weeks' gestation), and presented with hyperinsulinemic hypoglycemia requiring diazoxide treatment until the age of 6 years. Then, she gradually began to present with postprandial hyperglycemia and was diagnosed with diabetes at the age of 11 years. After the diagnosis of diabetes, she still experienced reactive postprandial hypoglycemia, which was successfully treated by a combination of glinide and alpha-glucosidase inhibitor. Patient 162 was also an 11-year-old girl who presented with fasting hypoglycemia associated with postprandial hyperglycemia. On the oral glucose tolerance test, her fasting plasma glucose was low at 3.9 mmol/L, with inappropriately elevated insulin at 29.2 pmol/L. After 2 h, however, her plasma glucose was elevated at 15.0 mmol/L. Patient 163 was a non-obese, 10-year-old girl. Her oral glucose tolerance test showed a sign of insulin resistance with the HOMA-IR index at 4.5. Her insulinogenic index was low at 0.08, and her plasma glucose after 2 h was 16.6 mmol/L. Patient 170 was born large-for-gestational-age, with a birthweight of 4,111 g. She reported a history of hospital admission for neonatal apneic episodes. She was not obese, but an oral glucose tolerance test at the age of 9 years showed a sign of insulin resistance with the HOMA-IR index at 4.5. Her insulinogenic index was low at 0.34 and her plasma glucose after 2 h was 16.2 mmol/L.

Also, interestingly, there was one *INSR* variant, p.TyrGly94_95*Trp, in the P/LP group (patient 148), which is expected to cause type A insulin resistance. This patient was a 29.5% mosaic with a truncating variant, and presented with symptoms resembling acute type 1 diabetes at the age of 14 years, with

patient
or each
/ariants fo
pathogenic '
pathogenic/likely
identified
and the
features
clinical
/ of the
Summary
Table 1

	Patient No.	Sex			At diagnosis	sis		Inheritance	Gene	cDNA	Protein	ACMG/AMP	HGMD
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			Age	HbA1c	Height	Weight	BMI-SDS					classification	(phenotype)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	ш	14	7.2	157.8	50.7	0.06	ON	6q24	pat dup		Р	1
N 1 2 149 65 053 100 0544 100 F 7 95 163 755 76 75 75 76 7	2	ш	6	7.8	133.2	27.7	-0.43	NO	6q24	DUPD -		Ч	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ſ	Σ	12	9.2	149	45	0.65	ON	6q24	pUPD		Ь	I
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	4	ш	14	6.7	NA	NA	NA	M	ABCC8	c.1819G > A	p.Val607Met	Г	DM
F 6 73 1007 163 -1/1 P ACCR C35+4C>T pMp3187 pMp3187 pMp3384 p M 2 65 NA	5	Σ	7	9.5	163	50.5	0.25	Ь	ABCC8	c.716delC	p.Thr239Metfs*19	LP	I
M 5 6 104 16 -0.44 M CCX C175C > T DimeSider P M 9 56 104 16 -0.44 M CX C175C > T DimeSider P M 9 56 1268 245 -0.06 P CCX C0165 > C DimeSider DimSider DimeSider Dime	9	ш	9	7.3	108.7	16.3	-1.17	Ъ	ABCC8	c.3544C > T	p.Arg1182Trp	LP	DM
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	7	Σ	5	9	104	16	-0.44	X	GCK	c.175C > T	p.Pro59Ser	LP	DM
M 9 64 1268 245 -066 P CCC C10195 > C D55 D53 D53 </td <td>8</td> <td>Σ</td> <td>2</td> <td>6.5</td> <td>NA</td> <td>AA</td> <td>AA</td> <td>Р</td> <td>GCK</td> <td>c.1016A > G</td> <td>p.Glu339Gly</td> <td>LP</td> <td>DM</td>	8	Σ	2	6.5	NA	AA	AA	Р	GCK	c.1016A > G	p.Glu339Gly	LP	DM
M 9 65 13 247 -032 NO GCX C10195 > C DeclarSANG P F 1 7 83 90 02 P GCX C1035 > G DeclarSANG P F 1 6 183 90 02 P GCX C1037 > G DeclarSANG P F 1 6 173 9 33 0.05 P GCX C11421 > C DeclarSANG	6	Σ	6	6.4	126.8	24.5	-0.66	Р	GCK	c.1019G > C	p.Ser340Thr	LP	DM
F 17 59 NM NM P CCK C103C > A Dua352/01 P F 6 7 NM NM NM NM P CCK C103C > A Dua352/01 P F 6 7 N N N N N N P CCK C11471 > C Dua358/40 P P CCK C11411 > C Dua358/40 P P CCK C1141 > C Dua358/40 P Dua358/40 Dua358/40 P Dua358/40 Dua358/40 Dua358/40<	10	Σ	6	6.5	125	24.7	-0.32	ON	GCK	c.1019G > C	p.Ser340Thr	ГЪ	DM
M Id GS IdS SH D22 P CCK C102/C > A DCys364* P M Id 66 7 M M M P CCK C102/C > A DCys32A	11	ш	17	5.9	NA	NA	NA	Р	GCK	c.1055 T > G	p.Leu352Arg	LP	DM
F 6 7 NA NA <td>12</td> <td>Σ</td> <td>14</td> <td>6.5</td> <td>163</td> <td>54</td> <td>0.22</td> <td>Ъ</td> <td>GCK</td> <td>c.1092C > A</td> <td>p.Cys364*</td> <td>۵.</td> <td>DM</td>	12	Σ	14	6.5	163	54	0.22	Ъ	GCK	c.1092C > A	p.Cys364*	۵.	DM
M 14 66 1583 503 0.2 P GCK C114,17-G Diversity Diversity <thdiversity< th=""> Diversity <t< td=""><td>13</td><td>LL.</td><td>9</td><td>7</td><td>NA</td><td>NA</td><td>NA</td><td>Ь</td><td>GCK</td><td>c.1142 T > C</td><td>p.Met381Thr</td><td>LP</td><td>DM</td></t<></thdiversity<>	13	LL.	9	7	NA	NA	NA	Ь	GCK	c.1142 T > C	p.Met381Thr	LP	DM
F 1/2 6/7 159 33 0.76 P GCK C114.1144m51GCTG5 pC/s332.5e333Jup P M 7 6.6 117.5 19 -12.5 P GCK C1183.1209646/54G P CCC CCCCACCGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	14	Σ	14	6.6	158.5	50.9	0.2	Ь	GCK	c.1142 T > G	p.Met381 Arg	LP	DM
F 7 66 1175 19 -125 P GCK C1141T > C DC/S38Ang P M 8 67 122 261 -06 P GCK C11325 > A DG/395 Ang/03del P M 8 75 1186 192 -167 P GCK C11855 > A DG/1395 Ang/03del P M 8 71 1087 NA NA NA NA NA P GCK C17355 Ang/03del P DG/4476 DP P CCC C17355 Ang/03del P D	15	ш	12	6.7	159	53	0.76	Ъ	gCK	c.1144_1144insTGCTCG	p.Cys382_Ser383dup	LP	DM
M 8 6/7 132 261 -0.6 P GCK C1183.120846/GGG P P GCK CGCCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	16	ш	7	6.6	117.5	19	-1.25	Ъ	gCK	c.1144 T > C	p.Cys382Arg	LP	DM
M 8 75 1186 192 -167 P CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	17	Σ	∞	6.7	132	26.1	-0.6	Ъ	GCK	c.1183_1209delGAGAG	p.Glu395_Arg403del	Ь	I
M 8 75 1186 192 -167 P GGK c11835 > T pclub95* P M 5 61 NA NA NA NA NA CK c11855 > A pclub95* P M 5 61 NA NA NA NA NA NA P pclub95* P M 5 66 1185 238 023 P GCK c1385 > A PD04171M P M 7 66 1072 193 033 P GCK c1385 > A PD04171M P M N N N N N N N P P044264 P044264 P F 9 6.3 NA NA NA N N N N N P P044264 P P044264 P P044264 P P044264 P P P044284 P										CCGCAGCGAGGACGTAATGCGC			
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	18	Σ	∞	7.5	118.6	19.2	-1.67	Ъ	gCK	c.1183G > T	p.Glu395*	д.	I
M 5 7.1 1087 168 -033 P GCK c1/24C > A DP0417Th LP M 6 6.8 1185 238 0.82 M GCK c1/278.12860upCGTGGCGGG DP0417Th LP M 17 6.8 1175 6.8 0.03 P GCK c1/278.12860upCGTGGCGGG DP0417Th LP M 17 6.8 175 6.5 0.09 B GCK c1/324.delG DG/4456r LP F 9 6.3 NA	19	Σ	4	6.1	NA	AA	AA	Z	GCK	c.118G > A	p.Glu40Lys	LP	DM
M 6 6.8 1185 2.38 0.82 M GCK c1778_11286dupCGTGGCGG ps:4736, Mod38dup P M 5 6.6 1072 193 093 P CCK c1376, A p0;MydSer P M 7 6.6 1072 193 003 P CCK c1306, A p0;MydSer P F 9 6.3 NA NA NA NA NA P CCK c1306, A p0;MydSer P P F 10 6.4 NA NA NA NA NA P	20	Σ	Ŋ	7.1	108.7	16.8	-0.93	Р	GCK	c.1249C > A	p.Pro417Thr	LP	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Σ	9	6.8	118.5	23.8	0.82	X	gCK	c.1278_1286dupCGTGCGCAG	p.Ser426_Arg428dup	LP	DM
M 17 68 175 65 0.09 B1 GCK c1305 > A pGJy445er P F 3 6.4 NA	22	Σ	5	6.6	107.2	19.3	0.93	Ь	gCK	c.130G > A	p.Gly44Ser	ГЪ	DM
F 9 6.3 NA NA </td <td>23</td> <td>Σ</td> <td>17</td> <td>6.8</td> <td>175</td> <td>65</td> <td>0.09</td> <td>BI</td> <td>gCK</td> <td>c.130G > A</td> <td>p.Gly44Ser</td> <td>LP</td> <td>DM</td>	23	Σ	17	6.8	175	65	0.09	BI	gCK	c.130G > A	p.Gly44Ser	LP	DM
F 3 6.4 NA NA </td <td>24</td> <td>ш</td> <td>6</td> <td>6.3</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>Z</td> <td>GCK</td> <td>c.1324 delG</td> <td>p.Glu442Argfs*613</td> <td>Ъ</td> <td>I</td>	24	ш	6	6.3	NA	NA	NA	Z	GCK	c.1324 delG	p.Glu442Argfs*613	Ъ	I
F 10 6.4 1446 404 08 NO GCK c13405 > A pAg447Gh LP F 8 6.3 NA	25	ш	m	6.4	NA	NA	NA	Ъ	GCK	c.1340_1368del29	p.Arg447Leufs*2	Ъ	I
F 8 6.3 NA NA NA M GCK C.146C > T p.Thrd9le LP F 8 6 1148 192 -08 M GCK c.182A > G p.Jyr61Cys LP M 12 6.3 146.1 40.1 -0.77 M GCK c.234C > G p.Jyr61Cys LP F 1 6.4 NA NA NA NA NA NA NA F 1 6.4 NA NA NA GCK c.234C > G p.Jyr61Cys LP F 1 6.4 136 2.5 -0.53 M GCK c.234C > G p.Jyr61Cys LP M 12 6.4 136 -1.12 NO GCK c.234C > G p.Jyr37Arg LP P M 12 6.4 1316 2.5 -0.53 M GCK c.234C > G p.Jyr377Arg LP p.Jyr377Arg LP	26	ш	10	6.4	144.6	40.4	0.8	NO	GCK	c.1340G > A	p.Arg447GIn	ГЪ	DM
F 8 6 1148 192 -0.8 M GCK c.182A > G p.Tyr61Cys LP M 12 6.3 146.1 40.1 -0.77 M GCK c.234C > G p.Asp78Glu LP F 1 6.4 NA NA NA NA NA GCK c.234C > G p.Asp78Glu LP F 1 6.4 NA NA NA NA GCK c.214G > A p.Asp78Glu LP F 13 6.2 156.9 41.8 -1.12 NO GCK c.234C > G p.Gly72Arg LP M 5 6.6 100.9 145 -0.518 M GCK c.234C > G p.Ala188Thr LP M 1 5.7 6.9 7.2 -1.34 P GCK c.234G > T p.Ala188Thr LP M 1 5.7 6.9 7.2 -1.34 P GCK c.234G > T	27	ш	∞	6.3	NA	NA	NA	M	GCK	c.146C > T	p.Thr49lle	ГЪ	DM
M 12 6.3 146.1 40.1 -0.77 M GCK c.234C > G p.4sp78Glu LP F 1 6.4 NA NA NA M GCK c.214G > A p.4sp78Glu LP F 1 6.4 NA NA NA M GCK c.214G > A p.6Jy72Arg LP F 13 6.2 1559 41.8 -1.12 NO GCK c.214G > A p.6Jy72Arg LP M 5 6.6 1009 14.5 -0.91 M GCK c.234C > G p.6Jy72Arg LP LP M 5 6.6 1009 14.5 -0.91 M GCK c.234C > G p.Ala18BThr LP P M 12 6.4 146.1 36 -0.67 M GCK c.234G > G p.Ala18BThr LP P M 12 6.4 146.1 36 -0.67 M G	28	ш	∞	9	114.8	19.2	-0.8	X	GCK	c.182A > G	p.Tyr61Cys	LP	DM
F 1 64 NA NA NA M GCK C.214G > A pGJy72Ag LP F 0 6 395 1542 -543 M GCK C.214G > A pGJy72Ag LP F 13 6.2 1569 418 -1.12 NO GCK C.234C > G pGJy72Ag LP M 5 6.6 1009 145 -058 M GCK C.234C > G pAla188Thr LP M 12 6.4 146.1 36 -0.057 M GCK C.246 > A pAla188Thr LP M 12 6.4 146.1 36 -0.057 M GCK C.2646 > A pAla188Thr LP P M 12 6.4 146.1 36 -0.057 M GCK C.2646 > A pGIu157* P M 12 6.4 141.9 7 213.4 P GCK C.2666 > C pGIu	29	Σ	12	6.3	146.1	40.1	-0.77	X	GCK	c.234C > G	p.Asp78Glu	LP	DM
F 0 6 39.5 1542 -54.3 M GCK c.2146 > A p.Gly/2Arg LP F 13 6.2 1569 41.8 -1.12 NO GCK c.234C > G p.Asp78Glu LP M 5 6.6 1009 14.5 -0.91 M GCK c.2646 > A p.Ala188Thr LP M 5 6.6 1009 14.5 -0.91 M GCK c.2646 > A p.Ala188Thr LP M 12 6.4 1461 36 -0.057 M GCK c.2646 > A p.Ala188Thr LP M 12 6.4 14.61 36 -0.057 M GCK c.2646 > A p.Ala176Pre LP M 1 5.7 69 7.2 -1.34 P GCK c.5066 > C p.Ala176Pre P M 1 5.7 69 7.2 -1.34 P GCK c.5066 > C p.A	30	ш	-	6.4	NA	NA	NA	Σ	gCK	c.214G > A	p.Gly72Arg	LP	DM
F 13 6.2 1569 418 -1.12 NO GCK c.234C > G pasp78Glu LP M 5 6.6 1009 14.5 -0.03 M GCK c.264G > A pAla188Thr LP M 5 6.6 1009 14.5 -0.01 M GCK c.264G > A pAla188Thr LP M 12 6.4 1461 36 -0.057 M GCK c.264G > T pLeu122Phe LP M 12 6.4 1461 36 -0.057 M GCK c.264G > T pLeu122Phe LP M 12 6.4 1461 36 -0.057 M GCK c.264G > T pLeu122Phe LP M 1 5.7 69 7.2 -1.34 P GCK c.526G > C pAla176Pro LP M 13 6.6 1619 45.1 -0.134 P GCK c.526G > C p.4176Pro LP M 13 6.6 1619 45.1 -0.081	31	ш	0	9	39.5	1.542	-5.43	X	GCK	c.214G > A	p.Gly72Arg	LP	DM
F 8 7 1316 26 -058 M GCK c.264G > A pAla188Thr LP M 5 6.6 1009 145 -0.91 M GCK c.364C > T pleu122Phe LP M 12 6.4 146.1 36 -0.07 M GCK c.364C > T pleu122Phe LP M 12 6.4 146.1 36 -0.07 M GCK c.364C > T pleu122Phe LP M 12 6.4 146.1 36 -0.67 M GCK c.364C > T pleu122Phe LP P M 1 5.7 69 7.2 -1.34 P GCK c.526G > C pla176Pro LP P M 1 5.7 69 7.2 -0.81 NO GCK c.526G > C p.4176Pro P P M 13 6.6 1619 45.1 -0.81 NO GCK c.536G > C p.4176Pro LP F 13 6.3 1492	32	ш	13	6.2	156.9	41.8	-1.12	NO	gCK	c.234C > G	p.Asp78Glu	LP	DM
M 5 6.6 1009 14.5 -0.91 M GCK c.364C > T, p.leu122Phe LP M 12 6.4 14.61 3.6 -0.67 M GCK c.364C > T, p.leu122Phe LP M 12 6.4 14.61 3.6 -0.67 M GCK c.364C > T p.leu122Phe LP M 1 5.7 6.9 7.2 -1.34 P GCK c.500G > A p.leu126Pro LP M 1 5.7 6.9 7.2 -1.34 P GCK c.506G > C p.da176Pro LP M 1 5.7 6.9 7.2 -1.34 P GCK c.526G > C p.da176Pro LP M 13 6.6 16119 45.1 -0.81 NO GCK c.533G > C p.da176Pro LP M 13 6.6 16119 45.1 -0.08 N c.544G > A p.da176Pro	33	ш	ø	7	131.6	26	-0.58	X	GCK	c.264G > A	p.Ala 188Thr	ГЪ	DM
M 12 6.4 146.1 36 -0.67 M GCK c.469G > T p.Glu157* P F 5 6.1 98.1 11.9 -25.8 M GCK c.500G > A p.Trp167* P M 1 5.7 69 7.2 -1.34 P GCK c.500G > A p.Ala176Pro LP M 9 6.8 134 27 -0.8 P GCK c.533G > C p.Ala176Pro LP M 13 6.6 161.9 45.1 -0.81 NO GCK c.533G > C p.Ala176Pro LP M 13 6.6 161.9 45.1 -0.81 NO GCK c.534G > A p.Ala178Ala LP F 13 6.6 161.9 45.1 -0.81 NO GCK c.544G > A p.Ala186* (CGA > TGA P F 13 6.6 11492 36.6 -1.41 NO GCK c.556C > T	34	Σ	5	6.6	100.9	14.5	-0.91	Z	gCK	c.364C > T,	p.Leu122Phe	LP	DM
F 5 6.1 98.1 11.9 -2.58 M GCK c.500G > A p.Tp167* P M 1 5.7 69 7.2 -1.34 P GCK c.526G > C p.Ala176Pro LP M 9 6.8 134 27 -0.8 P GCK c.526G > C p.Ala176Pro LP M 13 6.6 161.9 45.1 -0.81 NO GCK c.533G > C p.Ala182Met LP F 13 6.6 161.9 45.1 -0.81 NO GCK c.556C > T p.Arg182Met LP F 6 7.1 120 22 -0.11 P GCK c.556C > T p.Arg186* CGA > TGA P	35	Σ	12	6.4	146.1	36	-0.67	M	GCK	C.469G > T	p.Glu157*	Ч	DM
M 1 5.7 69 7.2 -1.34 P GCK c.526G > C pAla176Pro LP M 9 6.8 134 27 -0.8 P GCK c.533G > C pGJy178Ala LP M 13 6.6 161.9 45.1 -0.81 NO GCK c.533G > C pXal182Met LP F 13 6.3 1492 36.6 -1.41 NO GCK c.556C > T pArg186* (CGA > TGA P F 6 7.1 120 22 -0.11 P GCK c.556C > T pArg186* P	36	ш	5	6.1	98.1	11.9	-2.58	Z	GCK	c.500G > A	p.Trp167*	Ч	DM
M 9 6.8 134 27 -0.8 P GCK c.533G > C p.GJy178Ala LP M 13 6.6 161.9 45.1 -0.81 NO GCK c.544G > A p.Mal182Met LP F 13 6.3 1492 36.6 -1.41 NO GCK c.556C > T p.Arg186* (CGA > TGA P P F 6 7.1 120 22 -0.11 P GCK c.556C > T p.Arg186* P	37	Σ	-	5.7	69	7.2	-1.34	Ь	GCK	c.526G > C	p.Ala176Pro	ГЪ	I
13 6.6 161.9 45.1 –0.81 NO GCK c.544G > A p.Val182Met LP 13 6.3 149.2 36.6 –1.41 NO GCK c.556C > T p.Arg186* (CGA > TGA P 6 7.1 120 22 –0.11 P GCK c.556C > T p.Arg186* (CGA > TGA P	38	Σ	6	6.8	134	27	-0.8	Ь	GCK	c.533G > C	p.Gly1 78Ala	LP	DM
13 6.3 149.2 36.6 –1.41 NO GCK c.556C > T p.Arg186* (CGA > TGA P 6 7.1 120 22 –0.11 P GCK c.556C > T p.Arg186* P	39	Σ	13	6.6	161.9	45.1	-0.81	NO	GCK	c.544G > A	p.Val182Met	LP	DM
6 7.1 120 22 –0.11 P GCK c.556C > T p.Arg186* P	40	ш	13	6.3	149.2	36.6	-1.41	NO	GCK	c.556C > T	p.Arg186* (CGA > TGA	с.	DM
	41	ш	9	7.1	120	22	-0.11	Ъ	gCK	c.556C > T	p.Arg186*	д.	DM

(Continued)
. .
Table

Patient No. Sex	Sex			At diagnosis	sis		Inheritance	Gene		cDNA	Protein
		Age	HbA1c	Height	Weight	BMI-SDS					
42	ш	6	6.5	127	25	-0.49	д.	GCK	c.556C > T		p.Arg186*
43	ш	Ś	6.7	98	15	0.25	X	gCK	c.563C > T		p.Ala188Val
44	Σ	11	6.8	144.8	42.8	0.9	Σ	GCK	c.571C > T		p.Arg191Trp
45	Z	6	6.4	133	32.7	0.8	M		c.571C > T		p.Arg191Trp
46	Σ	c	6.7	100.8	15.2	-0.37	Z		c.571C > T		p.Arg191Trp
47	Z	6	6.5	NA	NA	NA	Ъ		c.571C > T		p.Arg191Trp
48	ш	12	6.5	AN	ΝA	NA	Z		c.571C > T		p.Arg191Trp
49	ш	m	6.8	89.2	13.9	1.52	Σ		c.571C > T		p.Arg191Trp
50	ш	5	7	103.6	18.1	0.9	M		c.571C > T		p.Arg191Trp
51	ш	9	6.4	119	18	-2.21	д.		c.571C > T		p.Arg191Trp
52	Σ	10	6.9	144.8	32	-0.95	Ъ		c.571C > T		p.Arg191Trp
53	ш	9	6.7	113.7	16.9	0.74	д.		c.571C > T		p.Arg191Trp
54	ட	10	6.8	132.5	28.6	-0.38	Ъ		c.571C > T		p.Arg191Trp
55	Σ	7	6.8	118.6	20.1	-0.98	M		c.572G > A		p.Arg191Gln
56	Σ	5	6.1	108.7	17	-0.78	Ч		c.572G > A		p.Arg191Gln
57	Z	12	9	123.9	22.4	-0.66	Ч		c.577G > T		p.Gly193Trp
58	ш	7	6.5	AN	AN	NA	X		c.605 T > C		p.Met202Thr
50	ц	α	67	175 R	26	<i>CC</i> 0	۵		دو120 > 5		n Thr206Ard

HGMD

ACMG/AMP

	;))			/ 16 divergi	202)))))))))				
		Age	HbA1c	Height	Weight	BMI-SDS					CIASSIIICAUON	(prieriolype)
42	ш	6	6.5	127	25	-0.49	Ъ	gCK	c.556C > T	p.Arg186*	д	DM
43	ш	c	6.7	98	15	0.25	M	90K	c.563C > T	p.Ala188Val	ГЪ	DM
44	Σ	11	6.8	144.8	42.8	0.9	Z	gCK	c.571C > T	p.Arg191Trp	LP	DM
45	Z	6	6.4	133	32.7	0.8	X	gCK	c.571C > T	p.Arg191Trp	Ч	DM
46	Σ	e	6.7	100.8	15.2	-0.37	X	GCK	c.571C > T	p.Arg191Trp	Ъ	DM
47	Σ	6	6.5	NA	NA	NA	Р	GCK	c.571C > T	p.Arg191Trp	Ъ	DM
48	ш	12	6.5	NA	NA	NA	X	gCK	c.571C > T	p.Arg191Trp	Ъ	DM
49	ш	e	6.8	89.2	13.9	1.52	X	gCK	c.571C > T	p.Arg191Trp	Ъ	DM
50	ш	5	7	103.6	18.1	0.0	X	gCK	c.571C > T	p.Arg191Trp	Ъ	DM
51	ш	9	6.4	119	18	-2.21	Ъ	gCK	c.571C > T	p.Arg191Trp	ГЪ	DM
52	Z	10	6.9	144.8	32	-0.95	Ъ	gCK	c.571C > T	p.Arg191Trp	ГЪ	DM
53	ш	9	6.7	113.7	16.9	0.74	Ъ	gCK	c.571C > T	p.Arg191Trp	ГЪ	DM
54	ш	10	6.8	132.5	28.6	-0.38	Ъ	gCK	c.571C > T	p.Arg191Trp	ГЪ	DM
55	Z	7	6.8	118.6	20.1	-0.98	Z	90K	c.572G > A	p.Arg191Gln	ГЪ	DM
56	Z	5	6.1	108.7	17	-0.78	Ъ	90K	c.572G > A	p.Arg191Gln	ГЪ	DM
57	Z	12	9	123.9	22.4	-0.66	Ъ	90K	c.577G > T	p.Gly193Trp	ГЪ	DM
58	ш	7	6.5	NA	NA	NA	Z	90K	c.605 T > C	p.Met202Thr	ГЪ	DM
59	ш	8	6.2	125.8	26	0.22	Ъ	gCK	c.617C > G	p.Thr206Arg	Ч	DM
60	ш	ŝ	6.3	90.5	14.5	1.67	Z	gCK	c.617C > T	p.Thr206Met	ГЪ	DM
61	ш	9	6.8	111.4	18	-0.62	NO	90K	c.617C > T	p.Thr206Met	Ъ	DM
62	ш	10	6.9	128.4	25.4	-0.85	Ъ	gCK	c.617C > T	p.Thr206Met	Ъ	DM
63	ш	10	6.5	132	27	-0.8	NO	90K	c.635_637delCCT	p.S212Cfs	Ч	DM
64	Z	6	6.2	136.4	26.6	-1.34	Ъ	90K	c.671 T > A	p.Met224Lys	Ъ	DM
65	Z	£	9	100.1	16.45	0.82	NN	gCK	c.706G > A	p.Glu236Lys	Ъ	DM
99	Z	12	10.5	168	45.6	-1.07	NO	gCK	c.743delA	p.Asp248Alafs*47	Ч	I
67	ш	6	6.5	142.8	32.7	-0.21	Ь	gCK	c.751A > G	p.Met251Val	Ъ	DM
68	ш	14	6.8	155.6	38.05	-2.21	Z	gCK	c.764C > G	p.Thr255Ser	ГЪ	DM
69	ш	19	6.4	152	43	-1.04	Ъ	gCK	c.76C > T	p.Gln26*	Ч	DM
70	ш	6	6.6	129.6	26.2	-0.43	Ъ	gCK	c.76C > T	p.Gln26*	Ч	DM
71	Z	11	6.1	143.3	31.2	Ē	Ъ	gCK	c.773G > T	p.Gly258Val	ГЪ	I
72	Z	9	9	116	22.9	0.86	Z	gCK	c.775G > A	p.Ala259Thr	ГЪ	DM
73	ш	4	6.5	89.6	11	-1.29	Z	gCK	c.781G > A	p.Gly261Arg	ГЪ	DM
74	Z	10	6.4	140	32	-0.33	Z	gCK	c.781G > A	p.Gly261Arg	ГЪ	DM
75	Z	18	7	165	53	-0.61	Ъ	gCK	c.781G > A	p.Gly261Arg	Ъ	DM
76	ш	11	6.7	141	42	1.07	M	gCK	c.838_839delAG	p.Ser280Leufs*10	Ч	DM
77	ш	5	6.7	102	15.7	-0.16	NN	gCK	c.864-2A > G		Ъ	DM
78	Σ	12	6.2	144.6	36.5	-0.38	NO	gCK	c.873G > C	p.Lys291Asn	ГЪ	I
79	Z	9	6.5	NA	NA	NA	NO	gCK	c.895G > A	p.Gly299Ser	ГЪ	DM
80	Z	6	6.5	NA	NA	NA	Z	gCK	c.895G > C	p.Gly299Arg	Ч	DM
81	Z	10	6.2	133.5	28.4	-0.54	NO	gCK	c.898G > T	p.Glu300*	۵.	DM
82	Σ	12	6.7	156	47	0.35	д	GCK	c.908G > T	p.Arg303Leu	Ч	DM

(Continued)	
Table	

Patient No.	Sex			kikui iluan ju)				
		Age	HbA1c	Height	Weight	BMI-SDS					classification	(phenotype)
83	Σ	6	6.3	135.3	36	1.13	ON	GCK	c.957_984delGGAGGCCT CCGAGCTGCGCGCACACGC	p.Ala321Profs*24	ط	I
84	Σ	10	6.3	127.6	24.4	-1.14	Σ	gck	exon 6 del		Ъ	DM
85	Σ	6	6.5	127.4	23.8	-1.06	M	gCK	exon 4–5 del		Р	DM
86	Σ	4	6.4	97.4	13	-1.48	Z	gCK	all exon del		Ч	DM
87	Σ	m	9	NA	NA	NA	M	gCK	c.617C > T	p.Thr206Met	Ъ	DM
88	Σ	14	6.5	146.2	32.2	-2.52	NO	gCK	c.898G > C	p.Glu300Gln	Ч	DM
89	ш	11	NA	130.1	27.5	-0.74	M	HNF1A	c.1054delT	p.Ser352Profs*12	Ч	DM
90	ш	15	10.5	137	40.9	0.38	Р	HNF1A	c.1136delC	p.Pro379Leufs*5	Ч	DM
91	ш	13	6.5	157.9	44.6	-0.68	NN	HNF1A	c.1181delC	p.Pro394GInfs*19	Ч	DM
92	ш	13	7.4	141.4	32	-1.66	Р	HNF1A	c.1340C > T	p.Pro447Leu	Ч	DM
93	ш	12	6.7	156.7	47.6	0.25	Z	HNF1A	c.1340C > T	p.Pro447Leu	Ч	DM
94	ц	14	7	150.2	65	2.08	M	HNF1A	c.142delG	p.Glu48Serfs*107	Р	MQ
95	ш	13	6.9	147.4	50.6	1.14	Z	HNF1A	c.1768 + 1G > T		4	DM
96	Σ	10	8.3	AN	NA	NA	Ч	HNF1A	c391C > T	p.Arg131Trp	Ч	MQ
97	Z	5	5.7	109.7	19.95	0.8	Z	HNF1A	c.391C > T	p.Arg131Trp	LP	DM
98	ш	11	NA	NA	NA	NA	Ъ	HNF1A	c.392G > A	p.Arg131Gln	Ч	DM
66	Σ	15	7.2	150.9	43.1	-0.53	NO	HNF1A	c.493delT	p.Trp165Glyfs*21	Ъ	Ι
100	Σ	14	5.6	167.2	41.1	-2.82	M	HNF1A	c.598C > T	p.Arg200Trp	LP	DM
101	ш	12	11	142.3	41.2	0.57	Ъ	HNF1A	c.598C > T	p.Arg200Trp	ГЪ	DM
102	ш	14	16.6	NA	40.8	NA	Σ	HNF1A	c.618G > A	p.Trp206*	4	DM
103	ш.	11	6.4	143.8	40.1	0.55	NO	HNF1A	c.618G > A	p.Trp206*	۵.	DM
104	L	14	13	154.2	42.4	, I	д.	HNF1A	c.685C > T	p.Arg229*	۵.	DM
105	L	11	8.8	152	52	1.4	д.	HNF1A	c.686G > A	p.Arg229Gln	Ъ	DM
106	LL.	12	6.4	152.8	50.1	0.9	д.	HNF1A	c.779C > T	p.Thr260Met	Ъ	DM
107	Z	[∞]	7.2	130	27.3	0.09	Z	HNF1A	c.788G > A	p.Arg263His	Ч	DM
108	Σ	10	7.6	145	35	-0.17	Z	HNF1A	c.811C > T	p.Arg271Trp	Ч	DM
109	Z	10	9	145.5	40.7	0.8	Ъ	HNF1A	c.827C > A	p.Ala276Asp	Ч	DM
110	ш	12	8.5	160.2	43.7	-0.73	X	HNF1A	c.872dupC	p.Gly292Argfs*25	Ъ	DM
111	Z	9	11.6	NA	NA	NA	Ъ	HNF1A	c.872dupC	p.Gly292Argfs*25	٩.	DM
112	ш	13	6.4	141	30	-2.23	д.	HNF1A	c.872dupC	p.Gly292Argfs*25	Ъ	MQ
113	ш	7	NA	NA	NA	NA	X	HNF1A	ex7,8,9 del		Ъ	DM
114	Σ	10	7.8	136.8	41.8	1.49	X	HNF1A	p.Arg229GIn	c.686G > A	Ч	DM
115	ш	6	8.7	130.8	38	1.7	X	HNF1A	c.872delC	p.Pro291GInfs*51	Ъ	DM
116	ш	4	7.7	102.8	16.1	-0.02	NO	HNF1A	all exon del		Ч	DM
117	Z	8	6.5	132.2	36.4	1.61	Z	HNF1A	c.872delC	p.Pro291GInfs*51	Ч	DM
118	Σ	6	AN	NA	NA	NA	Ъ	HNF1B	c.286C > T	p.Gln96*	Ъ	I
119	Σ	7	ΝA	NA	NA	NA	ON	HNF1B	c.395A > C	p.His132Pro	Ч	DM
120	Σ	13	12.7	158	36	-2.69	ON	HNF1B	c.494G > A	p.Arg165His	Ч	DM
121	ш	12	12.3	155.6	47.3	0.3	X	HNF1B	c.544 + 1G > A		Ъ	DM
122	Σ	0y11m	9.3	75	9.67	0.4	NO	HNF1B	exon 1–4 del		Ъ	DM
,) J		,										

Patient No.	Sex			At diagnosis	Sisc		Inheritance	Gene	CDNA	Protein	ACMG/AMP	HGMD
		Age	HbA1c	Height	Weight	BMI-SDS					classification	(phenotype)
124	Σ	37	10	NA	NA	NA	N	HNF1B	all exon del		Ь	DM
125	ш	12	6.5	151	35.35	-1.55	Ь	HNF1B	all exon del		Ч	DM
126	Σ	21	16.7	176	38.9	-2.72	Ь	HNF1B	all exon del		Ч	DM
127	ш	14	16.1	149.9	45.1	-0.05	NO	HNF1B	all exon del		Ч	DM
128	ш	15	7.2	161.6	45.4	-1.49	NO	HNF1B	all exon del		Р	DM
129	ш	12	18.1	NA	NA	NA	NU	HNF1B	exon 3-4 del		Р	DM
130	ш	13	NA	AA	47.2	NA	ON	HNF1B	all exon del		۵.	DM
131	ш	∞	NA	126.2	26.8	0.39	ON	HNF4A	c.1079C > T + c.1052 T >	p.Ala360Val + p.Met351Thr	LP v	Ι
									C (same allele)	(same allele)		
132	ц.	23	8.7	167.7	51.9	-0.76	Ь	HNF4A	c.146A > C	p.His49Pro	ГЪ	DM
133	Σ	40	7.1	169	54	-1.51	Ъ	HNF4A	c.359 + 1G > A		Ч	Ι
134	Σ	18	9	165	64	0.97	Ъ	HNF4A	c.427-2A > G		Ч	DM
135	ட	13	8.9	158	57.2	1.04	NO	HNF4A	c.518 T > C	p.Leu173Pro	Ъ	Ι
136	ட	6	7.5	149	47.9	1.58	Z	HNF4A	c.582 + 2_582 + 10delTGAGGATGG		LP	Ι
137	ᇿ	6	NA	136.8	34.8	0.81	NO	HNF4A	c.802C > T (<i>de novo</i>)	p.Gln268*	Ч	Ι
138	ᇿ	11	6.5	147	39.4	0.14	X	HNF4A	c.916insT	p.Tyr306Leufs*2	Ч	Ι
139	ш	16	9.2	158.5	49.7	-0.46	M	HNF4A	c.857 T > A	p.Ile286Asn	Ъ	DM
140	Σ	12	10.7	148.9	38.1	-0.51	NO	HNF4A	c.874C > T	p.Gln292*	Ъ	DM
141	ш.	12	7.9	151.2	40.7	-0.37	Ь	HNF4A	c.956_958dupTGC	p.Leu319dup	ГЪ	DM
142	ш	13	10.5	147	41.4	-0.15	Ъ	HNF4A	c.925C > T	p.Arg309Cys	ГЪ	DM
143	ц	12	15.6	149.3	39.2	-0.47	X	HNF4A	c.713A > C	p.Glu238Ala	Ъ	I
144	Σ	21	8.2	173	62	-0.4	Ь	INS	c.101A > T	p.His34Leu	ГЪ	I
145	ш.	8	5.8	127	24.4	-0.45	M	INS	c.163C > T	p.Arg55Cys	ГЪ	DM
146	Σ	7	6.5	130.1	29.3	0.8	NO	INS	c.212delG	p.Gly71 Alafs	Ъ	Ι
147	ட	-	11.1	73	7.7	-1.07	Ъ	INS	c.94G > A	p.Gly32Ser	Ъ	Ι
148	ட	13	14.9	149.8	46.2	0.36	NO	INSR	c.282_283TG > GT	p.TyrGly94_95*Trp	Ъ	Ι
149	Σ	9	8.2	NA	NA	NA	NO	KCNJ11	c.685G > A	p.Glu229Lys	ГЪ	DM
150	Σ	42	NA	NA	NA	NA	BI	MITO	m.3243A > G		Ч	
151	ш	15	NA	NA	NA	NA	X	MITO	m.3243A > G		Ч	
152	ш	18	10.5	166.9	60	0.57	X	MITO	m.3243A > G		Ч	
153	ш.	31	5.6	NA	AN	AA	X	MITO	m.3243A > G		Ъ	
154	Σ	14	NA	ΝA	NA	AA	X	MITO	m.3243A > G		Ч	
155	Σ	25	11.2	165.9	59.8	-0.11	X	MITO	m.3243A > G		Ч	
156	ᇿ	26	8.3	143.5	44.7	0.16	X	MITO	m.3243A > G		Ч	
157	ш	28	10.1	149.4	53.6	0.92	M	MITO	m.3243A > G		Ч	
The reference sequences for (<i>ABCC8</i>), NM_000208.2 (<i>INSR</i>)	e sequ 00020	iences fo 18.2 (INSR	r each gen).	ne: NM_0	00162.3 (G	icky, NM_000	0545.5 (HNF1A)	, NM_175	The reference sequences for each gene: NM_000162.3 (GCK), NM_000545.5 (HNF1A), NM_175914.3 (HNF4A), NM_000458.2 (HNF1B), NM_000207.2(INS), NM_000525.3(KCN/11), NM_000352.3 ABCC8), NM_000208.2 (INSR).), NM_000207.2(IVS), NM_0	00525.3(KCNJ11),	NM_000352.3
ACMG/AMP	classifi.	cation, cl	assification	of pathc	genicity by	y the criteria	of American	College o	ACMG/AMP classification, classification of pathogenicity by the criteria of American College of Medical Genetics and Genomics/Association for Molecular Pathology with P (pathogenic)	ssociation for Molecular Pati	hology with P (r	bathogenic)
and LP (IIK: professions	ely pat	" (minus)	; BI (both f	barents al	Tected); BN	VII-SUS, Stanc Viabotoc roni	dard deviation	score of l	and LP (likely pathogenic); BI (both parents affected); BMI-SUS, standard deviation score of body mass index; del, deletion; HGMU, listing in the Human Gene Mutation Database professional with " (minue)" romenanting abrance and disherer romenanting disherer abranchance D (national) M (matematican arrented manufely) MITD mitrachandrial	L), listing in the Human de	ene Mutation Dai	Labase Attochondrial
		sui III I)—	ine price (אכטה עו וווו לור ורמיה+	בוורב מווח ר סוסי או עי מיסי	י יסולכווינייג + ייסולכווינייג +	טוטרטאטרופו אוווו –ווווועט ובטובטווווט מטצרווכי פווע עמטיברט ובטרטטועד. מממי מיד לווה לוומנימינים ליאי מידימים זוקטי אוא ממד זימוקאם: או מוסד מימים אינימייים איני	ושוול לשוש	iotype, IIII iertai i.ee, E. (paterrial), IVI (II +-1 dicomi	ומובוו ומו), ואט עווט מווברובט ב	וו ירוואו יופוושר	
המובי המרך		hinde		ורכו ומו מווי	כובי ואבי ווכ		טטו די, שמיבוו ומ	n IIbaici				

Table 1. (Continued)

cy <0.001 and the Combined Annotation Dependent	
lentified rare variants of uncertain significance of a population frequency	
Table 2 Summary of the clinical features and the identified	Depletion score >20 for each natient

Lauelle IVO.								5) j			HGMU
	Sex	Age	HbA1c	Height	Weight	BMI-SDS					classification			gnomAU ALL	(phenotype)
158	Σ	11	NA	AN	52	NA	Ь	ABCC8	c1513G > A	p.Gly505Ser	VUS	31	I	I	DM
159	Σ	14	10	ΝA	NA	NA	NO	ABCC8	c1596C > G	p.Ser532Arg	VUS	23.5	Ι	I	I
160	Σ	11	13.5	144.3	31.7	-1.32	NO	ABCC8	c.3533A > G	p.Gln1178Arg	VUS	23.9	I	I	DM
161	ш.	11	9	153.2	50.8	1.20	ON	ABCC8	c.4259G > A	p.Arg1420His	VUS	31	0.00014	I	HI/DM
162	ш	11	5.1	AN	42	NA	X	ABCC8	c4457G > A	p.Arg 1486Lys	VUS	28.3	Ι	I	I
163	ш	10	7.4	133.7	34.9	0.86	N	ABCC8	c4132G > A	p.Gly1378Ser	VUS	24.7	Ι	I	T
164	Σ	11	6.7	ΝA	NA	NA	BI	ABCC8	c.1432G > T	p.Ala478Ser	VUS	24	I	I	I
165	ш.	10	9.5	150	49	1.44	Ъ	ABCC8	c.1673C > T	p.Thr558lle	VUS	32	Ι	I	Ι
166	ш	22	NA	NA	NA	NA	Ъ	ABCC8	c.2957C > T	p.Ser986Leu	VUS	24.8	Ι	0.00003	Ι
167	Σ	28	NA	170	91.4	2.72	NA	ABCC8	c.2405 T > C	p.lle802Thr	VUS	20.3	Ι	I	Ι
168	ட	6	8.5	148.4	52.5	1.98	X	ABCC8	c1337 T > C	p.lle446Thr	VUS	23	ļ	I	DM
169	ш	15	13.8	172	56	-0.71	Z	ABCC8	c.359C > G	p.Ser120Cys	VUS	25	Ι	Ι	Ι
170	ш	6	6.7	133.9	44.45	2.12	BI	ABCC8	c.3088G > A	p.Asp1030Asn	VUS	25.1	Ι	Ι	Ī
171	Σ	11	5.6	129.7	26.8	-0.86	Z	ABCC8	C3875A > C	p.Asn1292Thr	VUS	24.2	Ι	Ι	Ι
172	ш.	13	6.5	162.4	46.1	-0.87	Z	ABCC8	c.2300G > A	p.Gly767Asp	VUS	23.1	0.00053	I	I
								ABCC8	c1753A > G	p.Ile585Val	VUS	23.4	Ι	Ι	Ι
173	Σ	12	6.8	151	50	1.07	Ъ	GCK	c.1151C > T	p.Ala384Val	VUS	29.9	0.00004	Ι	DM
174	ш	14	6.7	152	40.2	-1.22	Z	GCK	c.1174C > G	p.Arg392Gly	VUS	31	Ι	Ι	DM
175	ш.	œ	5.7	127.2	26.1	0.08	NO	GCK	c.1232C > T	p.Ser411Phe	VUS	31	I	I	DM
176	Σ	8	6.9	118.5	19.1	-1.71	NO	GCK	c437 T > G	p.Leu146Arg	VUS	28.7	Ι	Ι	DM
177	Σ	~	6.3	120.9	22.3	-0.27	Ъ	GCK	c.538A > C	p.Asn180His	VUS	25.8	Ι	I	DM
178	ட	11	6.6	149.7	35.3	-1.01	X	GCK	c.707A > C	p.Glu236Ala	VUS	25.1	Ι	Ι	DM
179	ш	10	6.5	134.3	27.6	-0.91	Z	GCK	c1144 T > C	p.Cys382Arg	VUS	32	Ι	I	I
180	Σ	14	6.8	159.8	44	-1.1	X	GCK	c164 T > G	p.Val55Gly	VUS	26	Ι	I	I
181	Σ	Ŋ	6.1	118	19	-1.5	NA	HNF1A	c.505A > G	p.Lys169Glu	VUS	23	Ι	I	ł
182	ш	12	6.5	149	37	-0.19	NO	HNF1A	c1544C > A	p.Thr515Lys	VUS	26.8	0.00011	I	DM
183	ш	12	8.8	ΝA	NA	NA	Z	HNF1A	c1043 T > C	p.Leu348Pro	VUS	26.3	Ι	I	DM
184	Σ	13	6.2	154	4	-0.19	UNK	HNF1A	c.397G > T	p.Val133Leu	VUS	23.7	Ι	I	DM
185	Σ	11	7.3	NΑ	NA	NA	Z	HNF1A	C485 T > C	p.Leu162Pro	VUS	26.3	Ι	I	DM
186	ш	12	6.4	140.1	30.7	-1.47	Ъ	HNF1A	C493 T > C	p.Trp165Arg	VUS	27.2	I	I	DM
187	Σ	10	10.3	ΝA	NA	NA	NA	HNF1A	c.494G > C	p.Trp165Ser	VUS	27.9	I	I	I
188	ш	10	8.7	144.9	45.9	1.46	X	HNF1A	c.778A > T	p.Thr260Ser	VUS	23.6	Ι	I	DM
189	ш.	11	9.7	153.3	44	0.32	Ч	HNF1A	c.791 T > C	p.Val264Ala	VUS	26	Ι	Ι	DM
190	Σ	34	6.2	NA	NA	NA	X	HNF1A	c.794A > T	p.Tyr265Phe	VUS	25.4	Ι	Ι	Ι
191	ш	12	10.6	154.2	42.1	-0.42	NO	INSR	c.3542C > A	p.Thr1181Asn	VUS	26.8	I	I	I
								PIK3R1	c.248C > T	p.Ser83Leu	VUS	24.9	0.00004	Ι	Ι
192	Σ	33	ΝA	ΝA	NA	NA	NO	INSR	c.806C > T	p.Pro269Leu	VUS	28.4	0.00014	I	I
193	Σ	œ	ΝA	126.2	26.6	0.34	MN	INSR	c.881A > G	p.Lys294Arg	VUS	23.1	0.00074	0.0002	
194	LL.	ø	8.0	136.3	37.4	1.44	Z	KCNJ11	c.139A > G	p.Lys47Glu	VUS	23.8	I	I	I

Patient No.	Ö			At diagnosis	losis		Inneritance Gene	כפוופ	CUNA	protein	ALMG/AMIP CAUU IINIMO MAFIN))			
	Sex	Age	HbA1c	Height	Sex Age HbA1c Height Weight BMI-SDS	BMI-SDS					classification			gnomAD ALL (phenotype)	(phenotype)
195	ш	6	5.6	138.8	30	-0.45	W	KCNJ11	KCNJ11 c1105C > T	p.Arg369Cys	VUS	26.5	0.00002	I	I
196	Σ	20	8	NA	AN	NA	Ч	KCNJ11	c.10C > T	p.Arg4Cys	VUS	28.7	Ι	0.00003	DM
197	L	2	10.1	AA	AN	NA	Ч	KCNJ11	c.968A > G	p.Asp323Gly	VUS	24.4	Ι	I	I
198	Σ	14	NA	ΝA	AN	AN	X	PDX1	c.239C > T	p.Ala80Val	VUS	23.5	Ι	I	
199	ш	œ	NA	122	28	1.09	M	PDX1	c119G > A	p.Arg40His	VUS	29.9	0.00021	I	Ι

NM_0003523 (ABCC8), NM_0002082 (INSR). ACMG/AMP classification, classification of pathogenicity by the criteria of American College of Medical Genetics and Genomics/Association for Molecular Pathology with P (pathogenic) and LP (likely pathogenic); BI (both parents affected); BMI-SDS, standard deviation score of body mass index; del, deletion; DM, diabetes; HGMD, the gnomAD database for all ethnic groups with "-(minus)" representing absence; NA, not available; pUPD, patemal uniparental disomy; TMMo, allele frequency in the Japanese 14 K gnomAD ALL, minor allele frequency in listing in the Human Gene Mutation Database professional with "-(minus)" representing absence and diabetes representing diabetes phenotype; HI, hyperinsulinemic hypoglycemia; allele; MAF in the paternal gene; pat dup, duplication of Inheritance, P (paternal), M (maternal), NO (no affected parents), MITO, mitochondrial representing absence. "–(minus)" database (jMorp) with highly elevated plasma glucose at 24.8 mmol/L, hemoglobin A1c at 14.9% in association with diminished serum C-peptide at 0.2 nmol/L. Pancreatic autoantibodies were negative. Her BMI at presentation was 20.6 (64th centile), and she had a paternal history of diabetes. Three variants in the INSR gene (p.Thr1181Asn, p.Pro269Leu, p.Lys294Arg) were also identified in the rare VUS-CS >20 group (patients 191, 192, 193). In addition to the INSR variant, patient 191 had an additional variant, p.Ser83Leu, in the PIK3R1 gene, which is responsible for SHORT syndrome characterized by low birthweight and insulin resistance after puberty. This patient was born small-for-gestational-age, with a birthweight of 2,416 g after 39 weeks of pregnancy. She presented with incidentally identified hyperglycemia at the age of 12 years. She had a maternal history of diabetes, and was lean with a BMI-SDS of -0.42. Retrospectively, her C-peptide and insulin at presentation were elevated at 3.0 nmol/L and 2413.4 pmol/L in the presence of plasma glucose at 16.1 mmol/L. Patient 192 was diagnosed with diabetes at the age of 33 years. He had a threegeneration paternal inheritance of diabetes. Clinical data at diagnosis was unavailable, but after 30 years of diabetes, his insulin secretion was diminished (increment of C-peptide after arginine loading at 0.5 nmol/L). The patient was not obese and was negative for pancreatic autoantibodies. Patient 193 developed diabetes at the age of 8 years. His BMI-SDS at diagnosis was 0.34, and his fasting insulin was not diminished at 241.7 pmol/L when plasma glucose was 5.9 mmol/L.

Finally, there were two patients, patients 198 and 199, with rare VUS-CS >20 in the *PDX1* gene. Detailed clinical data are missing for patient 198, except that the patient had a three-generation family history of early-onset diabetes, was not obese, and could be treated with metformin and sulfonylurea for at least 10 years. Patient 199 had a typical history of MODY. She was not obese and had a three-generation family history of non-obese diabetes, and with homeostatic model assessment for β -cell function at 32.0.

DISCUSSION

To the best of our knowledge, this is the most comprehensive analysis of monogenic diabetes in East Asians. Responsible P/ LP variants were identified in 46.2% of the patients, and the identification rate could be higher, as at least some of the rare VUS-CS >20 are apparently pathogenic. These figures are higher than those previously reported for East Asians^{19–21}. Possible explanations include: (i) a higher fraction of pediatric patients in the present study; (ii) most referral sources being diabetologists; and (iii) the study design with a broader range of target genes. As the incidence of type 2 diabetes increases with age, in the pediatric age group, the chances of identifying monogenic diabetes would be higher, especially by diabetologists. Also, with a broader range of target genes, the variant identification rate would be higher compared with studies focusing only on common MODY genes.

Limiting to the P/LP variants, GCK-MODY was the most common, followed by HNF1A-, HNF4A- and HNF1B-MODY

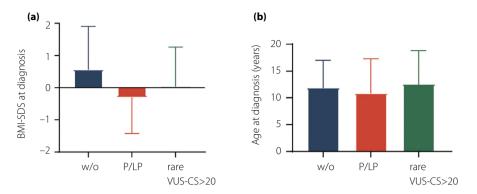
 Table 3 | Summary of the clinical features of patients without pathogenic/likely pathogenic or rare variants of uncertain significance of a population frequency <0.001 and the Combined Annotation Dependent Depletion score >20

Patient No.			A	t diagnosis			Inheritance
	Sex	Age	HbA1c	Height	Weight	BMI-SDS	
200	М	6	8.2	NA	NA	NA	NO
201	М	12	NA	153.8	64.6	1.93	NA
202	М	5	5.8	108.1	18.1	0.11	Р
203	М	13	10.9	161.4	57.05	0.88	Μ
204	М	1	5.8	89	11.6	-1.58	NO
205	F	10	7.5	NA	NA	NA	Μ
206	F	15	8.9	144.8	NA	NA	Р
207	М	10	12.7	147	34	-0.65	NO
208	F	10	7.4	151.2	28.2	-3.24	Μ
209	М	6	9.3	NA	NA	NA	NO
210	М	14	7.5	165.7	59.4	0.63	NO
211	F	14	9.6	148.2	52.5	1.11	Μ
212	F	32	NA	160.6	60	0.295	NO
213	F	13	7.4	145.7	54.4	1.66	Μ
214	F	10	6.4	139	35	0.4	Μ
215	М	14	5.1	165.5	54	0.01	NO
216	М	15	NA	155	46.2	-0.4	Μ
217	M	15	15.6	NA	58	NA	P
218	F	6	NA	109.1	16.8	-0.92	M
219	F	14	15.8	143.7	33	-2.04	NO
220	М	9	7.14	137.2	31.8	0.21	Μ
221	F	10	8.7	NA	NA	NA	Р
222	F	NA	NA	NA	NA	NA	NA
223	F	5	5.8	105.1	18	0.59	M
224	F	10	11.5	145.1	53.3	2.08	NO
225	F	10	10.5	144.7	43.2	1.17	NO
226	F	11	5.3	151.5	38.3	-0.52	M
227	F	8	10.7	134	23.5	-1.96	NO
228	F	1	NA	80	11	1.12	NO
229	F	9	NA	NA	NA	NA	M
230	F	14	14.1	159	70	1.9	NO
231	F	NA	NA	NA	NA	NA	NA
232	M	8	5.1	126.2	26.6	0.35	M
233	M	3	5.4	93.5	13.9	0.43	NO
234	M	1	8.5	72	11.8	3.98	M
235	F	13	11	NA	NA	NA	NO
236	F	2	9.9	NA	NA	NA	P
237	M	14	10.9	171	52	-0.81	M
238	F	9	NA	NA	NA	NA	M
239	M	9	10.1	140	44.3	1.69	NO
240	F	11	10.7	143.3	36	-0.14	M
241	F	10	8.7	142	42	1.22	BI
242	F	23	5.9	156.2	44.9	-0.76	BI
243	F	20	6	154.8	45	-0.65	NO
244	F	11	6.8	138.5	34.7	0.09	P
245	M	12	9.1	158.7	51.3	0.68	NO
246	F	20	8	NA	NA	NA	P
240	F	20 11	0 10.7	144	41.1	0.69	r NO
247	F	10	6	144	58.5	2.22	M
240 249	г М	NA	NA	NA	NA	NA	NA
250	F	12	NA	NA	NA	NA	BI

J Diabetes Investig Vol. 14 No. 3 March 2023

Table 3. (Continued)

Patient No.	At diagnosis							
	Sex	Age	HbA1c	Height	Weight	BMI-SDS		
251	F	14	NA	148.1	69.2	2.47	М	
252	F	11	12.7	143.6	39.95	0.55	Μ	
253	Μ	12	5.5	NA	NA	NA	Μ	
254	Μ	23	9.9	NA	NA	NA	Р	
255	NA	13	8.3	NA	NA	NA	Р	
256	NA	19	6.8	NA	NA	NA	NA	
257	NA	12	8.1	NA	NA	NA	Р	
258	NA	11	7.3	NA	NA	NA	Μ	
259	М	12	6	155	58	1.5	Μ	
260	F	14	5.4	148.8	41.3	-0.62	NO	
261	F	40	NA	NA	NA	NA	Μ	
262	F	13	6.4	153	60.2	1.68	NA	
263	F	12	8.2	155.5	70.9	2.42	Μ	
264	F	11	11.4	159.8	81.9	2.8	Μ	
265	F	12	9.3	147.2	42	0.25	M	
266	F	10	NA	136.9	32.8	0.16	M	
267	F	6	6.7	104	17.7	0.5	P	
268	M	13	10.1	171.8	85	2	NO	
269	F	11	7.4	149.4	58.2	2.1	M	
270	F	NA	NA	NA	NA	NA	NA	
271	M	12	11.2	169	70.6	1.59	P	
272	F	12	8.8	145.6	52.5	1.48	M	
273	F	8	5.4	134.1	43.5	2.17	M	
274	M	8 12	14.8	171	43.5 86	2.17	NO	
274	F	12	11.3	157	54		BI	
						1.26		
276	M F	20	6.6	169	79.5	1.64	M	
277		13	8.7	151.7	47.1	0.32	BI	
278	M	11	NA	NA	NA	NA	M	
279	F	7	9.5	132.6	33.2	1.3	M	
280	M	11	13.5	151	42.4	0.36	M	
281	F	12	13.2	149.3	47.9	0.91	NA	
282	F	NA	NA	NA	NA	NA	NA	
283	F	NA	NA	144.5	28.2	NA	M	
284	F	4	13	102.1	14.7	-0.93	P	
285	F	10	NA	135.2	42.7	1.76	BI	
286	М	14	6.2	157.5	53.1	0.56	NO	
287	М	11	9.2	140.5	39.8	0.84	Р	
288	Μ	11	12	161	86.5	2.4	Р	
289	F	11	6.6	125.6	23.1	-1.68	Μ	
290	F	12	10	146.8	39	-0.25	Μ	
291	М	11	12	148.7	45	0.89	М	
292	М	11	10.9	142.4	40.8	0.83	Р	
293	М	11	8	NA	NA	NA	Р	
294	М	8	5.5	131.6	32.8	1.15	М	
295	F	11	9	142	32	-0.94	Μ	
296	М	12	12.4	168.2	113.3	2.71	Р	
297	F	10	9.8	145.8	42.4	0.98	Μ	
298	Μ	14	6	NA	NA	NA	Μ	
299	М	14	11.9	157.6	49.1	0.03	Μ	
300	М	12	13.1	152	60	1.77	Р	
301	Μ	12	12.8	170	65.4	1.22	NO	
302	F	4	13.7	105.1	16.7	-0.11	NO	


Table 3. (Continued)

Patient No.	At diagnosis							
	Sex	Age	HbA1c	Height	Weight	BMI-SDS		
303	М	14	10.8	164	89	2.41	Р	
304	F	11	9.6	149.2	43.8	0.65	Μ	
305	F	NA	NA	NA	NA	NA	NA	
306	М	12	15.1	149	35	-1.31	Р	
307	F	7	12	127	24.8	-0.15	Р	
308	F	NA	NA	NA	NA	NA	NA	
309	F	14	16.1	167.5	42	-2.73	NO	
310	М	13	14.1	163.5	57.2	0.75	NO	
311	F	12	7.6	146.9	44.1	0.6	NO	
312	М	14	7.7	168.7	57.8	0.22	Р	
313	М	12	9	164.2	61.6	1.27	Р	
314	F	NA	NA	NA	NA	NA	NA	
315	F	NA	NA	NA	NA	NA	NA	
316	М	9	6.3	135.3	36	1.13	NO	
317	М	NA	NA	NA	NA	NA	NA	
318	F	NA	NA	NA	NA	NA	NA	
319	F	10	9.6	147.9	55.8	2.11	Μ	
320	F	15	12	171.6	55.4	-0.76	Р	
321	F	14	8.7	160	50.2	-0.22	Р	
322	F	15	5	158.7	50.6	-0.22	Р	
323	F	15	10.4	151	55.2	1.07	NP	
324	F	1	11.1	77	7.3	-3.03	Р	
325	F	13	NA	NA	NA	NA	NA	
326	М	13	6.1	143	32	-1.74	Р	
327	F	13	NA	159.7	59.6	1.16	Μ	
328	М	NA	NA	NA	NA	NA	NA	
329	F	10	10	NA	NA	NA	NO	
330	F	14	12.3	158	52	0.22	Μ	
331	F	12	7.6	157.1	55.3	1.15	Μ	
332	F	11	6.8	142.9	72.2	3.07	Μ	
333	М	8	7.5	118.6	19.2	-1.67	Р	
334	М	8	9.8	127	27.8	0.58	Р	
335	F	29	9.4	170	NA	NA	BI	
336	F	12	9.5	143.6	36.7	-0.38	M	
337	F	13	16.6	156.4	43.5	-0.73	M	
338	F	17	NA	NA	NA	NA	M	
339	F	NA	NA	NA	NA	NA	NA	
340	NA	15	11.4	NA	NA	NA	M	

These patients were characterized by female dominance with the female (F)/male (M) ratio at 1.70, the mean age of diagnosis at 11.8 years, the mean standard deviation score of body mass index (BMI-SDS) at 0.55 and the mean hemoglobin A1c (HbA1c) at 9.34%. M, maternal; NA, not available; NO, no affected parents; P, pathogenic.

(Figure 2). This is in line with the recent large-scale studies^{21,34–36}, and is not surprising considering the high population prevalence (estimated at 1.1 in 1000) of deleterious *GCK* variants in the general population³². When mildly hyperglycemic patients are included as in pediatric studies, *GCK* variants are likely to be the most common, whereas *HNF1A* variants tend to be more common in studies leaning toward symptomatic patients³⁷. As few pathogenic variants with a strong founder effect have been identified in MODY genes, the true incidence of P/LP variants in MODY genes should be similar across different ethnicities if very large, population-based studies linking the genotypes and the serial measurements of blood glucose are obtained.

In addition to the P/LP variants, we tried to identify VUS variants that might be pathogenic as rare VUS-CS >20 by using the population frequency and the CADD score of the variants. For missense variants of rare MODY genes, it is often difficult to reach the P/LP status of the ACMG/AMP guidelines²⁷,

Figure 3 | (a). Comparison of the standard deviation scores of body mass indices (BMI-SDS) at diagnosis of patients with pathogenic/likely pathogenic (P/LP) variants, with VUS variants of a population frequency < 0.001 and A Combined Annotation Dependent Depletion score > 20 (rare VUS-CS > 20), and those without these variants (w/o). For each category, data on BMI-SDS at diagnosis were available for 127, 30 and 100 patients, respectively. The mean and the standard deviations are shown. (b). Comparison of the ages of patients at diagnosis with pathogenic/likely pathogenic (P/LP) variants, VUS variants of a population frequency < 0.001 and the CADD score > 20 (rare VUS-CS > 20), and those without these variants (w/o). For each category, data on age at diagnosis were available for 127, 30 and 100 patients, respectively. The gory, data on age at diagnosis were available for 156, 43 and 127 patients, respectively. The mean and the standard deviations are shown.

unless extensive segregation studies or *in vitro* functional studies are additionally carried out. In this group of variants, nearly half of them were K_{ATP} channel genes, *ABCC8* or *KCNJ11*. Combined with the P/LP patients, variants in the K_{ATP} channel genes were identified in 25 patients, and 11 of them were listed in the HGMD database and seven were variants of the amino acids for which different alterations have already been reported (patients 159, 164, 172, 179, 186, 190, 195).

Interestingly, of the previously reported K_{ATP} channel variants, four are listed in association with hyperinsulinemic hypoglycemia in the HGMD database. Described clinical phenotypes of patients with these variants (p.Arg1486Lys³⁸, p.Gly1378Ser³⁹, p.Asp1030Asn⁴⁰, p.Arg1420His³³) are compatible with the diagnosis of congenital hyperinsulinism, and for p.Gly1378Ser and p.Arg1420His, *in vitro* evidence of the loss of function has been reported^{41,42}. These findings could simply be the incidental identification of asymptomatic carriers of loss-of-function, hyperinsulinemic variants not related to diabetes. However, at least two of our patients (patients 161, 162) presented with a history of hyperinsulinemic hypoglycemia evolving into diabetes. Neonatal macrosomia with apneic spells found in patient 170 is also typical of congenital hyperinsulinism, although hypoglycemia was not documented for this patient.

Cases of K_{ATP} channel congenital hyperinsulinism evolving into diabetes have been reported repeatedly^{43–46}. This is likely to be a different category of K_{ATP} channel MODY distinct from the patients with activating variants. As the treatment strategy for this group of patients could be different from that for the patients with activating mutations, recognition of this group of patients might be important for the management of diabetes. For example, Ovsyannikova *et al.*⁴⁷ reported a patient with a p.Ala1457Thr variant in the *ABCC8* gene with diabetes. This variant is known to be causative of hyperinsulinemic hypoglycemia^{48,49}. Unlike neonatal diabetes caused by *ABCC8* variants, switching from insulin to sulfonylurea did not work well, with the extensive glucose excursion requiring an add-on treatment by an sodium–glucose cotransporter 2 inhibitor.

Another interesting finding in the present study was the identification of variants of the INSR gene, typically causing type A insulin resistance, in patients with suspected MODY; one in the P/LP group (patient 148) and three in the patients with rare VUS-CS >20 group (patients 191-193). Patient 148 was a 29.5% mosaic and presented with acute diabetes with diminished insulin secretion. The role of her insulin variant in the development of diabetes thus remains unknown. On the contrary, two patients with rare VUS-CS >20 INSR variants showed evidence of insulin resistance. Patient 191 presented with diabetes associated with elevated endogenous insulin and had an additional variant of the PIK3R1 gene. As variants in the INSR and PIK3R1 genes both cause insulin-resistant diabetes, it is unclear which of these variants is more responsible for her diabetes, although the low birthweight for gestational age is more consistent with the presentation of PIK3R1 abnormality. Patient 193 also presented with mildly elevated fasting serum insulin (241.7 pmol/L) at diagnosis. The fact that he was not obese and had dominantly inherited diabetes made him a candidate for MODY. In our national survey in Japan, fasting serum insulin of genetically confirmed type A resistance could be as low as 243.1 pmol/ L^{50} . Insulin resistance syndrome, thus, needs to be included in the gene panel.

Finally, we identified two patients (patients 198; 199) with variants in the *PDX1* gene. As the pathogenicity of missense variants in this gene is difficult to interpret because of a large number of benign rare variants⁵¹, the pathogenicity of these variants was not clear at the moment.

We believe the high diagnostic yield and its possible clinical implications support the cost-effectiveness of including multigene analysis of monogenic diabetes in the national health insurance system. The strength of the present study was in the comprehensiveness of target genes and a large number of patients with suspected MODY. There were, however, several weaknesses in the present study. First, because of a lack of confirmatory studies, many variants remained in the category of VUS. To identify true pathogenic variants more efficiently, we generated a category of rare VUS-CS >20 in this study, but still, only a fraction of these appears responsible for the patients' diabetes. Second, the number of genes covered in this study might not be large enough. For example, many genes for syndromic diabetes were not included in this panel in the hope that those patients might be clinically diagnosed otherwise. Third, even for the genes included in this study, the detection of variants might not be complete. The MLPA analysis was carried out only for common MODY genes, and deletions/duplications in other genes were not examined. Detection of mitochondrial m.3243A > G might also be incomplete, given the heteroplasmic nature of mitochondrial variants. Larger-scale panel sequencing, whole-exome sequencing or even whole-genome sequencing combined with the more sensitive detection of copy number variation might be required to address these sensitivity problems, although the chances of capturing benign variants would be increased by scaling up the number of target genes.

CONCLUSIONS

By using the comprehensive targeted gene panel analysis, causative variants could be identified in 157 (46.2%) of 340 realworld Japanese patients with suspected MODY. The identification rate could be higher, as at least some of the 44 rare VUS-CS >20 appear to be truly causative. In addition to common MODY genes, variants in the K_{ATP}-channel genes were frequently identified, and a proportion of them was with inactivating variants, probably representing a different category of K_{ATP}-channel MODY. An expanded multigene panel including genes of insulin resistance should be used for this population.

ACKNOWLEDGMENTS

This work was supported by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (18 K07895).

DISCLOSURE

The authors declare no conflict of interest.

Approval of the research protocol: The study protocol was approved by the institutional review board of Osaka City General Hospital (No. 742).

Informed consent: Written informed consent was obtained either from the patient or their legal guardians.

Registry and the registration no. of the study/trial: N/A. Animal studies: N/A.

REFERENCES

1. Pang L, Colclough KC, Shepherd MH, *et al.* Improvements in awareness and testing have led to a threefold increase over 10 years in the identification of monogenic diabetes in the U.K. *Diabetes Care* 2022; 45: 642–649.

- 2. Hattersley AT, Greeley SAW, Polak M, *et al.* ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. *Pediatr Diabetes* 2018; 10(Suppl 27): 47–63.
- 3. Zhang H, Colclough K, Gloyn AL, *et al.* Monogenic diabetes: a gateway to precision medicine in diabetes. *J Clin Invest* 2021; 131: e142244.
- 4. Broome DT, Pantalone KM, Kashyap SR, *et al*. Approach to the patient with MODY-monogenic diabetes. *J Clin Endocrinol Metab* 2021; 106: 237–250.
- 5. Pearson ER, Starkey BJ, Powell RJ, *et al.* Genetic cause of hyperglycaemia and response to treatment in diabetes. *Lancet* 2003; 362: 1275–1281.
- 6. Pearson ER, Pruhova S, Tack CJ, *et al.* Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. *Diabetologia* 2005; 48: 878–885.
- 7. Pearson ER, Flechtner I, Njølstad PR, *et al.* Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. *N Engl J Med* 2006; 355: 467–477.
- Steele AM, Shields BM, Wensley KJ, *et al.* Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. *JAMA* 2014; 311: 279–286.
- 9. Bonnefond A, Semple RK. Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. *Diabetologia* 2022; 65: 1782–1795.
- Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? *Diabetologia* 2010; 53: 2504–2508.
- Kropff J, Selwood MP, McCarthy MI, *et al.* Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire. *UK Diabetologia* 2011; 54: 1261–1263.
- 12. Pihoker C, Gilliam LK, Ellard S, *et al.* Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for diabetes in youth. *J Clin Endocrinol Metab* 2013; 98: 4055–4062.
- 13. Kleinberger JW, Pollin TI. Undiagnosed MODY: time for action. *Curr Diab Rep* 2015; 15: 110.
- 14. Bansal V, Gassenhuber J, Phillips T, *et al.* Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals. *BMC Med* 2017; 15: 213.
- 15. Stanik J, Dusatkova P, Cinek O, *et al.* De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. *Diabetologia* 2014; 57: 480–484.
- Kleinberger JW, Copeland KC, Gandica RG, *et al.* Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. *Genet Med* 2018; 20: 583–590.

- 17. Ma RC, Chan JC. Type 2 diabetes in east Asians: similarities and differences with populations in Europe and the United States. *Ann N Y Acad Sci* 2013; 1281: 64–91.
- 18. Okura T, Nakamura R, Fujioka Y, *et al.* Body mass index ≥23 is a risk factor for insulin resistance and diabetes in Japanese people: a brief report. *PLoS One* 2018; 13: e0201052.
- 19. Yang YS, Kwak SH, Park KS. Update on monogenic diabetes in Korea. *Diabetes Metab J* 2020; 44: 627–639.
- 20. Liang H, Zhang Y, Li M, *et al.* Recognition of maturity-onset diabetes of the young in China. *J Diabetes Investig* 2021; 12: 501–509.
- 21. Park SS, Jang SS, Ahn CH, *et al.* Identifying pathogenic variants of monogenic diabetes using targeted panel sequencing in an east Asian population. *J Clin Endocrinol Metab* 2019; 104: 4188–4198.
- 22. Yorifuji T, Fujimaru R, Hosokawa Y, *et al.* Comprehensive molecular analysis of Japanese patients with pediatric-onset MODY-type diabetes mellitus. *Pediatr Diabetes* 2012; 13: 26–32.
- 23. Yorifuji T, Matsubara K, Sakakibara A, *et al.* Abnormalities in chromosome 6q24 as a cause of early-onset, non-obese, non-autoimmune diabetes mellitus without history of neonatal diabetes. *Diabet Med* 2015; 32: 963–967.
- 24. Kawakita R, Hosokawa Y, Fujimaru R, *et al.* Molecular and clinical characterization of glucokinase maturity-onset diabetes of the young (GCK-MODY) in Japanese patients. *Diabet Med* 2014; 31: 1357–1362.
- 25. Yorifuji T, Kawai M, Momoi T, *et al.* Nephropathy and growth hormone deficiency in a patient with mitochondrial tRNA(Leu(UUR)) mutation. *J Med Genet* 1996; 33: 621–622.
- 26. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24–26.
- 27. Richards S, Aziz N, Bale S, *et al.* Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 2015; 17: 405–424.
- 28. Li Q, Wang K. InterVar: Clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. *Am J Hum Genet* 2017; 100: 267–280.
- 29. Patel KA, Kettunen J, Laakso M, *et al.* Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. *Nat Commun* 2017; 8: 888.
- 30. Bonnycastle LL, Chines PS, Hara T, *et al.* Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. *Diabetes* 2013; 62: 3943–3950.
- Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet* 2014; 46: 310–315.
- 32. Chakera AJ, Spyer G, Vincent N, *et al.* The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the

Atlantic diabetes in pregnancy cohort. *Diabetes Care* 2014; 37: 1230–1236.

- 33. Saito-Hakoda A, Yorifuji T, Kanno J, *et al.* Nateglinide is effective for diabetes mellitus with reactive hypoglycemia in a child with a compound heterozygous ABCC8 mutation. *Clin Ped Endocrinol* 2012; 21: 45–52.
- 34. Breidbart E, Deng L, Lanzano P, *et al.* Frequency and characterization of mutations in genes in a large cohort of patients referred to MODY registry. *J Pediatr Endocrinol Metab* 2021; 34: 633–638.
- 35. Zmysłowska A, Jakiel P, Gadzalska K, *et al.* Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. *Diabetes Res Clin Pract* 2022; 183: 109154.
- Rafique I, Mir A, Saqib MAN, et al. Causal variants in maturity onset diabetes of the young (MODY) - a systematic review. BMC Endocr Disord 2021; 21: 223.
- 37. Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. *J Diabetes Investig* 2018; 9: 704–712.
- 38. Ohkubo K, Nagashima M, Naito Y, *et al.* Genotypes of the pancreatic beta-cell K-ATP channel and clinical phenotypes of Japanese patients with persistent hyperinsulinaemic hypoglycaemia of infancy. *Clin Endocrinol (Oxf)* 2005; 62: 458–465.
- 39. Dung VC, Liem NT, Thao BP, *et al.* Molecular genetics and phenotype of 26 Vietnamese patients with congenital hyperinsulinism. *Int J Pediatr Endocrinol* 2013; 2013(Suppl 1): P179.
- 40. Arya VB, Guemes M, Nessa A, *et al.* Clinical and histological heterogeneity of congenital hyperinsulinism due to paternally inherited heterozygous ABCC8/KCNJ11 mutations. *Eur J Endocrinol* 2014; 171: 685–695.
- 41. Saint-Martin C, Zhou Q, Martin GM, *et al.* Monoallelic ABCC8 mutations are a common cause of diazoxide-unresponsive diffuse form of congenital hyperinsulinism. *Clin Genet* 2015; 87: 448–454.
- Baier LJ, Muller YL, Remedi MS, et al. ABCC8 R1420H loss-offunction variant in a southwest American Indian community: association with increased birth weight and doubled risk of type 2 diabetes. *Diabetes* 2015; 64: 4322– 4332.
- 43. Huopio H, Reimann F, Ashfield R, *et al.* Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. *J Clin Invest* 2000; 106: 897–906.
- 44. Işık E, Demirbilek H, Houghton JA, *et al.* Congenital Hyperinsulinism and evolution to sulfonylurea responsive diabetes later in life due to a novel homozygous p.L171F ABCC8 mutation. *J Clin Res Pediatr Endocrinol* 2019; 11: 82– 87.
- 45. Matsutani N, Furuta H, Matsuno S, *et al.* Identification of a compound heterozygous inactivating ABCC8 gene mutation responsible for young-onset diabetes with exome sequencing. *J Diabetes Investig* 2020; 11: 333–336.

- 46. Karatojima M, Furuta H, Matsutani N, *et al.* A family in which people with a heterozygous ABCC8 gene mutation (p.Lys1385Gln) have progressed from hyperinsulinemic hypoglycemia to hyperglycemia. *J Diabetes* 2020; 12: 21–24.
- 47. Ovsyannikova AK, Rymar OD, Shakhtshneider EV, *et al.* Diabetes mellitus associated with the mutation of the ABCC8 gene (MODY 12): features of clinical course and therapy. *Diabetes Mellitus* 2019; 22: 88–94.
- 48. Huopio H, Jääskeläinen J, Komulainen J, *et al.* Acute insulin response tests for the differential diagnosis of congenital hyperinsulinism. *J Clin Endocrinol Metab* 2002; 87: 4502–4507.
- Macmullen CM, Zhou Q, Snider KE, *et al.* Diazoxideunresponsive congenital hyperinsulinism in children with dominant mutations of the β-cell sulfonylurea receptor SUR1. *Diabetes* 2011; 60: 1797–1804.
- 50. Takeuchi T, Ishigaki Y, Hirota Y, *et al.* Clinical characteristics of insulin resistance syndromes: a nationwide survey in Japan. *J Diabetes Investig* 2020; 11: 603–616.
- 51. Edghill EL, Khamis A, Weedon MN, *et al.* Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low-frequency coding variant, but these variants are not associated with type 2 diabetes. *Diabet Med* 2011; 28: 681–684.