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ABSTRACT
Introduction: When coronavirus infectious disease-2019 (COVID-19) blew up, ill-fated auguries on the 
collision between COVID-19 and the human immunodeficiency virus (HIV) epidemics loomed.
Areas covered: Data from observational studies suggest similar incidence attacks of SARS-CoV-2 
infection in people living with HIV (PLWH) and HIV-uninfected populations. The mortality rate of 
COVID-19 is similar in both populations too. The authors discuss the role of combination antiretroviral 
therapy (cART) in preventing infection or reducing COVID-19 severity. They also discuss the pharmaco-
logical interventions for COVID-19 in PLWH.
Expert opinion: Management of COVID-19 in PLWH is no different from the general population. It 
should be based on careful supportive care, emphasizing lung-protective ventilation, and wise phar-
macological interventions. The antiviral drug remdesivir and dexamethasone are the only pharmacolo-
gical interventions with clinical benefit for COVID-19, whereas anticoagulation may prevent thrombotic 
complications. The experience with using these drugs in PLWH is limited, which prevents from render-
ing well-founded conclusions. Until more data on COVID-19 in PLWH become available, the best 
weapons within our reach are sound supportive care and sensible use of RDV and dexamethasone, 
bearing in mind the potential for drug–drug interactions of most corticosteroids and antiretroviral 
drugs.
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1. Introduction

Since first being reported in December 2019 in Wuhan, China, 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV 
-2), causing the coronavirus disease of 2019 (COVID-19), has 
spread around the world, becoming a pandemic, affecting 
more than 31 million people with almost one million deaths 
in 9 months [1].

The pathogenesis of COVID-19 has been envisaged as the 
dynamic interaction between four feedback loops, including 
the viral loop, the hyperinflammatory loop, the non-canonical 
renin-angiotensin system (RAS) axis loop, and the hypercoa-
gulation loop [2]. Therefore, comprehensive COVID-19 man-
agement may need pharmacological measures addressed to 
counteract these disturbances.

The clinical stages of SARS-CoV-2 infection range from 
absent or minimal symptoms to severe respiratory failure 
with multiple organ failure [3]. About 80% of the people 
have SARS-CoV-2 infection asymptomatic, or with mild to 
moderate illness (mild symptoms up to mild pneumonia), 
15% have severe symptoms (dyspnea, hypoxia, or >50% lung 
involvement), and 5% have a critical illness with respiratory 
failure, shock, or multiorgan system dysfunction [4].

The most common symptoms are fever, shortness of 
breath, cough, fatigue/malaise, headache, and confusion [5]. 
Among patients with severe disease, the median time to acute 

respiratory distress syndrome (ARDS) from the illness onset 
ranged from 8 to 15 days [5]. Eleven percent of patients 
need intensive care unit (ICU) admission, usually because of 
ARDS (18.4%), with a mortality rate of 4.3% [6]. Mortality is 
higher in ICU patients [4] and those requiring mechanical 
ventilation (MV) [7]. Increased biomarker and proinflammatory 
cytokines, as high-sensitivity cardiac troponin I, D-dimer, 
serum ferritin, interleukin (IL)-6, IL-8 and tumor necrosis factor 
(TNF)-α, are associated with worse outcomes [5,8–10]. Severe 
cases have lower lymphocyte, monocyte, eosinophil, and 
basophil counts, higher leukocyte count and neutrophil–lym-
phocyte ratio (NLR), and lower levels of both helper T (Th) cells 
and suppressor T cells [11].

Staged therapeutic management has been proposed early 
during the pandemic according to the different clinical phases 
of COVID-19 [3]. In the initial (mild) stage, in addition to 
symptomatic relief, early treatment with antiviral agents 
could play a role in reducing the duration of symptoms, mini-
mize contagiousness, and prevent progression to severity. In 
the second stage (moderate), when inflammation in the lung 
and hypoxemia is present, corticosteroids may be useful. 
Finally, in the third and most severe stage of the illness, the 
use of immunomodulatory agents, such as corticosteroids, 
cytokine inhibitors, and intravenous immune globulin, has 
been proposed to reduce systemic inflammation before 
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multiorgan dysfunction develops [3]. More recently, World 
Health Organization (WHO) guidelines recommend corticoster-
oids for the treatment of patients with severe and critical 
COVID-19 [12].

Current evidence indicates that the risk of severe illness 
and worse outcomes increases with age, male gender, and 
comorbidities, such as hypertension, diabetes, cardiovascular 
disease, chronic lung disease, chronic kidney disease, cancer, 
and obesity [4,5,8,13–17]. The role of immunosuppression, 
caused by solid organ transplantation, cancer, immunodefi-
ciency, or medication-induced, is controversial. There is evi-
dence that patients with solid organ cancer and 
transplantation have more severe disease [17,18]. But gener-
ally speaking, there are few immunosuppressed patients with 
COVID-19, and they present a favorable outcome compared to 
other comorbidities [19]. A possible explanation for the 
hypothetical protective role of a weaker immune response is 
that an exuberant cytokine release is essential in inducing 
immune-mediated damage.

2. COVID-19 in PLWH

The experience from previous coronaviruses outbreaks like severe 
acute respiratory syndrome (SARS) and the Middle East respiratory 

syndrome (MERS) coronaviruses on the susceptibility and severity 
disease in PLWH is scarce [20]. People living with HIV (PLWH) could 
potentially be at increased risk of developing severe COVID-19 
disease for various reasons. First, immunosuppression or not 
receiving combination antiretroviral treatment (cART) and compli-
cations from added opportunistic infections could play a negative 
role. HIV infection remained a significant risk for infectious respira-
tory diseases (both opportunistic infections and non-acquired 
immunodeficiency syndrome (AIDS) infections) after the introduc-
tion of highly active ART (HAART) [21]. Some of these infections 
may be even more severe in PLWH [22] and their management 
remains a large component of HIV healthcare [23]. Persistent risk 
of respiratory infections in PLWH may be in part due to incomplete 
penetrance or ART coverage [24]. Even on cART, many PLWH have 
incomplete immune reconstitution and persistent immune activa-
tion [25], which would support a theoretical risk of worse COVID- 
19 outcomes. HIV infection is also an independent risk factor for 
other noninfectious pulmonary complications, including chronic 
obstructive pulmonary disease (COPD), diffusing capacity impair-
ment, asthma, and pulmonary hypertension [24]. Both infectious 
and noninfectious respiratory diseases were associated with an 
increased risk of mortality [21,24]. Moreover, PLWH are aging [26], 
have a higher prevalence of comorbidities [27], and other risk 
factors for respiratory infections, such as smoking [28], all known 
conditions associated with increased COVID-19 severity.

Since the beginning of the COVID-19 epidemic, case 
reports, case series, and cohorts of PLWH with COVID-19 
have been published worldwide [29–45]. A systematic review 
summarized the evidence on the earliest PLWH with COVID-19 
[46] to provide updated information and advice to healthcare 
professionals about emerging patterns. The results of exten-
sive population studies comparing COVID-19 outcomes in 
patients with and without HIV infection have recently been 
presented [47–49].

2.1. Prevalence, risk factors, and disease severity

The prevalence of SARS-CoV-2 infection in PLWH ranges from 
0.3% to 0.8% [31,34,36,50] and is similar to that in the general 
population [31,34], or even lower when including suspected 

Table 1. Drug interactions between antiretroviral treatment and proposed treatments for COVID-19.

DTG BIC RAL EVG/c DOR RPV EFV ETR ATV/r o c DRV/r o c LPV/r FTC 3TC ABC TDF TAF MVC

Tocilizumab
Sarilumab
Siltuximab
Ruxolitinib
Baricitinib
Anakinra
Bevacizumab
Infliximab
Adalimumab
Interferon beta-1a
Interferon alpha-2b
Dexamethasone
Methylprenisolone
Chloroquine
Hydroxychloroquine
Azithromycin
Remdesivir

DTG: dolutegravir. BIC: bictegravir. RAL: raltegravir. EVG/c: elvitegravir/cobicistat. DOR: doravirine. RPV: rilpivirine. EFV: efavirenz. ETR: etravirine.
ATV/r o c: atazanavir/ritonavir o cobicistat. DRV/r o c: darunavir/ritonavir o cobicistat. LPV/r: opinavir/ritonavir. FTC: emtricitabine. 3TC: lamivudine.
ABC: abacavir. TDF: tenofovir disoproxil. TAF: tenofovir alafenamida. MVC: maraviroc.

Do not coadminister Potential interaction Not interaction expected

Article highlights

● Incidence of SARS-CoV-2 infection and mortality from COVID-19 are 
similar to those of the HIV-uninfected population

● Combination antiretroviral therapy (cART) does not prevent SARS-Cov 
_2 infection neither decreases COVID-19 severity

● Careful supportive care and the wise use of remdesivir, dexametha-
sone, and anticoagulation therapy are the mainstays of COVID-19 
management

● There is limited experience with the use of these drugs in PLWH with 
COVID-19

● A careful acquaintance of the potential interaction between corticos-
teroids and antiretroviral drugs
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cases [33]. Among patients who required hospital admission, 
prevalence ranges from 0.8% to 2% [16,32,41,42,50], which 
does not suggest increased hospitalization rates among PLWH 
[41]. As in uninfected people [4,5,7,13–16], PLWH have higher 
morbidity and mortality among male patients, and mortality 
increases with multimorbidity [46]. The risk for SARS-CoV-2 infec-
tion and hospitalization is greatest in men older than 70 years 
[34]. Duration of HIV infection [33], CD4 nadir [33] and recent CD4 
count [33,40,42], CD4/CD8 ratio [33] and HIV viral load on or prior 
to admission [42] are unrelated to COVID-19 severity. The mild 
CD4 percentage decrease observed in hospitalized PLWH is not 
associated with worse COVID-19 outcomes [42]. A population- 
based study in South Africa found a two-fold increased risk of 
COVID-19 death in hospitalized PLWH with CD4 < 200 cells at 
diagnosis or admission, while the previous immuno-virological 
status did not influence mortality [49]. Comorbidities, such as 
organ transplant, diabetes, and obesity, carried a poor prognosis 
in some studies [42,47], while not in others [33].

High C reactive protein (CRP) [42,47], procalcitonin [42], IL6 
[42], white blood cell (WBC) counts [47] are signals of dismal 
prognosis. Lower lymphocyte counts and higher lactate dehy-
drogenase concentrations are markers of severe COVID-19 in 
PLWH [33]. Distinct therapies resulted in no difference in 
COVID-19-associated mortality [42].

2.2. Demographics and clinical characteristics

Most PLWH with COVID-19 were males; their mean age was 
53 years [46], which is nearly ten years lower than that 
observed in uninfected patients [7,16]. In a large population- 
based study, the age difference between the two populations 
was even greater [47]. Some authors found that PLWH were 
more likely to be of black ethnicity [47,48] and from socially 
deprived areas [48]. Comorbidity has been reported in nearly 
two-thirds of PLWH with COVID-19 [46], a higher proportion 
than in the general population [5,7,13]. The most common 
clinical symptoms of COVID-19 in PLWH were fever (74%) and 
cough (58.3%) [46], as in uninfected patients [6,7,13]. PLWH 
were more likely to present with systemic symptoms and signs 
and have a longer duration of symptoms [47]. The severity of 
the COVID-19 disease was mild in most cases (66.5%) [46], with 
no significant difference in supplemental oxygen requirement 
by HIV status [40,42,47].

2.3. Viro-immunological features, biomarkers and 
imaging

Most PLWH with COVID-19 were cART-treated with suppressed 
HIV viral load and relatively preserved immunity [46]. Since 
patients with low CD4 counts are often underrepresented, it 
could be that uncontrolled HIV infection and poor CD4 + T-cell 
function may limit SARS-CoV-2–related immune dysregulation 
and cytokine release. The absence of T-cell activation has been 
hypothesized to mitigate the severe immunopathological phe-
nomena in COVID-19 [51]. There was CD4 decline (median: 4%, 
IQR 0%-9%) [42], consistent with lymphopenia, during COVID- 
19 [11]. Ferritin [42], total white blood cell [42,47] and platelet 
counts [47], and CRP were higher whereas absolute lympho-
cyte count [40,47] was lower in PLWH than in uninfected 

people. Chest imaging abnormalities were more frequent in 
PLWH than in uninfected patients [40].

2.4. Outcome

Hospitalization, ICU admission, and case-fatality rates in PLWH 
with COVID-19 are 64.7%, 16.8%, and 14.3%, respectively [46]. 
However, there are confounding factors such as older age and 
a higher prevalence of comorbidities. Furthermore, there might 
also be higher hospitalization rates among PLWH due to safety 
reasons. Most studies have included only symptomatic patients, 
thus overestimating morbidity and mortality. Matched cohorts 
found no significant differences in adverse outcomes in PLWH 
for hospitalized COVID-19 patients compared to uninfected 
patients [40,42].

A larger prospective cohort in Spain found greater age- and 
sex-standardized mortality from COVID-19 in PLWH (3.7 per 
10.000) than in the general population (2.1 per 10.000) [34]. 
Recently, three population studies from the UK and South 
Africa concluded that living with HIV raises the risk of dying 
from COVID-19 (from 1.63 to 2.3-fold increased risk), after 
adjusting for age and other factors [47–49]. This increased 
mortality risk was similar in PLWH irrespective of viremia and 
CD4 count, although there was little representation of virolo-
gically uncontrolled and immunosuppressed patients [49].

3. The potential role of antiretroviral therapy (cART) 
in preventing COVID-19

Regarding the possible beneficial role of antiretroviral use in 
preventing COVID-19, the observational design and lack of 
appropriate control of many studies do not permit us to 
reach reliable conclusions [46]. Larger cohorts and population- 
based studies in PLWH have demonstrated some evidence of 
a potential effect of nucleoside reverse transcriptase inhibitors 
(NRTI) against SARS-CoV-2 infection, finding no benefit of 
other antiretroviral drugs. A Spanish observational study 
found lower risk for COVID-19 diagnosis and hospitalization 
in PLWH receiving tenofovir disoproxil fumarate (TDF)/emtri-
citabine (FTC)-based cART versus those receiving other regi-
mens [34]. Moreover, none of the TDF/FTC recipients died or 
was admitted to the ICU. In a recently published further 
analysis, the authors suggest that the association observed is 
not explained by confounding due to unmeasured clinical 
characteristics [52].

Other studies found an adjusted association between NRTI 
use [42], and specifically TDF-based cART [40], with lower 
COVID-19-related mortality in PLWH. However, the analysis 
was not subject to correction for multiple statistical tests and 
could have been confounded by other factors. Results of 
a retrospective observational study in Lyon evaluating the 
attack rate of COVID-19 infection in PLWH on cART, including 
TDF or TAF/FTC-based cART, are still unsettled [53].

No difference has been found in PLWH COVID-19 incidence 
concerning the other components of cART. Small case-series in 
PLWH with COVID-19 showed that non-nucleoside reverse 
transcriptase inhibitors (NNRTI) [31] and darunavir (DRV)- 
based regimens [35] did not prevent SARS-CoV-2 infection or 
protect against worsening respiratory function. Other studies 
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also found no association between previous NNRTI-, protease 
inhibitor (PI)- or integrase strand transfer inhibitor (INSTI)- 
based regimens and COVID-19 diagnosis [33], severity [33] or 
mortality [42,49]. An observational study is assessing the pos-
sible impact of ritonavir-boosted lopinavir (LPV/r)-based cART 
on the attack rate of SARS-CoV-2 infection in PLWH [53].

Until robust evidence from randomized clinical trials 
(RCTs) becomes available, switching PLWH from their usual 
cART is not currently recommended. Besides, there is no 
evidence to support HIV-uninfected people taking antiretro-
viral drugs to prevent SARS-CoV-2 infection, except in the 
context of pre-exposure prophylaxis to prevent HIV acquisi-
tion or an RCT [54].

4. Pharmacological management of COVID-19

Potential therapies for COVID-19 can be classified into at least four 
categories depending on the target addressed. The direct-active 
antivirals target coronavirus components and block its replication. 
Other drugs may interfere with host factors crucially required for 
viral infection and replication. Adjunctive therapy modulates the 
exacerbated host immune response, thereby reducing inflamma-
tion and limiting immune-mediated damage. Some drugs exert 
more than one mode of action [55]. Additional interventions with 
clinical benefit are those directed to avoid the excess thrombotic 
risk associated with COVID-19. 

4.1. Antiviral agents

The SARS-CoV-2 lifecycle steps provide potential therapeutic tar-
gets, including viral entry, RNA synthesis, replication, and assembly 
process pathways [55–58]. 

4.1.1. Antiretroviral drugs
Several antiretroviral drugs used for the treatment of HIV 
infection have been considered for use in the treatment of 
COVID-19, LPV/r being the most frequently studied. LPV/r is 
active against HIV and SARS and MERS coronaviruses [59]. LPV/ 
r also has in vitro antiviral activity against SARS-CoV-2 [60]. 
However, the concentration of LPV/r required to inhibit SARS- 
CoV-2 is 4000- to 8000-fold higher than that required to inhibit 
HIV [61], which may carry unbearable toxicity. Early in the 
COVID-19 pandemic, some national guidelines suggested 
treatment with LPV/r.

Two RCTs on the efficacy of LPV/r in COVID-19 hospitalized 
patients have been published to date. They found no clinical 
benefit of LPV/r therapy over symptomatic or supportive care 
[62,63]. Data from a retrospective analysis of hospitalized 
COVID-19 patients suggested that early administration 
(≤10 days from disease onset) of LPV/r was associated with 
a shorter duration of virus shedding [64]. Accordingly, the 
RECOVERY and the WHO-sponsored SOLIDARITY trials discon-
tinued LPV/r arms in late June and early July 2020, respectively 
[65,66].

Given the structural similarity with LPV, DRV, boosted with 
ritonavir or cobicistat, was suggested as a candidate drug for 
the treatment of SARS-CoV-2 infection. However, DRV has no 
in vitro antiviral activity against SARS-CoV-2 at clinically rele-
vant concentrations [67]. Moreover, DRV (alone or combined 

with interferon-alpha 2b) showed no evidence of benefit in 
terms of SARS-CoV-2 clearance rate or clinical improvement in 
patients with mild COVID-19 [68]. Notwithstanding that, 
ongoing trials investigate DRV as a therapeutic option for 
COVID-19, one of them comparing DRV vs. LPV/r [69]. 
Currently, the lack of in vitro and in vivo efficacy does not 
support DRV use in COVID-19 treatment.

Data regarding tenofovir use against SARS CoV-2 are con-
flicting. A molecular docking study indicated that tenofovir 
tightly binds to SARS-CoV-2 RNA-dependent RNA polymerase 
(RdRp), suggesting that it may inhibit this enzyme [70]. 
A recent in vitro study found that both the active triphosphate 
form of tenofovir (TDF, tenofovir alafenamide (TAF)), and FTC 
act as terminators of the RdRp-catalyzed reaction and inhibit 
this enzyme [71]. Moreover, treatment with TDF plus FTC 
showed a reduction in severity scores, duration of clinical 
symptoms, and nasal SARS-CoV-2 titers in infected ferrets 
[72]. On the contrary, other studies have failed to demonstrate 
any tenofovir or FTC in vitro activity against SARS-CoV-2 
[60,73]. Tenofovir has immunomodulatory effects, including 
reducing inflammatory cytokines IL-8, IL-10, and monocyte 
chemoattractant protein 1 (MCP-1), but also in IL-12. As IL-10 
inhibits and IL-12 regulates the inflammatory and immune 
responses to viral infections, these results suggest a potential 
beneficial effect of tenofovir in COVID-19 [74]. There are cur-
rently three RCTs investigating FTC plus TDF [75,76] or TAF 
[77] as prophylaxis for COVID-19 in healthcare workers, one 
still recruiting [75]. Moreover, as TDF, TAF and FTC (with 
suggested molecular basis to prevent SARS-CoV-2 infection 
[70,71,74]) are components of the two approved medications 
for use as HIV pre-exposure prophylaxis (PrEP), their effect on 
the risk of COVID-19 is being evaluated in PrEP users [53]. 
Recently, an observational descriptive study conducted in 
Madrid found that users of PrEP presented a higher seropre-
valence to SARS-CoV-2 than the control group, with no statis-
tically significant differences in relation to COVID-19 clinical 
manifestations [78].

C–C chemokine receptor type 5 (CCR5) receptor antagonist 
maraviroc (MVC) has been suggested as a potential drug 
candidate for COVID-19. MVC binds to the substrate-binding 
pocket of SARS-CoV-2 main protease and forms a significant 
number of non-covalent interactions, resulting in potent inhi-
bition and infection prevention [79]. Besides, by inhibiting 
CCR5, a receptor for molecules that mediate inflammation, 
MVC could play a beneficial role in treating the inflammatory 
phase of the COVID-19. A clinical trial evaluating the efficacy 
and safety of MVC in SARS-CoV-2 infection is currently recruit-
ing patients in Spain [80].

4.1.2. Type I and III interferons
Type I Interferon (IFN) α/β are broad-spectrum antivirals, exhi-
biting direct inhibitory effects on viral replication and inducing 
an immune response against viruses [81]. During the 2003 
SARS-CoV-1 outbreak in Toronto, Canada, treatment of hospi-
talized SARS patients with IFN-α, resulted in accelerated reso-
lution of lung abnormalities [82]. IFN-β-1a inhibits replication 
of SARS-CoV-2 in vitro [83]. IFN-β-1a has been used in the 
treatment of COVID-19, in conjunction with other treatment 
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regimens, with decreased virologic clearance [84]. The first 
clinical trial conducted with IFN-β-1a in severe COVID-19 did 
not find statistically significant differences between the two 
groups in time to clinical response. The discharge rate 
increased significantly on day 14 and 28-day mortality 
decreased, especially when patients received IFN-β-1a early 
in the disease [85]. Regarding IFN-α-2b, a retrospective study 
showed significantly reduced detectable virus shedding from 
the upper respiratory tract [86]. Currently, there is a study with 
rintatolimod and IFN-α-2b for the treatment of mild or mod-
erate COVID-19 infection in cancer patients [87].

Type III interferon (IFN-λ) also acts as an antiviral, but 
produces a local response because it is expressed in epithelial 
cells and a subset of immune cells, including neutrophils [88]. 
This minimizes systemic inflammation contrary to IFN type 
I and causes less adverse effects [89]. Currently, there are five 
ongoing clinical trials with IFN-λ for the treatment or preven-
tion of COVID-19 [87].

There are no known interactions between IFN – 1a and 
IFN – 2b and cART components. Although co-administration 
with TDF or TAF has not been studied, a pharmacokinetic 
interaction is unlikely to occur. It should be noted that liver 
decompensation has occurred in HIV/HCV co-infected cirrhotic 
patients receiving NRTI, interferon, and ribavirin. Therefore, 
these patients need close monitoring [90].

4.1.3. Remdesivir
Remdesivir (RDV) is an intravenous nucleotide prodrug of an 
adenosine analog. RDV binds to the viral RNA-dependent RNA 
polymerase, inhibiting viral replication through premature ter-
mination of RNA transcription. It has a potent in vitro antiviral 
activity against a diverse panel of RNA viruses such as Ebola, 
Marburg, MERS-CoV, SARS-CoV, respiratory syncytial virus, 
Nipah virus (NiV), and Hendra virus [91]. It has demonstrated 
in vitro activity against SARS-CoV-2 [92]. In a rhesus macaque 
model of SARS-CoV-2 infection, RDV treatment was initiated 
soon after inoculation, and RDV-treated animals had lower 
lung virus levels and less lung damage than controls [93]. 
RDV improves pulmonary function, reduces lung viral load, 
and severe lung pathology in mice [94].

RDV has been studied in several RCTs. In June 2020, the 
EMA’s human medicines committee (CHMP) recommended 
granting conditional marketing authorization for the treat-
ment of COVID-19 in adults and adolescents older than 
12 years with pneumonia who require supplemental oxygen, 
but who do not require oxygen delivery through a high-flow 
device, noninvasive ventilation, invasive mechanical ventila-
tion, or extracorporeal membrane oxygenation [95,96]. The 
dossier’s assessment was mainly based on data from NIAID- 
ACTT-11, a multinational, randomized, placebo-controlled trial 
sponsored by the US National Institute of Allergy and 
Infectious Diseases, plus supporting data from other studies.

NIAID-ACTT-1 evaluated the effectiveness of a planned 10- 
day course of RDV in over 1000 hospitalized patients with 
COVID-19 compared with placebo. The primary measure of 
effectiveness was patients’ time to recovery, defined as no 
longer being hospitalized and/or requiring home oxygen or 
being hospitalized but not requiring supplemental oxygen 

and no longer requiring ongoing medical care. Overall, the 
study showed that patients treated with RDV recovered after 
11 days, compared with 15 days for placebo-treated patients. 
This effect was not observed in patients with mild to moderate 
disease. For patients with severe disease, approximately 90% 
of the study population, time to recovery was 12 and 18 days 
in the RDV and placebo group, respectively. However, no 
difference was seen in time to recovery in patients on 
mechanical ventilation or extracorporeal membrane oxygena-
tion. In a post-hoc death analysis at day 14, there was no 
evidence that RDV impacted the mortality rate in this sub-
group (HR 1.06; 95% CI, 0.59–1.92). Recent data report that the 
estimates of mortality by day 29 were 11.4% in the RDV group 
and 15.2% in the placebo group (hazard ratio, 0.73; 95% CI, 
0.52 to 1.03) [96–98].

Gilead presented new findings in July on a comparative 
analysis of Phase 3 SIMPLE-Severe trial and a real-world retro-
spective cohort of patients with severe COVID-19. In this ana-
lysis, RDV was associated with an improvement in clinical 
recovery and a 62% reduction in mortality risk compared 
with standard of care [99]. However, the results of 
SOLIDARITY study, a mortality trial recommended by WHO 
expert groups in hospitalized COVID-19 of four re-purposed 
antiviral drugs (RDV, hydroxychloroquine, LPV/r, and IFN-β-1a) 
showed that no study drug reduced mortality, overall or in any 
subgroup, or reduced initiation of ventilation or hospitaliza-
tion duration [100]. Specifically, this preprint included a meta- 
analysis of mortality of four trials that have compared RDV 
with control: the Solidarity trial (604 deaths in 5451 randomly 
assigned patients), the ACTT-1 (136 deaths in 1062 patients; 
mortality was a secondary outcome), and two smaller trials 
[101,102] (41 deaths). Summation of these trials showed a rate 
ratio for death (RDV vs. control) of 0.91 (95% CI, 0.79 to 1.05) 
[100]. Due to the results from these trials, the WHO guidelines 
on drugs for COVID-19 suggest against administering remde-
sivir in addition to usual care for the treatment of patients 
hospitalized with COVID-19 regardless of disease severity 
(weak or conditional recommendation) [103].

Treatment starts with a 200-mg infusion on the first day, 
followed by one 100-mg infusion a day for at least 4 days, and 
no more than 9 days. A multinational, open-label trial of 
hospitalized patients with severe COVID-19 showed that RDV 
treatment for 5 or 10 days had similar clinical benefits 
[96,97,104]. RDV is a safe drug but can cause gastrointestinal 
symptoms, elevated transaminase levels, and increased pro-
thrombin time. RDV is not recommended in patients with 
eGFR < 30 ml/min [105,106]. RDV has no relevant pharmaco-
kinetic interactions with almost any medication [90,106,107]. 
However, the use of RDV with strong CYP3A4 inducers (e.g. 
rifampicin) is not recommended since it may modestly reduce 
RDV levels. Other drugs used for COVID-19 such as chloro-
quine or hydroxychloroquine may decrease the antiviral activ-
ity of RDV, and co-administration is not recommended [108].

Experience with RDV in PLWH is limited and comes from 
PLWH included in RCT or expanded access programs. The 
reports range from a single patient to four receiving, more-
over, other expanded access drugs such as sarilumab and 
anakinra [33,41,42]. Co-administration with antiretrovirals has 
not been studied, but RDV is a substrate of CYP2C8, CYP2D6, 
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CYP3A4, OATP1B1, and P-gp. Therefore, based on metabolism, 
clearance, and toxicity profiles, a clinically significant interac-
tion is unlikely [90,107].

4.1.4. Mixed action mechanism drugs (chloroquine, 
hydroxychloroquine, and azithromycin)
Chloroquine and hydroxychloroquine (HCQ) are antimalarial 
drugs. HCQ is also used to treat autoimmune diseases. Both 
increase the endosomal pH, inhibiting the fusion of SARS-CoV 
-2 with the host cell membranes and also have immunomo-
dulatory effects. Due to these effects, it has been hypothesized 
that they may be useful in the treatment of COVID-19 [92,109]. 
Azithromycin (AZR) is a macrolide antibiotic that, in vitro, 
might decrease viral load and might exert immunomodulatory 
effects [110,111]. An in vitro study showed synergistic activity 
of the combination of HCQ and AZR against SARS-CoV-2 [112], 
and a small non-randomized, open-label trial from France 
reported decreased viral load when AZR was added to HCQ 
in patients with non-severe COVID-19 [113]. Nevertheless, 
these drugs might increase the risk of ventricular arrhythmias 
or cardiac arrest due to corrected QT (QTc) interval prolonga-
tion, especially when co-administered with other drugs that 
prolong the QTc interval [114,115].

Most preclinical drug efficacy studies to help guide deci-
sions for COVID-19 treatment have shown the lack of antiviral 
activity of HCQ in animal models (macaque, hamster) [116–-
116–118] and in human cell lines [119].

The safety and efficacy of chloroquine and HCQ with or 
without AZR were evaluated in RCTs [120–124] and observa-
tional studies [125,126]. These studies showed no evidence of 
benefit and risk of QTc lengthening. Therefore, these drugs are 
not recommended for the treatment of COVID-19, outside of 
RCT [107,127]. However, a multi-center retrospective observa-
tional study conducted in Michigan reported a survival benefit 
among hospitalized patients who received either HCQ alone 
or HCQ + AZR [128]. A higher percentage of patients in the 
HCQ arms also received corticosteroids compared with the 
control arm (77.1% vs. 36.5%), and thus, the imbalance in 
corticosteroid use confounded the results in this study. As 
well, some authors suggest that anti-inflammatory action of 
HCQ should not be discarded due to the results observed in 
some observational studies with early HCQ treatment and low 
doses that shows lower risk of admission in intensive care unit 
[129,130] and lower mortality rate in patients exposed to HCQ 
therapy compared to no or other treatment [129,131–133]

There are no data from RCT on chloroquine, and HCQ + 
AZR, in treating COVID-19 in PLWH. The scarce data come 
from case series in which most PLWH received HCQ + AZR. 
In these retrospective studies, between 17% and 77% of PLWH 
received HCQ whereas between 15% and 75% were treated 
with AZR [33,36,41,42]. There were no differences in COVID-19- 
associated mortality in patients treated with HCQ, AZR, and 
other expanded access agents [42].

Co-administration of these drugs with cART components 
has not been studied but based on drug metabolism and 
clearance, a clinically significant interaction is unlikely. 
Chloroquine and HCQ undergo metabolism by CYPs 2 C8, 
3A4, and 2D6, and are eliminated unchanged via the kidney 

(50%). No effect on chloroquine or HCQ levels by antiretrovir-
als is expected. Bictegravir levels may increase due to 
P-glycoprotein inhibition by chloroquine or HCQ, but this is 
unlikely to be clinically significant as clinical data have shown 
a good safety profile up to a 2.4-fold increase in bictegravir 
area under the curve. Concentrations of tenofovir may also 
increase, and the recommended dose of 10 mg TAF with P-gp 
inhibitors is not possible with Biktarvy, which is only available 
as a fixed-dose combination containing 25 mg of TAF. 
Thankfully, TAF has an excellent clinical safety profile. No 
effect on FTC is expected [90,107]. Some PI could potentially 
increase chloroquine and AZR exposure. There is no dosage 
adjustment recommended for chloroquine, but toxicity mon-
itoring is advisable. Rilpivirine may lengthen QTc, and when 
co-administered with these drugs, ECG monitoring is sug-
gested [90,107].

4.2. Immunomodulatory agents

In patients infected with SARS-CoV-2, there is an increase in 
pro-inflammatory cytokines (IL-6, IL-1, IFN-γ, TNF-α), probably 
because of activated T-helper-1 cell response [134] and macro-
phages [135,136]. There is evidence that some COVID-19 
patients respond to infection with an exacerbated cytokine 
release, similar to that seen in bacterial septic processes, which 
has been associated with the severity of the disease [137]. 
However, cytokines that suppress inflammation (IL-4 and IL- 
10) have also been observed by increased T-helper-2 secretion 
[5]. Some scores have been evaluated that relate levels of 
cytokines with severity and outcome of SARS-CoV-2 infection, 
especially IL-6 and IL-10 [10,138]. Therefore, immunomodula-
tory agents have been proposed as a treatment for COVID-19- 
associated ARDS.

4.2.1. Interleukin-6 inhibitors
IL-6, a pleiotropic cytokine released by T-cells, endothelial 
cells, fibroblasts, macrophages, and monocytes during acute 
and chronic inflammatory disease, regulates the immune sys-
tem [139,140]. High levels of IL-6 correlated with prognosis of 
COVID-19, providing the rationale for targeting IL-6 pathway 
with monoclonal antibodies [141]. Currently, there are 3 
monoclonal antibodies capable of inhibiting IL-6 signaling: 
tocilizumab, sarilumab, and siltuximab [142–144]. 
Tocilizumab was the first IL-6 inhibitor used in the treatment 
of COVID-19 in critically ill patients, resulting in decreased 
oxygen need and decreased pulmonary opacities in lung CT 
scan [141]. Multiple observational studies have been published 
describing clinical and laboratory outcomes in COVID-19 
patients treated with tocilizumab [145–147]. One of the largest 
observational studies published to date shows that tocilizu-
mab is associated with a lower risk of death or ICU need in 
patients with high levels of CRP (>150 mg/L) [148].

There are several ongoing RCTs with tocilizumab, sarilu-
mab, and siltuximab, alone or in combination. Three RCTs 
about tocilizumab use in COVID-19 have been published 
recently [149–151]. CORIMUNO-TOCI-1 [149] is a RCT in 
patients with COVID-19 and pneumonia requiring oxygen sup-
port but not admitted to the intensive care unit in France. This 
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study, with 130 patients, concluded that tocilizumab did not 
reach the primary outcome, reduce WHO-CPS scores lower 
than 5 at day 4. But might have reduced the risk of noninva-
sive ventilation, mechanical ventilation, or death by day 14. 
Although no difference on day 28 mortality was found. Other 
RCT was carried out in Italy [150], with 126 patients hospita-
lized with COVID-19 pneumonia and PaO2/FIO2 ratio between 
200 and 300 mm Hg. Twenty-eight percent of patients in the 
tocilizumab arm showed clinical worsening vs 27% in standard 
of care group. The trial was prematurely interrupted after an 
interim analysis for futility. The third [151] is a double-blind, 
placebo-controlled trial involving patients with confirmed 
severe acute respiratory syndrome SARS-CoV-2 infection. 
Primary outcome was not achieved with 243 patients. The 
hazard ratio for intubation or death in the tocilizumab group 
as compared with the placebo group was 0.83 (95% confi-
dence interval, 0.38 to 1.81; P = 0.64). Therefore, tocilizumab 
was not effective for preventing intubation or death.

A clinical trial with sarilumab showed that there were no 
differences in general clinical improvement and mortality 
compared to standard treatment [152]. In its preliminary ana-
lysis, a study with siltuximab, SISCO (siltuximab in severe 
COVID-19), has reported that it reduces the need for ventila-
tion [153]. There is scarce experience on the use of tocilizumab 
in PLWH, only 8 patients reported to date [33,36,41].

Tocilizumab, sarilumab, and siltuximab may decrease serum 
concentrations of CYP3A4 substrates such as atazanavir, DRV, 
ritonavir, cobicistat, elvitegravir, rilpivirine, efavirenz, etravir-
ine, doravirine, and MVC [154]. In 12 rheumatoid arthritis (RA) 
patients receiving a single dose of simvastatin (CYP3A4 sub-
strate), the AUC of simvastatin and its -hydroxy metabolite 
were reduced by 57% and 39%, respectively, 1 week following 
tocilizumab compared to simvastatin without tocilizumab. 
Five weeks after tocilizumab infusion, reduced systemic expo-
sure was still evident [155]. Therefore, it is recommended to 
monitor the effects of antiretroviral drugs if patients receive 
concomitant treatment with tocilizumab. Regarding sarilumab, 
the technical data sheet recommends caution when combin-
ing sarilumab and CYP3A4 substrates with narrow therapeutic 
indexes where a decrease in exposure and effectiveness is 
undesirable [143]. With siltuximab treatment, the decrease in 
levels of CYP3A4 substrates should be monitored. Once siltux-
imab is discontinued, the rise in CYP3A4 substrates should 
also be monitored because restoring CYP3A4 activity may 
increase the metabolism of CYP3A4 substrates. This effect 
may persist several weeks after discontinuation due to siltux-
imab long half-life [156].

4.2.2. JAK inhibitors
Janus kinase (JAK) mediates the release of proinflammatory 
cytokines leading to increased inflammatory processes [157]. 
The mechanism of JAK inhibitors, sunitinib, erlotinib, ruxoliti-
nib, fedratinib, and baricitinib, is inhibition of cytokine signal-
ing, thereby downregulating the immune response. The doses 
of sunitinib and erlotinib needed to inhibit AP2-associated 
kinase 1 and cyclin G-associated kinase are significantly higher 
than those used for anticancer treatment, which may result in 
unbearable adverse effects [157].

Baricitinib and ruxolitinib are the only JAK inhibitors being 
studied in COVID-19 [158,159]. A pilot study with 12 patients 
treated with baricitinib (BARI-COVID) showed improvement in 
symptoms and oxygenation compared to the control group, 
without serious adverse reactions [158]. A study with ruxoliti-
nib was unassociated with accelerated clinical improvement in 
severe COVID-19 [159].

There are 18 ongoing studies with ruxolitinib and 13 with 
baricitinib [160]. Possible adverse effects should be considered, 
and risks versus benefits carefully weighed before considering 
their use. There is no experience with the use of JAK inhibitors 
in PLWH infected by COVID-19.

There are no known interactions between baricitinib and 
cART components. Atazanavir, DRV, cobicistat, ritonavir and 
lopinavir, which are CYP3A4 inhibitors, may increase the 
serum concentrations of ruxolitinib, and dose reduction is 
advisable [154]. There are no data on the doses used for 
COVID-19.

4.2.3. IL-1 receptor antagonists: anakinra
Anakinra, a recombinant, non-glycosylated IL-1RA (IL-1 recep-
tor antagonist), has been evaluated as a method to counteract 
the cytokine release observed in severe sepsis and septic 
shock [161]. Because IL-1β serum concentrations were signifi-
cantly increased in COVID-19 patients compared with healthy 
controls, it is thought that anakinra may block the activity of 
IL-1β in these patients [137]. In a retrospective cohort study of 
patients with COVID-19 and ARDS managed with noninvasive 
ventilation outside the ICU, treatment with high-dose anakinra 
was safe and associated with clinical improvement [162]. 
There are RCT pending results. Limited data are available 
describing the tolerability and toxicity of high dose anakinra 
[157]. There is no experience of using anakinra in PLWH 
infected by COVID-19. No known interaction exists between 
IL-1 receptor antagonists and cART components.

4.2.4. VEGF inhibitors: bevacizumab
Vascular endothelial growth factor (VEGF) is a potent vascular 
permeability inducer. Bevacizumab, a recombinant monoclo-
nal antibody that binds to and neutralizes VEGF, was found to 
inhibit pulmonary edema in a VEGF overexpression model. In 
comparison to healthy controls, VEGF serum concentrations 
were significantly increased in patients with COVID-19 [137].

There are 3 RCTs assessing the efficacy and safety of bev-
acizumab, one of them with recruitment completed [160]. 
Considerations regarding the risk of serious adverse effects, 
including myocardial ischemia, cerebral thrombosis, and gas-
trointestinal perforation, are important in determining 
whether targeting VEGF is a viable option [163]. There is no 
known interaction between bevacizumab and cART 
components.

4.2.5. TNF-α inhibitors: infliximab and adalimumab
TNF-α is a proinflammatory cytokine primarily produced by 
monocytes and macrophages that induce the production of 
other cytokines and promote inflammation [164]. The hyper-
inflammatory response in COVID-19 is characterized by ele-
vated concentrations of serum TNF-, IL-6, IL-8 and to a lesser 
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extent IL-1 [9]. Administration of anti-TNF to patients for treat-
ment of autoimmune disease leads to reductions in all these 
key inflammatory cytokines [165]. This is the rationale that 
anti-TNF- therapy can decrease inflammation in COVID-19 
and have a major impact on the need for ventilation and 
mortality.

There are a small number of case reports on the use of anti- 
TNF therapy in acute COVID-19. Currently, there is a clinical 
trial assessing the efficacy of infliximab in hospitalized adult 
patients with severe or critical COVID-19 [166].

There is no known interaction between adalimumab and 
cART components. Co-administration of Infliximab and etravir-
ine may increase the risk of peripheral neuropathy, especially 
in patients with diabetes or older than 60 years. They should 
be administered with caution and neurological symptoms 
monitored. Co-administration of efavirenz with infliximab 
may potentiate the risk of liver injury. It is recommended to 
monitor liver function during treatment [107].

(1) Corticosteroids

Systemic corticosteroid treatment is controversial in severe 
ARDS; however, it is used in patients with severe viral ARDS 
[167]. Given the large number of cytokines induced by COVID- 
19 infection, corticosteroids may help to reduce the inflamma-
tion that causes lung damage, especially in patients with 
severe disease [137]. A meta-analysis published in April 2020, 
in which the studies evaluated were mainly in SARS-CoV and 
MERS-CoV, and only 2 in SARS-CoV-2, suggested that corticos-
teroid use is associated with increased mortality in patients 
with coronavirus pneumonia [168]. Different corticosteroids 
are currently being evaluated for the treatment of COVID-19. 
Methylprednisolone and dexamethasone are the most fre-
quently used because of high lung bioavailability.

Limitations of most of the methylprednisolone studies 
include the small cohort size and the lack of follow-up data, 
as far as the resolution of lung injury is concerned [169]. 
Nevertheless, the most robust data came with dexamethasone 
in the RECOVERY trial [170]. It is the only randomized con-
trolled study, carried out in the UK, where 2104 patients were 
randomized to dexamethasone 6 mg per day (oral or intrave-
nous) for 10 days and compared to 4321 patients receiving 
usual care. The trial showed a significant reduction of death by 
35% in ventilated patients and by 20% amongst patients on 
supplemental oxygen therapy, although no benefit was 
observed in mild cases or moderate cases not requiring oxy-
gen support.

A prospective meta-analysis of clinical trials of critically ill 
patients with COVID-19 has recently been published [171]. It 
concludes that administration of systemic corticosteroids, com-
pared with usual care or placebo, was associated with lower 28- 
day all-cause mortality. There are few published studies of 
corticosteroid treatment of COVID-19 infection in PLWH. In the 
literature, only 21 PLWH with COVID-19 received corticosteroids 
without assessment on the impact on their outcome [33,41].

Corticosteroids are mainly metabolized by CYP3A4, and 
therefore their concentrations may increase in the presence 
of inhibitors such as ritonavir or cobicistat. The cobicistat data 

sheet [172] does not recommend co-administration, whereas 
the ritonavir data sheet [173] recommends avoiding futica-
sone, budesonide, or triamcinolone and caution with dexa-
methasone and prednisolone/prednisone use. 
Dexamethasone can be used in single doses, but Cushing 
syndrome has been described in multiple doses, even with 
eye drops together with RTV-boosted PI. If these associations 
must be used, careful monitoring of therapeutic effects and 
adverse reactions is warranted. In the event of glucocorticoid 
withdrawal, a progressive reduction of the dose may be 
required over a longer period. Dexamethasone interacts with 
all PI, not recommended according to the data sheet [174]. 
High doses of dexamethasone can also decrease plasma con-
centrations of DRV/c due to CYP3A4 induction with the possi-
ble loss of therapeutic effect and induction of resistance. 
Similarly, it also interacts with elvitegravir. No interactions 
have been described with dolutegravir and raltegravir. The co- 
administration of bictegravir and dexamethasone has not 
been studied. However, caution is required as bictegravir is 
metabolized by CYP3A4 and UGT1A and co-administration 
may potentially decrease bictegravir concentration [90]. The 
use of dexamethasone with rilpivirine is contraindicated [175] 
because it can significantly decrease plasma concentrations of 
rilpivirine. It is dose dependent, so a single dose could be 
used, but long-term use alternatives should be considered. 
Its use with efavirenz or etravirine is not recommended 
because of a decrease in antiretroviral drug level. 
Dexamethasone is a substrate of CYP3A4 and a moderate 
inducer of CYP3A4 and therefore can decrease doravirine 
exposure and efficacy [90]. If co-administration cannot be 
avoided, doravirine should be administered 100 mg twice 
daily (based on the interaction study with rifabutin, another 
moderate inducer) and maintained at this dose for at least 
another two weeks following dexamethasone discontinuation. 
At least a 4-week cessation period is recommended prior to 
initiation of doravirine due to the persistent inducing effect 
upon discontinuation. The same is true for MVC. In contrast, 
interactions between dexamethasone and NRTI have not been 
evidenced.

Methylprednisolone is also metabolized by CYP3A4. Co- 
administration of methylprednisolone with DRV, ritonavir, ata-
zanavir, cobicistat, efavirenz, etravirine or elvitegravir can 
potentially increase methylprednisolone concentration and 
increase the risk of steroid side effects [154]. Rilpivirine at 
a dose of 25 mg once daily is unlikely to have a clinically 
relevant effect on the exposure of medicinal products meta-
bolized by CYP enzymes [90]. When the use of corticosteroids 
is greatly needed, it is recommended to use the lowest possi-
ble dose and to monitor the adverse effects together with 
antiretroviral drug levels [90].

5. Anticoagulant therapy

COVID-19 infection can induce a prothrombotic state, due to 
the pro-inflammatory state and endothelial dysfunction, with 
a high risk of arterial and venous thrombosis [176]. The inci-
dence of pulmonary thromboembolism (PTE) in critically ill 
COVID-19 patients is significantly higher than in patients 
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with ARDS due to other diseases [177]. Besides, patients who 
develop a PTE have a worse prognosis [178]. Recent evidence 
suggests that pulmonary thrombosis originates in situ, due to 
the low incidence of deep vein thrombosis evidenced [179]. 
Studies indicate that anticoagulant therapy with low molecu-
lar weight heparin (LMWH) in patients with severe COVID-19 
decreases mortality [180,181]. The latest recommendations 
suggest that all patients hospitalized should receive thrombo-
prophylaxis or full therapeutic-intensity anticoagulation if such 
an indication is present [182]. D-dimer could aid in the early 
recognition of high-risk patients [183]. No interactions have 
been found between LMWH and cART components.

6. Expert opinion

When two epidemics collide, such as COVID-19 and HIV infec-
tion, some questions unavoidably arise. While engrossed by the 
pandemic, HIV clinicians soon noticed the disproportionately 
low number of COVID-19 cases amongst PLWH. This finding 
prompted lucubration about the presumptive protective role 
of cART on SARS-CoV-2 infection incidence. This speculation 
was fed by knowledge gathered from the SARS-CoV-1 and 
MERS-CoV epidemics, showing the sensitivity of these viruses 
to LPV/r. Given the genetic analogy and the shared pathogenic 
mechanisms between the three coronaviruses, LPV/r was pro-
moted as a potentially useful therapy for COVID-19. Without 
question, the colliding epidemics may modify each other, but 
we do not yet know to what extent the presumed changes will 
affect PLWH. Nevertheless, what most HIV physicians are cur-
rently asking themselves can be summarized in three questions:

1.- Is SARS-CoV-2 infection incidence lower or higher in 
PLWH?

Current evidence indicates that PLWH have a roughly similar 
incidence of SARS-CoV-2 infection to the non-HIV-infected 
population. However, hospitalization rates are lower for PLWH, 
but information from observational studies in this respect is very 
biased, since a major problem of this kind of studies is the bias 
for indication. Therefore, to draw reliable conclusions is difficult. 
Besides, there is no proof of a protective role of cART or com-
ponents thereof against the risk of acquiring SARS-CoV-2 infec-
tion, despite data from observational studies involving TDF/FTC 
in such a role. PrEP studies’ data may offer a new insight into this 
issue soon, since evidence from RCT is not expected.

2.- Is COVID-19 severity comparable between PLWH and 
the uninfected population?

PLWH have a higher prevalence of comorbid conditions asso-
ciated with a poor prognosis in COVID-19, which may harm all- 
cause mortality [27]. Lately, data from observational studies sug-
gest higher mortality rates in PLWH after adjusting for age and 
other confounding factors. Notwithstanding that, other matched 
studies suggest similar adverse outcomes to those of the unin-
fected population. Combination antiretroviral therapy does not 
play a protective role related to COVID-19 outcomes in PLWH.

3.- Shall the management of COVID-19 be different in 
PLWH?

With the incidence, presentation, and evolving trend of 
COVID-19 in PLWH being roughly like those of the general 
population, there are no features for a different management 
approach in PLWH. Although COVID-19 is a systemic disease, 

the main target of SARS-CoV-2 is the lung where acute lung 
injury, diffuse alveolar damage, and eventually ARDS are the 
leading causes of death. Why some patients develop acute 
respiratory failure, while others remain asymptomatic or have 
minimal symptoms, has not been fully untangled. Severe 
COVID-19 is frequently associated with ARDS, and since there 
is no specific pharmacologic therapy for ARDS, painstaking 
supportive care with the premise of lung-protective ventila-
tion associates with a better outcome. On the other hand, an 
unequivocal principle in ARDS management is that the treat-
ment of its underlying roots is crucial to upgrade outcomes.

Based on the knowledge gathered about the pathogenesis of 
COVID-19, combination therapy with antivirals with immunomo-
dulating agents has been proposed. Among the myriad of 
pharmacological interventions tested during the pandemic’s 
heroic times, only two have shown clinical benefit. RDV is the 
only antiviral associated with an inconspicuous clinical benefit, 
since it shortened the time to recovery in hospitalized patients. 
As of 22 October 2020, the Food and Drug Administration (FDA) 
has approved Veklury (remdesivir), as the only antiviral drug for 
the treatment of COVID-19 disease. However, inquiries remain 
about its efficacy, such as the optimal patient population, the 
optimal duration of therapy, and the unclear effect on discrete 
outcomes. In a large open-label and non-randomized clinical 
trial, dexamethasone decreased the mortality in patients who 
needed mechanical ventilatory support or had high oxygen 
therapy requirements. There are limited data, and indeed, not 
a single RCT to date indicating the presumptive benefit of 
cytokine or chemokine blockade in COVID-19. Handling 
a system as intricate, redundant, overlapping, and full of alter-
nate pathways as the immunologic system may prove a massive 
task for single molecule targeting, and it may sometimes hap-
pen to be hazardous. It is worth recollecting that patients who 
did not need oxygen therapy but received dexamethasone had 
an excess mortality rate. In addition, corticosteroids inhibit sig-
naling of endogenous type I interferon, a first line of defense 
against respiratory viral infections.

There is a low number of PLWH with COVID-19 treated, and 
therefore, no conclusion can be drawn. Hopefully, both RDV and 
dexamethasone have a good safety profile. However, there is 
a risk of drug–drug interactions of most antiretroviral drugs with 
dexamethasone, whereas the likelihood of such an interaction is 
almost negligible with RDV. The pharmacological management 
of COVID-19 in PLWH shall not be different from that in the 
general population except for increased awareness about phar-
macokinetic interactions, especially with corticosteroids.

Indeed, for most of the drugs discussed above, there is no 
evidence from RCT of beneficial effects for COVID-19 patients, 
either uninfected or PLWH, but with some potentially jeopardiz-
ing side effects. In an emergency setting such as that presented 
by the COVID-19 pandemic, it is useful to recall Milton Friedman’s 
message, ‘The power to do good is also the power to harm.’
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