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Germany, 6 Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology,

Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial

Hospital, the Thai Red Cross Society, Bangkok, Thailand, 7 Department of Zoology, Faculty of Science,

Kasetsart University, Bangkok, Thailand, 8 Omics Center for Agriculture, Bioresources, Food, and Health,

Kasetsart University (OmiKU), Bangkok, Thailand

* wanwipa.v@ku.ac.th

Abstract

Investigating metabolic functional capability of a human gut microbiome enables the quanti-

fication of microbiome changes, which can cause a phenotypic change of host physiology

and disease. One possible way to estimate the functional capability of a microbial commu-

nity is through inferring metagenomic content from 16S rRNA gene sequences. Genome-

scale models (GEMs) can be used as scaffold for functional estimation analysis at a system-

atic level, however up to date, there is no integrative toolbox based on GEMs for uncovering

metabolic functions. Here, we developed the MetGEMs (metagenome-scale models) tool-

box, an open-source application for inferring metabolic functions from 16S rRNA gene

sequences to facilitate the study of the human gut microbiome by the wider scientific com-

munity. The developed toolbox was validated using shotgun metagenomic data and shown

to be superior in predicting functional composition in human clinical samples compared to

existing state-of-the-art tools. Therefore, the MetGEMs toolbox was subsequently applied

for annotating putative enzyme functions and metabolic routes related in human disease

using atopic dermatitis as a case study.

Author summary

Examining the metabolic function capability of microbiome is an important step in

understanding the microbe-microbe and microbe-host communication. In this study, we
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developed MetGEMs (metagenome-scale models) toolbox, a strategic approach to infer

metabolic functions from 16S rRNA gene sequences with overall aiming at annotating

metabolic functions in the human gut microbiome. During the development, MetGEMs

toolbox was tested and validated with shotgun metagenomic data. At the end, we used our

toolbox to identify putative enzyme functions and metabolic routes associated to atopic

dermatitis from the Thailand Pediatric Allergy Research Cohort. This work highlights the

importance of metagenome-scale models as crucial framework for uncovering metabolic

functions and routes of human gut microbiome.

This is a PLOS Computational Biology Methods paper.

Introduction

Microbial community and diversity in human gut have demonstrated their effects on both

health and disease [1–3]. Up to date, the gut microbiome studies through metagenomic analy-

sis focus on finding a relationship between specific groups of bacteria and host’s physiology [2,

4–6], as well as their functional interactions. Shotgun metagenomic sequencing is a key driving

force for providing information about both taxonomic and functional gut diversities. It is used

for the direct quantification of the functional profile in microbiome samples by directed

sequencing all microbial DNA from samples [7, 8], nonetheless this approach is still limited to

small-scale studies due to high cost and computational complexity. Alternatively, even though

16S rRNA gene sequencing approach does not sequence a specific functional gene directly, an

inference of availability of specific genes and their functional role can be drawn. PICRUSt [9]

was the first functional predictor to estimate potential functions in the microbial communities

using sequenced 16S rRNA gene data integrated with draft microbial genomes from public

databases. In addition to PICRUSt, more functional predictors were recently developed under

the similar concept, such as PICRUSt2 [10], Tax4fun2 [11], Piphillin [12], CowPI [13], PanFP

[14], PAPRICA [15], and BUGBASE [16]. These functional predictors took leverage on 16S

rRNA gene sequences integrated with the draft microbial genomes where the automatic

genome annotation process was usually used. It has been shown that the quality of reference

genome and annotation has an impact on the predictive performance [11, 13], due to errors in

the draft genomes, such as missing coding regions and ambiguous or false annotation [17–19].

With the advancement in systems biology, genome-scale models (GEMs) of human gut bacte-

ria were reconstructed and stored in AGORA collections [20]. Recently, AGORA collections

have been employed to investigate the metabolic reactions of gut microbiome across different

studies [20–24]. However, there is no toolbox which has widespread and reproducible applica-

tion for inferring metabolic functions from 16S rRNA gene sequences using GEMs as

scaffolds.

Therefore, the aim of this study is to develop MetGEMs (metagenome-scale models) tool-

box, an open-source application for inferring metabolic functions from 16S rRNA gene

sequences with ultimate goal at annotating metabolic functions of human gut microbiome.

MetGEMs toolbox was firstly developed by constructing MetGEMs networks, a generalized

genome-scale model, using the AGORA collections [20] and the Human Microbiome Project

(HMP) [25]. We then built and tested four different MetGEMs models to find the best compu-

tational method at metabolic function prediction. The MetGEMs toolbox’s prediction capabil-

ity was validated with the corresponding data derived from shotgun metagenomic sequencing
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and PICRUSt2. Here, PICRUSt2 was selected since it has capabilities to predict metabolic

functional potential of a community based on marker gene sequencing profiles, particularly it

shows well-prediction performance on HMP data [10]. Subsequently, the MetGEMs

toolbox was used for annotating putative enzyme functions related to allergic diseases i.e.,

atopic dermatitis from our Thailand Pediatric Allergy Research Cohort. The developed Met-

GEMs toolbox serves as an integrative work for the metabolic functional analysis of microbial

communities of the human gut microbiome using 16S rRNA gene sequences.

Results and discussion

The MetGEMs toolbox was developed with the most up-to-date GEMs to infer metagenomic

content from 16S rRNA gene sequences with overall focus on annotating metabolic function

of human gut microbiome (Fig 1). This was done by leverage the gene content in GEMs and

extrapolated with 16S rRNA gene sequences. MetGEMs toolbox, user’s guide and sample data-

set are publicly available for academic use at https://github.com/yumyai/MetGEMs.

The assessed and evaluated GEMs

AGORA collections [20] containing 818 GEMs from human gut microbiome were initially

collected. These 818 GEMs totally covered 1,470 KEGG Orthology (KO) identifiers (IDs) and

983 EC numbers across 226 genera and 690 species (S1 Spreadsheet). GEMs in the context of

KO IDs and EC numbers across the taxonomic group (class) level were highly correlated with

Pearson’s correlation coefficient (PCC) of 0.99 (see Figs 2A and S1). Notably, the taxonomic-

related bacteria at some classes tend to have similar functions, i.e. KO IDs and EC numbers,

such as Coriobacteriia (549±65 KO IDs and 392±48 EC numbers) and Epsilonproteobacteria

(583±40 KO IDs and 383±40 EC numbers) (Fig 2B). However, a different metabolic diversity

exhibited at other classes, such as Bacilli and Actinobacteria, which have KO IDs of 707±161

and 693±132, as well as EC numbers of 458±107 and 458±95, respectively (Fig 2B). The high

diversities of KO IDs and EC numbers identified in the example classes of Bacilli and Actino-

bacteria in GEMs suggest that functional annotation at the high level of taxonomic groups

(e.g., class, or even higher levels) might produce spurious predictions on the metabolic capac-

ity. With this in mind, we developed MetGEMs network for genus-based metabolic functional

annotation as shown below.

The constructed MetGEMs network as reference database towards

implementing MetGEMs toolbox

The MetGEMs network was designed as a reference database for inferring metabolic func-

tional abundance of a certain taxonomic organism and/or group. Thus, a preliminary con-

struction of MetGEMs network by KO IDs and EC numbers together with biochemical

reactions at a certain genus was performed. To construct the MetGEMs network, four different

computational approaches were applied, namely 1) Pan-Function, 2) Core-Function, 3) Pan-

Weight-Function, and 4) Core-Weight-Function. Pan-Function considers all possible meta-

bolic functions of every organism while Core-Function concerns only common metabolic

functions of every organism. For Pan-Weight- and Core-Weight-Function, the taxonomic

weight from HMP’s gut microbiome was considered and combined with Pan- and Core-Func-

tion (See Materials and Methods). Each approach used KO IDs and EC numbers existing in

GEMs together with genome sequences related to GEMs for the MetGEMs network construc-

tion. Among these four approaches, as expected the constructed MetGEMs networks are com-

parable in context of coverage of KO IDs and EC numbers as listed in Table 1. Pan-Function

has the highest coverage of 1,470 KO IDs and 983 ECs when compared to the others. This is
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possibly because Pan-Function considered all possible metabolic functions of every organism

taking into the constructed MetGEMs network and therefore it contained the greatest number

of metabolic functions. In contrast, Core-Function has the lowest coverage of 1,459 KO IDs

and 968 EC numbers when compared to the others. This is because Core-Function captured

only overlapped metabolic functions into the constructed MetGEMs network and these

Fig 1. A schematic workflow of a development MetGEMs toolbox. The computational framework for the developed MetGEMs toolbox is

divided into five different sections, namely 1) the assessed and evaluated GEMs, 2) the constructed MetGEMs network as reference database

towards implementing MetGEMs toolbox, 3) the validated MetGEMs toolbox’s prediction capability with shotgun metagenomic sequencing

data, 4) using MetGEMs toolbox for assigning enzyme functions and relevant functional categories related human gut microbiome, and 5)

annotating putative enzyme functions related in allergic disease using the MetGEMs toolbox as described in following.

https://doi.org/10.1371/journal.pcbi.1008487.g001
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resulted in the smallest number of identified metabolic functions. In addition to Pan- and

Core-Function, MetGEMs networks were also constructed by considering the taxonomic

weight from HMP’s gut microbiome. Indeed, Pan-Weight-Function and Core-Weight-Func-

tion are very similar to Pan- and Core-Function, respectively (Table 1). Further comparative

analysis between Pan- and Core-Function are shown in Fig 2C. Interestingly, the Pan-Func-

tion provided very high number of KO IDs in a similar trend across different genera, while the

Core-Function captured different numbers of KO IDs across different genera. In view of

Core-Function, three genera e.g., Lactobacillus (177 KO IDs), Eubacterium (223 KO IDs) and

Clostridium (293 KO IDs) clearly showed low numbers of KO IDs than the other genera in

comparison to Pan-Function. On the other hand, Klebsiella had a high number of KO IDs

(988 KO IDs) than the other genera. These evidences suggest that Core-Function could cap-

ture distinctive metabolic functions at an individual genus (Fig 2C and S2 Spreadsheet). After

executing these four different computational approaches, consequently the four different con-

structed MetGEMs networks are achieved (Table 1). In order to further process MetGEMs net-

works, we then implemented them as reference databases in connection to other data i.e.

Amplicon Sequence Variants (ASVs) and taxonomic grouping of ASVs and 16S rRNA gene

sequences into the MetGEMs toolbox. Fig 1 demonstrates how MetGEMs toolbox is imple-

mented, whereas the full details can be seen in section of implementation of the MetGEMs

toolbox.

The validated MetGEMs toolbox’s prediction capability with shotgun

metagenomic sequencing data

After the implementation of the MetGEMs toolbox, it was then validated for its prediction

capability using shotgun metagenomic sequencing data from the HMP’s gut microbiome (S3

Spreadsheet). We initially assessed the 16S rRNA gene sequence data in all subjects which

resulted in a total of 1,762 ASVs, which covered 43 genera and 51 species of bacteria. These

ASVs were then mapped to the MetGEMs networks using the MetGEMs toolbox. The results

showed that 29 out of 43 genera and 42 out of 51 species were mapped with the MetGEMs net-

works. The MetGEMs toolbox was then further used to predict the different KO IDs and EC

numbers along with individual MetGEMs network. As shown in Table 2, the Pan-Function

predicted the largest numbers of KO IDs (1,217.0 ± 41.9) and EC numbers (837.5 ± 33.4). The

Core-Function and Core-Weight-Function predicted slightly smaller number of KO IDs and

EC numbers for 1,094.5 ± 43.8 and 747.0 ± 31.8, respectively (Table 2). These results indeed

Fig 2. A metabolic diversity of assessed most up-to-date GEMs. (A) A Pearson’s correlation analysis between KO IDs and EC numbers identified in the evaluated

818 GEMs across different taxonomic classes at a phylogenetic-tree scale. Full details of correlation analysis and goodness of fit between KO IDs and EC numbers by

scatter plot can be seen in S1 Fig. Note: In this Figure, the blue and green lines indicate the numbers of KO IDs and EC numbers, respectively. PCC stands for Pearson’s

correlation coefficient. The phylogenetic-tree scale is built from 773 genomes with coding sequences available in AGORA collections visualized by iTOL [26]. (B) A bar

graph explicates the selected taxonomic classes in context of the average numbers of KO IDs and EC numbers. (C) A bar graph illustrates a comparison of Core- and

Pan-Function computational approaches in terms of the average numbers of KO IDs across different genera.

https://doi.org/10.1371/journal.pcbi.1008487.g002

Table 1. The coverage list of KO IDs and EC numbers identified in MetGEMs networks underlying four different

computational approaches.

Computational approaches KO IDs EC numbers

Pan-Function 1,470 983

Core-Function 1,459 968

Pan-Weight-Function 1,468 980

Core-Weight-Function 1,459 968

https://doi.org/10.1371/journal.pcbi.1008487.t001
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show that the Core-Function not only could capture distinctive metabolic functions in individ-

ual genus (Fig 2C) in the MetGEMs network, but also covered all metabolic functions in the

MetGEMs toolbox (Table 2).

To further validate our MetGEMs toolbox, the above predicted results were compared with

the corresponding shotgun metagenomic sequencing data using the Spearman’s correlation

coefficient (SCC). As illustrated in Fig 3A, the results clearly show that the MetGEMs

toolbox using Core-Function achieves significantly higher performance among all predictions

(p-value <0.05). A high SCC of KO IDs (0.54) and EC numbers (0.68) were observed. It is

worth to note that EC numbers prediction has a higher Spearman’s correlation coefficient

than the KO IDs. This might be possible because the EC numbers are the standard format for

GEMs development. In addition, KO IDs are often not 1:1 matches with the EC numbers. To

further improve the performance of the MetGEMs toolbox, a taxonomic weight from the

HMP’s gut microbiome was applied. Surprisingly, as displayed in Fig 3A, the Core-Weight-

Function (0.67) and Pan-Weight-Function (0.66) show a slightly lower SCC for the EC num-

bers prediction. These results suggest that the taxonomic weight did not enhance the perfor-

mance of MetGEMs toolbox in a meaningful way. Accordingly, this result shows consistency

with Kaehler et al. [27] in which taxonomic weight did not improve a prediction performance

indeed. Nonetheless, their study supports that taxonomic weight might be considered for fur-

ther metagenomics-based analysis. Hereby, Core-Function was selected in our case study for

MetGEMs toolbox application in a following section.

When comparing the MetGEMs toolbox performance with the other functional prediction

tools e.g., PICRUSt2, the results clearly show that the MetGEMs toolbox has higher SCC than

PICRUSt2 (0.54 for EC numbers) (Fig 3A). This demonstrates that the MetGEMs

toolbox showed a very good performance at capturing metabolic functions. To estimate the

null distribution in MetGEMs toolbox for metabolic function inferences, we generated 100

permutation datasets by shuffling ASVs labels. For each permuted data, 200 samples were

drawn with replacement to be processed by MetGEMs toolbox, which were used to generate

the null distribution of the SCC (S2 Fig) from the bootstrap sampling. The result shows that

the SCC is higher than the null distribution and supports the notion that MetGEMs

toolbox performed better than random permuted data.

Using MetGEMs toolbox for assigning enzyme functions and relevant

functional categories related human gut microbiome

To apply MetGEMs toolbox, we firstly investigated the prediction capability on the presence of

enzyme functions in a form of KO IDs at different functional categories by comparing with

corresponding functions from shotgun metagenomic sequencing data. As the results, 773 out

of 998 KO IDs (77.5%) are in agreement between the MetGEMs toolbox and shotgun metage-

nomic sequencing data. This suggests that the MetGEMs toolbox could be further used for

assigning enzyme functions in the gut microbiome. As expected, the numbers of predicted KO

Table 2. The coverage list of predicted KO IDs and EC numbers identified by MetGEMs toolbox.

Computational approaches KO IDs EC numbers

Pan-Function 1,217.0 ± 41.9 837.5 ± 33.4

Core-Function 1,094.5 ± 43.8 747.0 ± 31.8

Pan-Weight-Function 1,192.5 ± 36.0 816.5 ± 26.9

Core-Weight-Function 1,094.5 ± 43.8 747.0 ± 31.8

Note: The median ± SD of predicted functions in context of KO IDs and EC numbers.

https://doi.org/10.1371/journal.pcbi.1008487.t002
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Fig 3. Validated results of MetGEMs toolbox and its prediction capability for metabolic function inferences. (A) A Spearman’s

correlation coefficient (SCC) graph between MetGEMs toolbox’s predicted results compared with shotgun metagenomic results of

corresponding samples. Note: A correlation coefficient was analyzed for both predicted KO IDs and EC numbers with 61 selected samples.

(B) A horizontal bar chart of predicted KO IDs and functionally metabolic categorized by MetGEMs toolbox.

https://doi.org/10.1371/journal.pcbi.1008487.g003
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IDs were mostly assigned to three key functional categories related to the human gut micro-

biome (Fig 3B), such as carbohydrate metabolism, amino acid metabolism, and metabolism of

cofactors and vitamins [28–30].

Annotating putative enzyme functions related in allergic disease using the

MetGEMs toolbox

Investigating the association between the abundance of enzymes from bacterial communities

and related diseases is one of the most important goals of microbiome studies [31, 32]. Here,

the MetGEMs toolbox with Core-Function was used to detect differentially abundant enzyme

functions between healthy and disease groups. In our case study, we firstly profiled 60 infants

(39 healthy samples, “controls”) and 21 atopic dermatitis samples from subjects of 9 and 19

months infants (S4 Spreadsheet). Afterwards, the 16S rRNA gene sequences were analyzed for

identifying significant microbial features (See Materials and Methods). Taxonomic profiles of

both healthy and atopic dermatitis samples showed a high number of Lachnospiraceae and

Bifidobacteriaceae (S3 Fig) which is a consistent pattern for Asian children [33]. Subsequently,

we used the MetGEMs toolbox to the ASVs abundances and the taxonomic profiles to predict

the enzyme functions in the context of KO IDs and EC numbers. The enzyme functions were

finally examined by their overall abundance (S4 Spreadsheet). As shown in Fig 4A and 4B, the

top five hits of KO IDs and EC numbers are significantly different between healthy and atopic

dermatitis samples. We found triosephosphate isomerase (K01803), undecaprenyl-diphospha-

tase (K06153), ribulose-phosphate 3-epimerase (K01783) to be significantly higher abundance

in atopic dermatitis than healthy samples (Wilcoxon rank-sum test p-value <0.01). Consis-

tently, undecaprenyl-diphosphate phosphatase (EC: 3.6.1.27), triose-phosphate isomerase (EC:

5.1.3.1), aspartate carbamoyltransferase (EC: 2.1.3.2), amidophosphoribosyltransferase (EC:

2.4.2.14), triose-phosphate isomerase (EC: 5.3.1.1) were also found to be significantly higher in

abundance in atopic dermatitis than healthy samples. When using the MetGEMs toolbox for

predicting the difference in metabolic routes between atopic dermatitis and healthy samples,

we annotated top five hits of metabolic routes as illustrated in Fig 4C. We identified L-arginine

biosynthesis III (via N-acetyl-L-citrulline) (PWY-5154) and L-ornithine biosynthesis I (GLU-

TORN-PWY) with higher abundance of atopic dermatitis than healthy samples (Fig 4C) (Wil-

coxon rank-sum test p-value <0.01). These results suggest that the MetGEMs toolbox can

provide the two putative metabolic routes-associated with atopic dermatitis. As illustrated in

Fig 5, the metabolic route visualization of L-arginine biosynthesis III (via N-acetyl-L-citrulline)

show that most of enzymes in this route have a higher relative abundance in atopic dermatitis

than the healthy samples. These results are consistent with the previous studies where the

amino acids alterations were associated with host’s phenotype by regulating host’s immune

system [34, 35].

Conclusions

The MetGEMs toolbox was developed to use the GEMs as references to infer metagenomic

content from 16S rRNA gene sequences with overall focus on annotating metabolic function

of human gut microbiome. During our validation, the MetGEMs toolbox’s prediction capabil-

ity of KO IDs and EC numbers was in good agreement with shotgun metagenomic data. More-

over, the MetGEMs toolbox showed better performance on metabolic function inferences

than commonly used tools, e.g., PICRUSt2. The MetGEMs toolbox therefore was applied for

annotating putative enzyme functions and metabolic routes related to atopic dermatitis in

infants. MetGEMs toolbox can further apply with Shotgun datasets and serves as a versatile

toolbox for different types of microbiome data.
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Materials and methods

An overview of the steps implemented here for MetGEMs toolbox development is depicted in

S4 Fig and described in S1 Doc. Details are described in the following sections.

Ethics statement

This study used the stool samples from the population-based birth cohort study, conducted at

Chulalongkorn University, Bangkok, Thailand. The study was approved by the Ethics Com-

mittee of King Chulalongkorn Memorial Hospital, Bangkok, Thailand, under the approval ref-

erence number 358/58. Parents were provided with sufficient information about our study and

agreed to participate in the study. Written informed consent was obtained from the parents or

guardians of the participants before collecting clinical data and stool samples. This research

was performed according to the Helsinki Guidelines.

Reference database construction for MetGEMs toolbox

Initially, we collected 818 GEMs and their corresponding metadata (i.e. Reaction IDs associ-

ated with KO IDs and EC numbers) from AGORA collections (www.vmh.life). Afterwards,

each of GEM out of 818 GEMs was searched for its related genome sequence from PATRIC

database [36], and NCBI database (www.ncbi.nlm.nih.gov). Once genome sequences related

Fig 4. MetGEMs toolbox predicted metabolic functions and routes from Thai population-based allergy birth cohort study. Note: Boxplot represents relative

abundances of enzyme functions predictions (KO IDs and EC numbers) between healthy and atopic dermatitis samples during 9–19 months. Wilcoxon rank-sum

test is used for statistical significance. � and �� correspond to p-value< 0.01 and p-value< 0.005, respectively. (A) The predicted KO IDs including triosephosphate

isomerase (K01803), undecaprenyl-diphosphatase (K06153), ribulose-phosphate 3-epimerase (K01783), aspartate carbamoyltransferase (K00608), aspartate

carbamoyltransferase catalytic subunit (K00609). (B) The predicted EC numbers including undecaprenyl-diphosphate phosphatase (EC: 3.6.1.27), triose-phosphate

isomerase (EC: 5.1.3.1), aspartate carbamoyltransferase (EC: 2.1.3.2), amidophosphoribosyltransferase (EC: 2.4.2.14), triose-phosphate isomerase (EC: 5.3.1.1) (C)

The predicted metabolic routes including Superpathway of pyrimidine deoxyribonucleoside salvage (PWY-7200), L-arginine biosynthesis III (via N-acetyl-L-

citrulline) (PWY-5154), L-ornithine biosynthesis I (GLUTORN-PWY), Superpathway of pyrimidine nucleobases salvage (PWY-7208), and Superpathway of

sulfate assimilation and cysteine biosynthesis (SULFATE-CYS-PWY).

https://doi.org/10.1371/journal.pcbi.1008487.g004
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GEMs totally gathered, a reference database called MetGEMs network was then constructed.

To explore each MetGEMs network, it was designed through inferencing metabolic functional

abundance of the certain taxonomic organism and/or group. Thus, a preliminary construction

of individual MetGEMs network using KO IDs, EC numbers, and biochemical reactions across

certain genus and/or specific species, which achieved from AGORA collections, was per-

formed. In order to obtain MetGEMs network, four different computational approaches, i.e.

Pan-Function, Core-Function, Pan-Weight-Function, and Core-Weight-Function, were used.

Under Pan-Function, a computation was based on average of numbers of KO IDs and EC

numbers across all organisms used in the study. A computation by Pan-Function is formulated

as Eq (1) and Eq (2).

fqðTGi;KOjÞ ¼
X

Gk2TGi

fqðGk;KOjÞ ð1Þ

fqðTGi;ECjÞ ¼
X

Gk2TGi

fqðGk;ECjÞ ð2Þ

In contrast, a computation of Core-Function means intersection of numbers of KO IDs

and EC numbers across all organisms used in the study. A computation by Core-Function is

Fig 5. MetGEMs toolbox identified putative enzyme functions involved in L-arginine biosynthesis III (via N-acetyl-L-citrulline) associated with atopic

dermatitis. Note: Log2 Foldchange shows the ratio of abundance difference of putative enzymes (EC numbers) between atopic dermatitis and healthy samples.

Red color represents that atopic dermatitis samples have higher relative abundance of EC numbers than healthy samples. Blue color represents that healthy

samples have higher relative abundance of EC numbers than atopic dermatitis samples.

https://doi.org/10.1371/journal.pcbi.1008487.g005
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formulated as Eq (3) and Eq (4).

fqðTGi;KOjÞ ¼
1 8fqðGk;KOjÞ � 1 for Gk 2 TGi

0 otherwise

(

ð3Þ

fqðTGi; ECjÞ ¼
1 8fqðGk; ECjÞ � 1 for Gk 2 TGi

0 otherwise

(

ð4Þ

TG is Taxonomic Group, fq(TGi, KOj) is an abundance from Taxonomic Group i and KO

IDs j. fq(TGi, ECj) is an abundance from Taxonomic Group i and EC number j. G represents a

GEM. fq(Gk, KOj) is an abundance of KOj from Gk. fq(Gk, ECj) is an abundance of ECj from

Gk.

For the other two computational functions, they were relied on taxonomic weighting of

each organism. Pan-Weight-Function was used to compute average of numbers of KO IDs

and EC numbers across taxonomic weighting of all organisms used. In this study, the average

of species abundance in HMP gut’s microbiome was used as a taxonomic weighting. While

Core-Weight-Function was also similar with Pan-Weight-Function in context of taxonomic

weighting, however, a computation was considered by intersection of numbers of KO IDs and

EC numbers instead across all organisms. A computation by Pan-Weight- and Core-Weight-

Function are formulated as Eq (5) and Eq (6).

fqðwGk;KOjÞ ¼ fqðwkÞ � fqðGk;KOjÞ ð5Þ

f qðwGk;ECjÞ ¼ f qðwkÞ � f qðGk;ECjÞ ð6Þ

Where the fq(wGk, KOj) and fq(wGk, ECj) are then replacing fq(Gk, KOj), fq(Gk, ECj) in the

unweight versions (Eqs 1–4). If all weights fq(wk) is equal to 1, then the weight version is equiv-

alent to the unweight version.

MetGEMs toolbox’s implementation

MetGEMs toolbox took three input data 1) MetGEMs network as a reference database, 2) a

tab-delimited ASV-sample table, and 3) a mapping data containing taxonomic group for each

ASVs of 16S rRNA gene sequence data. An implementation of MetGEMs toolbox is described

as follows.

Step 1: Converting ASV-sample table into Taxonomic Group-sample table. An ASV-

sample table was converted into Taxonomic Group-sample table by summing the frequencies

of ASV with the same taxonomy group, as follows as Eq (7).

fqðTGi; SamplejÞ ¼
X

ASVk2TGi

fqðASVk; SamplejÞ ð7Þ

Here, TG is Taxonomic Group, and fq(TGi, Samplej) is an abundance from Taxonomic

Group i and Sample j in Taxonomic Group-sample table.

Step 2: Normalizing taxonomic grouping abundance. Due to the ASV abundance

reflects 16S rRNA full number of occurrences (e.g., sequence count or relative abundance) of

organisms assigned to a given ASV. To implement organismal abundance, we thus performed

normalizing taxonomic grouping abundance. Here, we divided the ASVs’ abundance by the

putative 16S rRNA gene copy number, which was defined as the median of 16S rRNA gene

copy number of the organisms pooled at the ASV’s taxonomic grouping.
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Step 3: Converting a taxonomic grouping-sample table into a metabolic function-sam-

ple table. We derived a KO-sample and EC-sample tables by combining MetGEMs network

corresponding to the taxonomic grouping abundance in the sample: The formula shows as Eq

(8) and Eq (9).

fqðKOi; SamplejÞ ¼
X

TaxonomicGroupk

fqðTGk; SamplejÞ � fqðTGk;KOiÞ ð8Þ

fqðECi; SamplejÞ ¼
X

TaxonomicGroupk

fqðTGk; SamplejÞ � fqðTGk; ECiÞ ð9Þ

Hereby, (TG, KO) and (TG, EC) are the MetGEMs networks of KO IDs and EC numbers,

respectively.

Testing and validation of MetGEMs toolbox with shotgun metagenomic

sequencing data

In order to test and validate MetGEMs toolbox, we divided into five steps as follows.

Step 1: Preparing input data. All human feces data that have 16S rRNA gene sequence

data (e.g., ASV sequence) and corresponding shotgun metagenome sequencing data were

downloaded from NCBI database according to the HMP website (http://hmpdacc.org/).

Step 2: Predicting metabolic functions based on 16S rRNA gene sequence data. To pre-

pare 16S rRNA sequence data for MetGEMs toolbox, the 16S rRNA gene sequences were pro-

cessed by BBDUK (v.38.12) with an option ktrim = l qtrim = r trimq = 15 minlength = 150 to

trim adapter sequences (using adapter sequences as reported by Huttenhower et al. [25]) and

filter low quality reads. The quality sequences were further processed with DADA2 (v1.6.0)

[37] into ASVs with default options. The taxonomy assignment of ASVs was then done with

QIIME2 (v2019.1) using feature-classifier classify-sklearn [38] with Greengenes database v13.8

[39]. These processes produced ASV-sample table and mapping file containing taxonomic

grouping for each ASVs of 16S rRNA gene sequence data and further used for metabolic func-

tion prediction within MetGEMs toolbox.

Step 3: Generating reference metabolic function profile from shotgun metagenomic

sequencing data. To prepare shotgun metagenomic sequencing data as a reference metabolic

function profile for validation, HUMAnN2 (v0.11.2) [7] was used. Initially, each sample of for-

ward and reverse reads were concatenated into the same file. HUMAnN2 was then run to

identify the abundances of annotated UniRef90 gene families using–search-mode uniref90 and
default cut-off parameters. The abundances of UniRef90 gene families were regrouped into KO

IDs and EC numbers using humann2_regroup_table.
Step 4: Validating MetGEMs toolbox with shotgun metagenomic sequencing data. To

validate how MetGEMs toolbox results predicted with shotgun metagenomic sequencing data,

a statistical measure of the strength of a correlation analysis between paired data was per-

formed. Here, SCC was chosen and computed to compare between MetGEMs predicted

results and reference metabolic function profile from shotgun metagenomic sequencing data

for each sample.

Step 5: Statistical test of MetGEMs toolbox. For estimating the significance of MetGEMs

toolbox prediction, the permutation analysis together with bootstrap sampling was used. To

perform, 100 permutation datasets were generated by shuffling ASVs labels in the ASV-sample

table. For each permuted data, 200 samples were drawn with replacement to be processed by

MetGEMs toolbox. To the end, the null distribution was then computed from the bootstrap

sampling and compared with the results from Step 4 (S2 Fig).
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Metabolic function inference of microbiome associated in allergic disease

by MetGEMs toolbox

To use the developed MetGEMs toolbox, we next assessed MetGEMs capabilities for predict-

ing metagenomes based on our bacterial amplicon sequencing of the 16S rRNA gene sequence

data from Thailand Pediatric Allergy Research Cohort. Hereby, we divided into three steps as

follows:

Step 1: Preparing input data. Fecal samples were collected from 60 infants who partici-

pated in a population-based allergy birth cohort study at King Chulalongkorn Memorial Hos-

pital, Bangkok, Thailand. These included 39 healthy and 21 atopic dermatitis samples.

Notably, atopic dermatitis was diagnosed by a pediatric allergist according to the criteria of the

American Academy of Dermatology [40]. The study was approved by the Ethics Committee of

King Chulalongkorn Memorial Hospital, Bangkok, Thailand, under the approval reference

number 358/58. Written informed consent was obtained from the parents or guardians of the

participants. Information on age, gender, family history, pet, and mode of delivery are col-

lected as shown in S4 Spreadsheet. The stool samples were collected from 9–19 months of ages

and frozen at -80˚C until DNA extraction. The DNA samples were then subjected to amplifica-

tion with 341f and 805r primers with Illumina sequencing adapter and then sequencing with

Illumina MiSeq System (Illumina, San Diego, CA). Out of 60 infants, the sequencing dataset

comprised of 48 samples (31 healthy and 17 atopic dermatitis samples) at 9 months, and 53

samples (36 healthy and 17 atopic dermatitis samples) at 19 months (S4 Spreadsheet).

Step 2: Data processing of 16S rRNA gene sequence data towards predicting metabolic

functions. We processed the sequencing read dataset using the same parameters and tools as

in previous section. In brief, the sequencing reads datasets were trimmed and filtered with

BBDuk (v.38.12) and then denoised with DADA2 (v1.6.0) into ASVs. These ASVs were then

assigned with taxonomy using QIIME2’s taxonomy classifier with Greengenes (v13.8) [39]

trained on 341f-805r region. After that, MetGEMs toolbox with Core-Function was used to

investigate the overall metabolic functions across all samples, hereby KO IDs and EC numbers

in each sample were rank-transformed and the geometric means of KO IDs and EC numbers

of each condition (i.e. atopic dermatitis and healthy samples) were computed. To detect a dif-

ference of KO IDs and EC numbers abundance between atopic dermatitis and healthy samples,

the Wilcoxon rank-sum test was used.

Step 3: Mapping predicted functions on metabolic routes. To map predicted functions

on metabolic routes, MinPath (v1.2) [41] was used to select the minimum set of routes accord-

ing to the availability of EC numbers in each sample. EC numbers were firstly grouped accord-

ing to the selected routes, and the route abundance was then computed as the harmonic mean

of EC numbers abundance within the selected routes. Wilcoxon rank-sum test was used to

find a difference of relative abundance route between atopic dermatitis and healthy samples.
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