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A B S T R A C T

Background: More than 60 % of patients with head and neck squamous carcinoma (HNSCC) are
diagnosed at advanced stages and miss radical treatment. This has prompted the need to find new
biomarkers to achieve early diagnosis and predict early recurrence and metastasis of tumors.
Methods: Single-cell RNA sequencing (scRNA-seq) data from HNSCC tissues and peripheral blood
samples were obtained through the Gene Expression Omnibus (GEO) database (GSE164690) to
characterize the B-cell subgroups, differentiation trajectories, and intercellular communication
networks in HNSCC and to construct a prognostic model of the associated risks. In addition, this
study analyzed the differences in clinical features, immune cell infiltration, functional enrich-
ment, tumor mutational burden (TMB), and drug sensitivity between the high- and low-risk
groups.
Results: Using scRNA-seq of HNSCC, we classified B and plasma cells into a total of four sub-
groups: naive B cells (NBs), germinal center B cells (GCBs), memory B cells (MBs), and plasma
cells (PCs). Pseudotemporal trajectory analysis revealed that NBs and GCBs were at the early
stage of B cell differentiation, while MBs and PCs were at the end. Cellular communication
revealed that GCBs acted on tumor cells through the CD99 and SEMA4 signaling pathways. The
independent prognostic value, immune cell infiltration, TMB and drug sensitivity assays were
validated for the MEF2B+ GCB score groups.
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Conclusions: We identified GCBs as B cell-specific prognostic biomarkers for the first time. The
MEF2B+ GCB score fills the research gap in the genetic prognostic prediction model of HNSCC
and is expected to provide a theoretical basis for finding new therapeutic targets for HNSCC.

1. Introduction

Head and neck squamous carcinoma (HNSCC), an immunosuppressive disease characterized by molecular heterogeneity and
tumor-host interactions, has been increasing in incidence and mortality year by year and has now become the sixth most common
cancer and the eighth leading cause of cancer deaths worldwide [1]. About 90 % of head and neck malignancies are squamous cell
carcinomas, and early diagnosis and treatment can lead to a better prognosis [2,3]. The diagnosis and treatment of HNSCC have made
significant progress in the past few decades. Surgical treatment, radiotherapy, and chemotherapy can significantly improve the disease
control rate and survival of patients with HNSCC. However, the overall survival (OS) of patients with HNSCC is still relatively low, with
the 5-year survival rate at all stages around 40 %–50 %, mainly due to the recurrence of tumors and metastasis after treatment [4–6].
However, in the treatment of HNSCC, due to the specificity of the tumor site, surgical treatment may change the corresponding
anatomical structure, and radiotherapy will form fibrous scars in the corresponding area, thus making it particularly difficult to
achieve early detection of local recurrence directly through physical examination or re-biopsy [7]. The rest of the diagnostic tools, such
as Computed Tomography (CT), ultrasound, and Magnetic Resonance Imaging (MRI), are not sensitive to early lesions, so we must rely
on specific biomarkers to predict early recurrence and metastasis of tumors. Improved survival in patients with HNSCC depends partly
on disease stage, lymph node involvement, patient response to treatment, and early diagnosis of local tumor recurrence. Nevertheless,
it has been suggested that the clinical staging of tumors is not a good reflection of the behavior of the tumor and the outcome of the
disease [8]. This is why a growing number of studies have concluded, by evaluating clinical and pathological indicators, that
non-advanced tumors tend to be accompanied by early recurrence and that advanced tumors tend to have longer disease-free intervals
[9]. These factors have prompted the need to search for essential tumor markers for preoperative assessment of the likelihood of
regional metastasis, the significance of postoperative adjuvant therapy, assessment of the patient’s response to treatment, and
prognostic analysis of the patient.

Tumor immune microenvironment (TIME), which consists of immune-related components such as immune cells and their secreted
immunomodulatory molecules, has become a hot topic in oncology research in recent years due to its critical regulatory role in the
growth of tumors as well as metastasis [10,11]. As an essential component of TIME, there is growing evidence that B cells can
participate in the immune response to tumors as well as immune evasion through the secretion of specific antibodies, the processing of
presenting antigens, and the maintenance of the structure and function of tertiary lymphatic structures, which are biologically
important [12,13]. However, research on TIME has focused mainly on T cells, with relatively few B cell-related studies [14]. The role of
B cells is dual. On the one hand, most B cells can inhibit tumor growth through antibody production, secretion of anti-tumor cytokines,
and direct killing. On the other hand, some B cell subgroups may also play a tumor-promoting role. For example, a group of regulatory
B cell subgroups (Bregs) may promote tumor growth and invasion through the secretion of specific tumor-promoting cytokines (e.g.,
IL-10, TGF-β, IL-35) and other mechanisms [15]. In addition, B cells are closely associated with the prognosis of various tumors,
including skin melanoma, gastric cancer, and lung cancer [16,17]. An early study of 33 HNSCC patients demonstrated improved
outcomes with increased peritumoral B-cells in lymph node metastases. Recent analyses of B-cell phenotypes and responses in HNSCC
have delineated notable heterogeneity [18]. Nevertheless, the impact of B cells on survival or their influence on responses to
immunotherapy or radiation remained unexplored [19,20], possibly due to the lack of uniformity in the choice of B cell markers.

In recent decades, the emergence of bulk RNA-sequencing (bulk RNA-seq) has revolutionized oncology research and has been
widely used in diagnosing and prognostic assessing cancer patients. However, there are individual differences between different cell
types in tumor tissues. Still, bulk sequencing can only reflect the overall average gene expression level in the whole sample and cannot
accurately characterize the gene expression at the individual cell level. Single-cell RNA-sequencing (scRNA-seq) allows access to the
genetic signature of a particular cell type by extracting, reverse transcribing, amplifying, and sequencing RNA at the level of a single
cell, better-revealing heterogeneity in the intra-tumor microenvironment and providing assistance in the development of individu-
alized therapeutic regimens [21]. Although scRNA-seq technology can characterize genes in different cell types more accurately than
traditional bulk RNA-seq, bulk RNA-seq datasets have larger sample sizes and more complete follow-up information. Therefore, there
is a need to integrate scRNA-seq and bulk RNA-seq datasets to identify new tumor biomarkers and develop more accurate tumor
prognosis-related models.

In summary, the biological functions of B cells are complex, and their prognostic value in HNSCC remains unknown. Screening for
appropriate B-cell markers in HNSCC and in-depth exploration of their biological functions and prognostic value could help to assess
the prognosis. It may provide new targets for the treatment of patients with HNSCC.

2. Materials and method

2.1. Data collection and processing

The GPL18573 platform-based Head and neck squamous cell carcinomas (HNSCCs) -related single-cell RNA sequencing (scRNA-
seq) data GSE164690 [PMID: 34921143] was downloaded from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/
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) and analyzed (Fig. S1). In addition, bulk RNA sequencing data of HNSCC tissue samples were downloaded from the Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) database, along with clinical information including age, gender, TNM stage, race, and
survival time.

2.2. Single-cell sequencing data analysis

Using the Seurat R package (version 4.3.0), raw gene expression substrates were imported into R software (version 4.2.2). Using the
DoubletFinder R package (version 2.0.3), the scRNA-seq data underwent rigorous quality control.

The percentage of mitochondrial and erythrocyte-related genes in each cell was calculated using the "PercentageFeatureSet"
function in the Seurat package, followed by cell quality control, with the following exclusion criteria: (1) the number of genes in the
cell was <300; (2) the number of genes in the cell was >7500; (3) the percentage of mitochondrial genes in the cell was >25.

Then use the “NormalizeData” function for normalization (normalization.method= "LogNormalize", scale.factor= 10000). Use the
“CellCycleScoring” function to determine cell cycle conditions. Find the top 2000 top variable genes for subsequent analysis using the
“FindVariableFeatures” function. The data are standardized using the "ScaleData" function. The harmony R package (version 0.1.1)
was used to remove batch effects between samples. The dim value was set to 30 and the resolution to 1.2. The "RunPCA" function was
used to cluster the dataset and to downscale the UMAP visualization [22]. Marker genes for each B-cell subgroup were compiled by
searching previous literature, and the clusters were manually annotated after the downscaling of the subgroups. Next, the "FindAll-
Markers" function was used to find differentially expressed genes in each B-cell subpopulation, where min.pct was set to 0.25 and logfc.
threshold was set to 0.25.

2.3. Single cells copy number variation (CNV) evaluation

The inferCNV (version 1.6.0) available from the GitHub repository of the Broad Institute (https://github.com/broadinstitute/
inferCNV) was used to analyze the CNV of cells (Fig. S2).

2.4. Pseudotime analysis

We performed pseudotime trajectory analysis of B and plasma cell subgroups using the Monocle R package (version 2.24.0) [23].
The UMAP method was employed to reduce dimensionality, and the functions "plot_cell_trajectory" was utilized for visualization.
Different cell subpopulations were arranged in a proposed chronological order, and pseudotemporal heatmaps were used to identify
and display genes that changed simultaneously with pseudotime.

2.5. Cell-cell communication analysis

The CellChat R package (version 1.6.1) was applied to infer cell-to-cell interactions among cell subgroups and establish a regulatory
network based on ligand-receptor crosstalk [24]. The “netVisual_circle”, “netVisual_aggregate”, “netVisual_individual”, “netVi-
sual_heatmap”, “netVisual_bubble”, “netVisual_chord_gene”, “netAnalysis_river”, “netAnalysis_dot”, and “netAnalysis_signaling-
Role_heatmap” functions were used to visualize cell-to-cell interactions.

2.6. Construction of a risk score in HNSCC patients

The expression values of signature genes of patients in the GDC TCGA Head and Neck Cancer (HNSC) cohort were extracted after
obtaining the list of MBs or GCBs signature genes (top 100 genes). Signature genes associated with OS of HNSCC patients were screened
using univariate Cox regression analysis. To avoid the multicollinearity of these genes, we further filtered them using LASSO regression
(glmnet, version 4.1–6) to fileted these genes. The risk coefficients for each gene were then calculated using multivariate Cox
regression. Risk scores of the prognostic risk score model (X: coefficient, Y: gene expression level) =

∑n
i Xi× Yi.

Patients were categorized into high and low-risk groups based onmedian of risk scores. Kaplan-Meier survival analysis (version 3.3-
1) was performed in the TCGA-HNSC cohort to compare the prognosis of patients in different risk groups. The predictive performance
of risk score was further evaluated by plotting the area under the curve of ROC (AUC) over time using the timeROC R package (version
0.4).

Risk score, age, TNM stage, and molecular subtypes were subjected to were subjected to multivariate Cox regression analysis to
screen out independent prognostic factors in HNSCC patients. The nomogram column-line graph prediction model for predicting 1-, 3-,
and 5-year overall survival of HNSCC patients was constructed using the "rms" package (version 6.7-0). The constructed nomogram
prediction model was validated using the ROC curve and calibration curve.

2.7. Immune infiltration analysis

Previous literature was queried to obtain marker genes for different immune cells, and ssGSEA enrichment analysis was performed
to assess the level of immune cell infiltration for each sample in the TCGA-HNSC cohort [25]. The relative proportion of immune cells
was quantified using the CIBERSORT R package (version 0.1.0) [26]. The Wilcox.test was used to compare the levels of immune cell
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infiltration and the expression levels of joint exempted checkpoints between different risk groups. Correlation analyses between
immune cell infiltration levels of each type and between immune cell infiltration levels and risk genes were performed using the
"corrplot" R package (version 0.92). Stromal and immune cells in HNSCC tissues were estimated using the ESTIMATE R package
(version 1.0.13), and stromal score, immune score, ESTIMATE score, and tumor purity were calculated [27].

2.8. Functional enrichment analysis

The gene expression matrices of HNSCC patients in the high and low-risk subgroups were analyzed differently by the limma R
package (version 3.54.0). The GO [28] and KEGG [29] were used to analyze the DEGs between different risk subgroups by using
clusterProfiler R package (version 4.6.0). We downloaded the list of pathways gene sets from the MSIGDB database (https://www.
gsea-msigdb.org/) and performed GSEA [30] enrichment analyses on these pathways.

2.9. Tumor mutation burden analysis

The maftools package was utilized to analyze the overall mutation status of the tumor, TMB, as well as the transformation status of
SNPs. The Wilcox.test was used to compare the TMB levels between risk subgroups of patients, and the Spearman correlation test was
performed to determine the relationship between risk score and TMB.

2.10. Prediction of drug sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/) is a public dataset containing information
about drug sensitivity and molecular markers of drug response in cancer [31]. The dataset information was downloaded as reference
files, and the pRRophetic R package (version 0.5) [32] was used to predict the sensitivity to chemotherapy and targeted therapies for
each sample. The Wilcox.test was performed to determine whether there was a statistically significant difference in medicine sensi-
tivity between the high and low risk groups. Pearson’s correlation was utilized to examine the relationship between risk scores and
drug sensitivity.

2.11. Multiplexed immunofluorescence assay

Multicolor IHC staining was performed using a Multiple Immunofluorescence Kit (AiFang biological, AFIHC035) according to the
manufacturer’s instructions. Briefly, the paraffin-embedded tissues were dewaxed, then the antigen retrieval was performed by sodium
citrate at 98 ◦C for 20 min. Ater infiltrating in 3 % H2O2 for 15 min, the tissues were blocked by 5 % BSA. Then the tissues were
incubated by primary antibody at 4 ◦C overnight. Then the tissues were incubated by secondary antibody for 30 min and stained by
TSA for 5 min. For each targe, the steps of antigen retrieval, blocking, incubation of primary antibody, incubation of secondary
antibody, and TSA staining are required. Finally, the nuclei were stained with DAPI. PBS was used to wash tissues between each step.
These images were obtained by the LEICA DMi8 system and analyzed by the ImageJ software.

2.12. Cell culture

HN-5 cells and UMSCC-47 cells originated from the American Type Culture Collection (ATCC). HN-5 cells underwent cultivation
utilizing RPMI 1640 medium, whereas UMSCC-47 cells were subjected to DMEM medium (Gibco BRL, United States). Both cell lines
were nurtured within an incubation environment at 37 ◦C, featuring a 5 % CO2 concentration.

2.13. Cell transfection and real-time fluorescent quantitative PCR (RT-qPCR)

Two small interfering RNAs (siRNAs) targeting the PLXNB2 gene, along with their corresponding negative controls (si-NC), were
synthesized by Ribobio Guangzhou (China). The transfection procedure adhered to the methodologies delineated in the Lipofectamine
3000 instructions provided by Invitrogen, USA. Thermo’s TRIzol reagent (15596018) was employed to extract total RNA from the
cellular lines, and RNA concentrations were standardized. Subsequently, cDNA synthesis was carried out using Vazyme’s Prime-
Script™ RT kit (R232-01). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was executed utilizing the SYBR
Green Kit from TaKaRa Biotechnology (Dalian, China), with GAPDH as the internal reference control. Further details regarding primer
and siRNA sequences are available in Supplemental Table 1.

Fig. 1. | Integration and analysis of scRNAseq data of B and plasma cells in HNSCC. (A–B) The Uniform Manifold Approximation and Pro-
jection (UMAP) of the expression profiles of the 7082 B and plasma cells derived from tumor tissues and peripheral blood (PBL) of HNSCC. B cells
are classified into 16 distinct transcriptional clusters. HPV infection status (HPV+ vs HPV− ), Phase (G1, S, G2M). (C) The distribution of CNVscore,
nCount_RNA, S.Score, G2M.Scorce for each subgroup was visualized using UMAP. (D) Pie chart showing the proportions of each subgroup in the
HNSCC samples. (E) The proportion of subgroups derived from PBL and tumor tissues. (F) Visualization of sample characteristics associated with
different B and plasma cell subgroups and different HPV infection status (HPV+ vs HPV− ), Phase (G1, S, G2M), G2M.Score, S.Score, nCount_RNA,
CNVscore, differential gene expression. (G) Volcano plots showing DEGs in subgroups.
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2.14. Cell counting

A total of 6000 transfected cells were seeded into individual wells of 96-well plates (Corning, USA, 3599). Following cellular
adhesion to the well surfaces, the cells underwent treatment with the CCK-8 labeling reagent (A311-01, Vazyme) on days 1, 2, 3, 4, and
5, respectively. Incubation of the cells occurred in conditions devoid of light for a duration of 2 h, during which absorbance (OD) values
were meticulously recorded.

2.15. Wound healing

Transfected cells were nurtured in a six-well culture plate (Corning, USA, 3516). Upon achieving a cellular density of approxi-
mately 90–95 %, a 200 μl sterile pipette was employed to delicately abrade the cell layer in a linear fashion. Subsequently, a gradual
rinsing with PBS was conducted to eliminate unattached cells and debris. Following this, the serum-free cell mediumwas substituted to
sustain optimal cell proliferation. Consistent photographic documentation was undertaken at identical locations, both at the initiation
of the culture and 48 h subsequent to the initiation.

2.16. Transwell

In the Transwell experimental setup, the Transwell chamber (Corning, USA, 341201) was positioned within a 24-well plate.
Subsequently, 8000 cells were uniformly distributed in each chamber and cultured utilizing 200 μl of serum-free DMEM or RPMI 1640
medium. To the lower chamber, 600 μl of complete DMEM or RPMI 1640 medium, enriched with 10 % serum, was added. The
experimental plate was then placed in an incubation apparatus and cultured for a duration of 36 h, allowing for the migration of cells
from the upper chamber to the lower chamber. Following this incubation period, the Transwell chamber underwent meticulous
cleaning, fixation, and staining procedures.

3. Results

3.1. Phenotypic clusters of B cells according to scRNA-seq

To investigate the variations in the immunemicroenvironment across all cell subgroups in HNSCC, we collected scRNA-seq datasets
of HNSCC. By utilizing these datasets, we aim to gain a more profound comprehension of the molecular mechanisms at the individual
cell level.

Through the standard workflow of single-cell analysis, we identified four cell types in the integrated data, including NBs, MBs,
GCBs, and PCs. We plotted the distribution of HPV infection status and phase (Fig. 1A). To further elucidate the heterogeneity and
intricacy of HNSCC, we have subdivided them into 16 distinct subgroups. Among these subgroups, the population of NBs encompasses
C0 TCL1A+Naive B cells, C5 FER2+Naive B cells, C7 CD83+Naive B cells, C8 ISG15+Naive B cells, C10MARCKSL1+Naive B cells, and
C15 HSPA1B+Naive B cells. Additionally, the category of MBs includes C1 CRIP1+Memory B cells, C2 LINC01781+Memory B cells, C3
PPP1R15A+ Memory B cells, C4 IFI30+ Memory B cells, C9 CD1C+ Memory B cells, and C13 TLE5+ Memory B cells. Furthermore, the
subgroup of GCBs comprises C11 MEF2B+ Germinal center B cells and C14 STMN1+ Germinal center B cells. Lastly, we have identified
PCs represented by C6 FKBP11+ IgG Plasma cells and C12 DERL3+ IgA Plasma cells (Fig. 1B). The distribution of CNVscore,
nCount_RNA, S.Score, and G2M. The score for each subpopulation is shown in Fig. 1C, in which GCBs on the right side of the uniform
manifold approximation and projection (UMAP) plot have a high CNVscore, a high nCount_RNA, and a more active cell cycle state. In
addition, we analyzed the proportion of subgroups derived from peripheral blood (PBL) and tumor tissues. The pie chart displayed the
proportion of B and plasma cell subtypes (Fig. 1D). The results showed that most subgroups belonged to malignant cells, with a small
proportion of NBs and MBs originating from the PBL (Fig. 1E). Bubble maps and volcano plots demonstrated the expression of
differentially expressed genes (DEGs) in each subgroup and the associated features of different HPV infection statuses (HPV+ vs HPV− )
(Fig. 1F and G).

3.2. Pseudotime trajectories unveiled the differentiation status of B and plasma cell subgroups

To understand the dynamic transitional processes of B and plasma cells in HNSCC, we further performed a pseudotime analysis to
trace the transcriptional trajectory. As shown in Fig. 2A and B, with the progression of pseudotime, the number of NBs gradually
decreased, while GCBs and MBs gradually differentiated toward PCs. The decrease in GCBs and MBs may be due to their gradual
transformation into PCs, most of PCs were at the end of the cell developmental trajectory. Cellular composition was identified by
colouring the pseudotemporal map with tissue of origin. By analysing Fig. 2A and B& Fig. 2C, it was found that the pseudotime of NBs

Fig. 2. | Trajectory of B and plasma cells. (A) The differentiation trajectory of B and plasma cells shows the derivation of HNSCC cells, based on
the pseudotime of cells (from left to right). (B) Pseudotime differentiation trajectory plots of B and plasma cell subgroups. (C) The UMAP visu-
alization delineates the pseudotime scores of the entire spectrum of cells. The violin plot illustrates the pseudotime scores attributed to each distinct
subgroup. The ridge map provides an insight into the density distribution of pseudotime values. (D–E) Bar charts of the changes in the proportion of
B and plasma cell subgroups in the pseudotime state, respectively.
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was significantly lower than that of other B cell subgroups, and the pseudotime of PCs represented by C6 FKBP11+ IgG Plasma cells and
C12 DERL3+ IgA Plasma cells was the highest. An enhanced graphical representation, a bar plot, elucidated that the NBs subgroups
predominantly comprised neoplastic cells originating from State1. Likewise, the MBs subgroups exhibited a preponderance of cells
stemming from State2. Furthermore, the GCBs subgroups was characterized by a prevailing presence of neoplastic cells deriving from
State4. Lastly, the PCs subgroups exhibited a notable predominance of cells originating from State5 (Fig. 2D and E). These observations
collectively unveil that the NBs subgroups is positioned within the incipient stage of cellular differentiation, contrasting with the PCs,
which signifies the end of differentiation. Additionally, cells within the GCBs and MBs subgroups display an augmented propensity for
proliferation and differentiation capacity, thereby highlighting their distinctive biological characteristics.

3.3. NBs are in the initial differentiation stage of pseudotime trajectories

According to our research, B and plasma cells could be classified into NBs, GCBs, MBs, and PCs. Each of these subgroups manifests
distinct phenotypic characteristics and undertakes specific roles within the TME. NBs can be further classified into 6 subgroups
(Fig. 3A), and the expression of top5 marker genes in different subgroups is also shown (Fig. 3B and C). By analyzing the differences in
cell cycle, gene expression and CNV among samples with different NBs subgroups and HPV infection states, it was found that the CNV
score of C0 TCL1A+ Naive B cells and C15 HSPA1B+ Naive B cells was higher, the proportion of G2M and S phase in the cell cycle was
higher, and the expression of differential genes was higher, indicating that their cell proliferation was more active and genetic
instability (Fig. 3D–I). The DEGs of 6 NBs subgroups and their corresponding transcription factors and surface proteins were analyzed
by GO− BP enrichment analysis, and the active biological process of each tumor cell was obtained. It was found that C0 TCL1A+Naive B
cells was active in the biological process of Cytoplasmic translation, and C8 ISG15+Naive B cells was active in the biological process of
Negative regulation of b cell activation (Fig. 3E–H). Immune landscape studies showed that HPV+ HNSCC were enriched with more
NBs, HPV− HNSCC were infiltrated by fewer NBs, and C0 TCL1A+ Naive B cells had the highest percentage of HPV+ cells (Fig. 3F). In
the analysis of NBs subgroups and cell cycle, it was found that the proportion of NBs within the G1 phase of cellular growth was the
highest, which may be related to the fact that NBs is in the initial stage of B cell differentiation (Fig. 3G). Through GSEA enrichment
analysis, it was found that C0 TCL1A+ Naive B cells subgroup was negatively correlated with Negative regulation of metabolic process
and Negative regulation of programmed cell death pathway, indicating that cells of C0 TCL1A+ Naive B cells subgroup had higher
ability of cell metabolism and proliferation (Fig. 3J–L).

3.4. GCBs subgroup may have high immune response ability

In the germinal center, follicular helper T cells (Tfh) stimulate the B cell receptor (BCR) and induce the differentiation of NBs into a
variety of fates, mainly including GCBs, MBs and PCs [33]. Complete transcriptional characteristics at the single-cell level would be
particularly helpful in determining transcriptional trajectories and heterogeneity in the process of differentiation from NBs to PCs. C11
MEF2B+ Germinal center B cells (C11 GCBs) and C14 STMN1+ Germinal center B cells (C14 GCBs) were obtained by further subgroup
analysis of GCBs (Fig. 4A). The bubble chart and UMAP showed the expression of GCBs top marker genes (Fig. 4B and C). Among the
two GCBs subgroups, the CNVscore of C11 was higher, and the nCount_RNA, G2M.Score and S.Score of C14 were higher (P < 0.001)
(Fig. 4D–F). The GCBs in patients with HNSCC mainly comes from tumor tissues, and some from PBL (Fig. 4G). The percentage of C11
GCBs in HPV+ samples was higher than in C14 GCBs (Fig. 4H). In C11 GCBs, there were more cells with G1 cell cycle, and most of C14
GCBs were in G2M and S phase (Fig. 4I). The proportion of cells in G1 phase was more in HPV+ group, and the proportion of GCBs cells
in G2M and S phase was more in HPV− group (Fig. 4J). The DEGs of C11 GCBs and C14 GCBs were screened (Fig. 4L), and the
enrichment results of GO-BP among C11 GCBs and C14 GCBs was shown by heatmap. It was found that GO-BP terms of C11 GCBs were
up-regulated in biological processes such as cell activation, leukocyte activation, immune response, lymphocyte activation, regulation
of immune system process, regulation of immune response, indicating that the DEGs of C11 GCBs may play a promoting role in the
regulation of immune system (Fig. 4K). Similarly, in the GO-BP enrichment analysis results of C11 GCBs, C11 GCBs was more active in
cytoplasmic translation, b cell activation, b cell proliferation, production of molecular mediator of immune response and immuno-
globulin production pathways. The high immune response ability of C11 GCBs subgroup was further verified, which was consistent
with the previous research results (Fig. 4M and N).

3.5. MBs plays a key role in the proliferation and differentiation of B cells

MBs, the subgroup with the largest number of B cells (Fig. 5A), could be further divided into six subgroups and the expression of
top5 marker genes in different subgroups are also shown in Fig. 5B and C. UMAP showed that the samples in the C4 IFI30+ Memory B
cells (C4 MBs) had higher CNVscore, higher nCount_RNA and more active cell cycle state. Among them, the chromosome stability,

Fig. 3. | Landscape of NBs subgroups in the HNSCC. (A) The distribution of UMAP for the 6 subgroups in NBs. (B) Visualization of sample
characteristics associated with different NBs subgroups and different HPV infection status (HPV+ vs HPV− ), Phase (G1, S, G2M), G2M.Scorce, S.
Score, nCount_RNA, CNVscore, differential gene expression. (C) Expression of top5 marker genes in different subgroups. (D) The distribution of
CNVscore, nCount_RNA, S.Score, G2M.Scorce for each subgroup was visualized using UMAP. (E) Results of GO-BP enrichment analysis of differ-
ential genes and their corresponding transcription factors and surface proteins in 6 NBs subgroups. (F) Histogram of HPV infection status of NBs
subgroups. (G) The cell cycle of NBs subgroups. (H–I) Violin plots of GO-BP Negative regulation of B cell activation and CNV score. (J–L) GSEA
enrichment analysis among NBs subgroups.
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Fig. 4. | Landscape of GCBs subgroups in the tumor microenvironment of HNSCC. (A) 332 GCBs were subjected to UMAP dimension reduction,
divided into two cell clusters including C11 MEF2B+ Germinal center B cells (C11 GCBs, 184) and C14 STMN1+ Germinal center B cells (C14 GCBs,
148). The contribution of pie chart to patients (13 patients), HPV infection status (HPV+ vs HPV-) and Phase (G1, S, G2M) were visualized. (B–C)
The bubble chart and UMAP showed the expression of GCBs top marker genes. (D) Visualization of relevant sample features for 332 GCBs using
UMAP dimensionality reduction clustering: nCount_RNA, CNVscore, G2M.Scorce, S.Score. (E) The violin plot shows the nCount_RNA, CNVscore,
G2M.Scorce, S.Score of C11 GCBs and C14 GCBs and their differences. *P < 0.05, **P < 0.01, ***P < 0.001, means significant difference, ns means
no significant difference. The boxplots showed the median (middle line), upper and lower quantiles (boxplot), and range of the data (violin plot). (F)
nCount_RNA, CNVscore, G2M.Scorce, S.Score of GCBs with different HPV infection status (HPV+ vs HPV-) and their differences. **P < 0.05, **P <

0.01, ***P < 0.001, means significant difference, ns means no significant difference. The boxplots showed the median (middle line), upper and
lower quantiles (boxplot), and range of the data (violin plot). (G) The proportion of C11 GCBs and C14 GCBs in PBL or tumor group among patients
(above). The ratio of C11 GCBs and C14 GCBs in different groups of HPV infection status (HPV+ vs HPV-) among patients (below). (H) The C11 GCBs
and C14 GCBs ratios between the HPV+ and HPV-groups. (I–J) Bar graphs depicted the difference in cell proportion between subgroups and phases,
as well as the difference in cell proportion between different HPV infection statuses and phases. (K) GSEA enrichment analysis of GCBs subgroups.
The DEGs of C11 GCBs and C14 GCBs were screened, and the enrichment items of GOBP were scored by GSEA. NES >0 was up-regulated and <0 was
down-regulated. NES, N stands for standardization and ES for enrichment scores. (L) Volcano plots showing expression of DEGs in GCBs subgroups.
(M) The heat map showed the active biological processes of each subgroup of GCBs. (N) Word cloud for GO-BP enrichment analysis of GCBs DEG.
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transcription level and cell cycle state of different subgroups of MBs are also different, which is of great significance for the study of B
cell heterogeneity (Fig. 5D–H). The bar charts revealed that the majority of MBs subgroups were associated with HPV+ infection,
whereas the cell cycle mostly occurred in the G1 and S phases (Fig. 5E and F). The AUCell analysis of the GOBP_POSITIVE_R-
EGULATION_OF_B_CELL_PROLIFERATION in several subgroups of MBs revealed that the C4 MBs had a higher AUC for this GOBP term
compared to other subtypes (Fig. 5G, left). The CNV score of C13 TLE5+ Memory B (C13 MBs) cells exhibited a lower value compared
to the other subtypes (Fig. 5G, right), while the nCount_RNA of C13 MBs was higher than other subtypes (Fig. 5H, left). The G2M.Score
of C4 MBs was lower than other subtypes of MBs (Fig. 5H, right). The results of GO-BP enrichment analysis among Memory B cells was
shown in Fig. 5I. In GSEA enrichment analysis, the DEGs of C4 MBs were up-regulated in positive regulation of cellular biosynthetic
process, which was positively correlated with positive regulation of cell communication, positive regulation of cell death, positive
regulation of cellular metabolic process (Fig. 5J). These results suggest that the DEGs of C4MBs plays a key role in the differentiation of
B cells and promotes the regulation of immune system process, which may reflect the high immune response ability of tumor cells.

3.6. B cells eventually differentiate into mature PCs

GCBs that have a strong attraction to tumor-associated antigens ultimately develop into fully developed plasma cells (PCs) that
generate immunoglobulins (IgG, IgA, IgM, and IgE). These immunoglobulins have distinct purposes within the given situation [34].
According to the difference in the expression of tumor-associated antibodies in PB, we divided the subgroups into C6 FKBP11+ IgG
Plasma cells (C6 IgG, 376), C12 DERL3+ IgA Plasma cells (C12 IgA, 157) (Fig. 6A). The UMAP visualization showed the difference
between C6 IgG and C12 IgA in terms of CNVscore, nCount_RNA, S.Score, and G2M (Fig. 6B). The bubble chart and UMAP visualization
displayed the marker genes for C6 IgG and C12 IgA (Fig. 6C and D). The bar chart depicted the distribution of PCs among various
categories (Fig. 6E–G). To investigate the molecular diversity among PCs subgroups and its functionality. The GO-BP enrichment
analysis of the DEGs in PCs revealed that C6 IgG was involved in the biosynthesis of amyloid precursor protein and glycoprotein.
Additionally, C12 IgA was found to be active in the biological processes of responding to endoplasmic reticulum stress, the ERAD
pathway, and topologically incorrect protein (Fig. 6H and I).

3.7. Exploring the intercellular communication between B cells, plasma cells, and tumor cells

Numerous investigations have demonstrated the existence of a diverse spectrum of mutual influence between B cells, plasma cells,
and tumor cells. This interplay exerts a profound influence on the progression of cancer [34]. To elucidate the intricate mechanism of
cell-cell interaction between these cells, we established a separate intercellular communication network between B cells, plasma cells,
and tumor cells in HNSCC (Fig. 7A). Three patterns of interactions and 20 significant signaling pathways were identified (Fig. 7B). We
generally describe the inferred strengths of incoming and outcoming interaction, in which C11 GCBs and C14 GCBs are the main cell
type expressing ligands and receptors that actively participate in cell-cell interaction. These results suggest that GCBs is associated with
tumors and plays a central role in TME (Fig. 7C). As the observed C11 GCBs and C14 GCBs played a central role in the intercellular
communications at HNSCC, we further explore the interactions between incoming and outgoing communication patterns of target cells
and secreting cells. Notably, in outgoing communication patterns of secreting cells of GCBs, CD99 and SEMA4 are shown as the most
predominant signaling in C11 GCBs compared to other signaling pathways (Fig. 7D and E). Consistent with these observations, GCBs
andMBs are the core of the interaction between B cells and tumor cells (Fig. 7G and H). In summary, the intercellular interaction based
on CD99 and SEMA4 signaling pathways is the molecular basis of GCBs-centered TME observed in HNSCC.

3.8. GCBs based regulatory network detect tumor-specifc signaling pathways in HNSCC

To unveil the intricate signaling pathways that contribute to the multifaceted intercellular communications, we computed the
CD99 and SEMA4 signaling pathways (Fig. 8A–F). Tumor-specific C11 GCBs could express CD99 and SEMA4 to interact with some
receptors of tumor cells (Fig. 8B–G). Regarding the CD99 signaling pathway, we observed that C11 MEF2B+ Germinal center B cells
and C14 STMN1+ Germinal center B cells highly expressed CD99 to interact with the tumor cell receptors, C4 and C13 of memory B
cells (Fig. 8C–E). In SEMA4 signaling pathway network, the specific interaction network of C11 and C14 GCBs with tumor cells was
also observed (Fig. 8H–J). These phenomena show that CD99 and SEMA4 could potentially serve as pivotal pathways mediating the

Fig. 5. | Landscape of MBs subgroups in the HNSCC microenvironment. (A) 3253 MBs were subjected to UMAP dimension reduction, divided
into 6 cell clusters including C1 CRIP1+ Memory B cells(C1 MBs, 868), C2 LINC01781+ Memory B cells(C2 MBs, 738), C3 PPP1R15A+ Memory B
cells(C3 MBs, 620), C4 IFI30+ Memory B cells(C4 MBs, 614), C9 CD1C+ Memory B cells(C9 MBs, 258), C13 TLE5+ Memory B cells(C13 MBs, 155).
The contribution of pie chart to HPV infection status (HPV+ vs HPV− ) and Phase (G1, S, G2M) were visualized. (B–C) The bubble chart and UMAP
showed the expression of MBs top5 marker genes. (D) Visualization of relevant sample features for 3253 MBs using UMAP dimensionality reduction
clustering: nCount_RNA, CNVscore, G2M.Scorce, S.Score. (E–F) The histogram showed the distribution of HPV infection status (HPV+ vs HPV− ) and
Phase (G1, G2M, S) in each subgroup of MBs intuitively. (G–H) The violin plot shows the nCount_RNA, CNVscore, G2M.Scorce, S.Score of MBs
subgroups and their differences. **P < 0.05, **P < 0.01, ***P < 0.001, means significant difference, ns means no significant difference. The
boxplots showed the median (middle line), upper and lower quantiles (boxplot), and range of the data (violin plot). (I) The activity of different
pathways in MBs subgroups was demonstrated by GO-BP enrichment analysis and word cloud. (J) The correlation of DEGs among MBs subgroups in
positive regulation of cell communication, positive regulation of cell death, positive regulation of cellular metabolic process was analyzed by GSEA
enrichment analysis.
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interplay between GCBs and tumor cells. Furthermore, these signaling pathways possess the capacity to regulate B cell differentiation,
consequently exercising control over tumor growth. Overall, our findings underscore that the C11 GCBs manifest intricate intercellular
interplays that exacerbate the virulence of the tumor. Targeting tumor-specific cell interaction networks could be a promising strategy
for treating HNSCC.

Fig. 6. | Landscape of PCs subgroups in the HNSCC microenvironment. (A) The distribution of UMAP for the 2 subgroups in PCs. (B) UMAP was
used to illustrate the distribution of CNVscore, nCount_RNA, S.Score, and G2M.Score for each subgroup. (C) Visualization of sample characteristics
associated with different PCs and different HPV infection status (HPV+ vs HPV− ): Phase (G1, S, G2M), G2M.Scorce, S.Score, nCount_RNA, CNVscore,
differential gene expression. (D) Expression of marker genes in different PCs. (E–G) The histogram displayed the differences in cell percentage across
different HPV groups and phase groups. (H–I) Results of GO-BP enrichment analysis of differential genes and their corresponding transcription
factors and surface proteins in 2 PCs.
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3.9. Screening and validation of prognostic genes in GCBs and MBs

Considering the presence of tumor-specific signaling pathways in MBs and GCBs mentioned earlier, we will conduct an in-depth
examination of these subgroups. A total of 499 HNSCC patients from the TCGA database were finally included in this study. Uni-
variate Cox regression analysis was performed to identify the prognosis-related genes in MBs and GCBs (Fig. 9A, F, 10A, 10F). The
candidate genes were recruited into the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model to screen out
the robust prognosticators (Fig. 9B, G, 10B, 10G). Ultimately, using multivariate Cox regression analysis, we were able to construct
four prognostic risk scores consisting of prognostic genes specific to the MBs and GCBs subgroups (Fig. 9D, I, 10D, 10I). The individual
genes that constituted risk scores, which showed an important association with overall survival in MBs and GCBs, were thoroughly
shown (Fig. 9E, J, 10E, 10J, 10K). The expression of CD38, SMIM14, and TCL1A in C11 germinal center B-cells (GCBs) varied
considerably over distinct N stages (P < 0.05).

3.10. MEF2B+ GCB score based on the prognosis-related genes in C11 GCBs

We then investigated the possible mechanisms of prognostic effects of 18 prognosis-related genes that comprised the MEF2B+ GCB
score. Bubble maps demonstrated the expression of 18 prognosis-related genes in each GCBs subgroup and the associated features of
different HPV infection statuses (HPV+ vs HPV− ), Phase (G1, S, G2M), G2M.Score, S.Score, nCount_RNA, CNVscore (Fig. 11A). The
expression of 18 prognostic genes in C11 and C14 GCBs clusters were further visualized in Fig. 11B and C. Risk scores were computed
for individuals diagnosed with HNSCC within the TCGA datasets. The collected data were subsequently partitioned into cohorts of low
and high risk groups, demarcated by the median risk score (Fig. 11D above). The heatmap specifically showed the expression of genes
in high and low risk groups (Fig. 11D below). More HNSCC patients had higher survival rates (p< 0.05) observed in the low-risk group,
while the distribution of stage and TNM phase was not statistically different (Fig. 11E). The bar chart shows the risk coefficients that
make up the risk score genes (Fig. 11F). Moreover, the time-dependent ROC curve demonstrated the proficient prognostic capacity of
this model concerning the OS of HNSCC patients. The calculated Area Under the ROC Curve (AUC) values stood at 0.690 (1 year),

Fig. 7. | Cell communication network. (A) Circle visualization of interaction strength (left) and number (right) among the B and plasma cell
subgroups and tumor cells. (B) Cell and communication patterns. (C) Illustration of the incoming and outgoing interaction strengths for each of the B
and plasma cell subgroups and tumor cells. (D) Incoming communication patterns of target cells (left). Outgoing communication patterns of
secreting cells (right). (E) Heatmap shows an overview of cell-cell interactions in both outgoing and incoming signaling patterns. (F) Interaction
bubble diagram among GCBs, MBs and tumor cells. (G) The circle plots show the interaction strength (left) and number (right) of B and plasma cell
subgroups on tumor cells. (H) Circle visualization of interaction strength (left) and number (right) about tumor cells on B cell subgroups.
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0.711 (3 years) and 0.677 (5 years), as evidenced in Fig. 11G. Then, we further assessed the correlation between gene expression and
risk score in the prognostic model (Fig. 11H). The expression of five genes, ACTB, BASP1, EZR, PRDX6, and RRAS2, was positively
correlated with the risk scores (Fig. 11I), which was in agreement with the results of the previous prognostic studies (Fig. 10J),
indicating that these five genes may be tumor-related risk genes in HNSCC. Meanwhile, the five genes of ACTB, BASP1, EZR, PRDX6,
RRAS2 were highly expressed in the high risk group, and the difference between the high and low risk groups was statistically sig-
nificant (P < 0.001) (Fig. 11J). They were negatively correlated with OS (Fig. 11K). The correlation analysis between these genes was

Fig. 8. | GCBs based regulatory network detect tumor-specifc signaling pathways in HNSCC. (A, F) Illustration of the incoming and outgoing
interaction strengths for CD99 and SEMA4 signaling pathways. (B, G) Heatmaps show dominant senders, receivers, mediators and infuencers in
CD99 and SEMA4 signaling pathways of C11 GCBs inferred by network centrality score. (C, H) The violin diagram depicts the gene expression levels
in the CD99 and SEMA4 signaling pathway networks including B and plasma cells as well as malignant cells. (D) The circle diagram shows the
interaction of CD99 ligand on MBs and tumor cells. (I) The circle plot shows the interaction of SEMA4 ligand on GCBs and tumor cells. (E, J) The
hierarchy plots of signaling pathway networks indicate the regulation of CD99 and SEMA4 on B cells and tumor cells in HNSCC, as predicted by
CellChat anlysis.
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shown in Fig. 11L and M. We further investigated the differences of EZR and RRAS2 in high- and low-risk groups, different ages,
different races, and different TNM stages, and found that the gene expression was higher in both high-risk groups (Fig. 11N).

We observed that the risk group based on the MEF2B+ GCB score had independent prognostic value (P < 0.001) (Fig. 12A). A
nomogram plot was established to get a better clinical application ability by integrating the risk group based on the MEF2B+ GCB score
and clinical features (Fig. 12B). The time-dependent ROC curve demonstrated the proficient prognostic capacity of this model. The
AUC values were 0.738 (1 year), 0.769 (3 years) and 0.634 (5 years) (Fig. 12C and D). For the 1-, 3-, and 5-year survival, a satisfactory
fit was observed between the survival predicted by the nomogram and the actual survival (Fig. 12E).

3.11. Immune cells play a dual role in the dynamic ecosystem of the HNSCC microenvironment

The initiation, progression, and invasion of HNSCC are controlled by the complex network of signaling pathways in the tumor
microenvironment (TME) as well as cell-cell interactions between the tumor stroma, immune cells, and tumor cells [35]. HNSCC
microenvironment contained multiple types of immune cells, most of which are T cells and macrophages (Fig. 12F). The high risk

Fig. 9. | Screening for prognosis-related memory B cells in HNSCC patients. (A, F) Univariate Cox regression analysis was performed to identify
the prognosis-related genes. (B, G) Lasso regression analysis of prognosis-related genes. (C, H) Multivariate COX regression analysis on OS in the
TCGA cohort. (HR > 1 protective factor, <1 risk factor.) (D, I) Kaplan–Meier curves were created to estimate OS for high- and low-score groups from
TCGA cohort (P < 0.0001). (E, J) Kaplan-Meier curve showed that the prognosis of HNSCC with high expression of ATP6V0E1, PGK1, TPM3, ADK,
LGALS1, TKT was poor in OS, while that of HNSCC with high expression of MS4A1, TRAC, BLK, ITGB7 was better in OS.

L. Lin et al. Heliyon 10 (2024) e37726 

16 



(caption on next page)

L. Lin et al. Heliyon 10 (2024) e37726 

17 



group had lower immune scores and higher tumor purity than the low risk group (both P< 0.001), whichmay be related to the fact that
immune cells infiltrate into the tumor stroma within the HNSCC and interact with tumor cells (Fig. 12G and H). By analyzing the
principal components of immune cells in HNSCC, it was found that there were significant differences in the infiltration of many kinds of
immune cells between the two risk subgroups (P < 0.05). There was more CD8 T cell infiltration in the low risk group and more
macrophage M2 infiltration in the high risk group (Fig. 12I and J). In the correlation analysis between risk score and immune cells,
mast cells, NK cells, andmacrophages were significantly positively correlated with the risk score, whereas various T cells such as T cells
regulatory (Tregs), T cells follicular helper, and CD8 T cells were significantly negatively correlated with the risk score (Fig. 12K). In
addition, we also analyzed the correlation between the expression of 18 prognostic genes and the proportion of immune cells in
HNSCC. The results showed that the risk score, the gene expression of ACTB, BASP1, PRDX6 was positively correlated with macro-
phage M2 (all P< 0.05), and the risk score, the gene expression of ACTB, BASP1, RRAS2 was negatively correlated with CD8 T cells (all
P < 0.01) (Fig. 12L–N). The gene expression of RRAS2 was negatively correlated with naive B cells, plasma cells, stromal score, and
immunity score (all P< 0.05), and was positively correlated with tumor purity (P< 0.001) (Fig. 12O and P). Furthermore, RRAS2 was
positively correlated with dendritic cells activated, macrophages M0, CD4 memory T cells resting, and NK cells resting (all P < 0.05).
RRAS2 was negatively correlated with CD4 memory T cells activated, Mast cells resting, CD8 T cells, and regulatory T cells (Tregs)
(Fig. 12Q). A study has defined gene expression characteristics associated with CD4 T follicular helper cells, which are correlated with
longer progression-free survival in HNSCC patients [36].

3.12. Functional enrichment and GSEA analysis of differentially expressed genes in HNSCC patients

To scrutinize the molecular heterogeneity and explore the biological mechanism distinguishing the high-risk from the low-risk
subgroups, we discerned DEGs within the TCGA cohort [|log2(fold change)| >1, fdr<0.05] (Fig. 13A and B). The results of Gene
Ontology (GO) enrichment analysis revealed that the DEGs primarily participated in biological processes such as immunoglobulin
complex, circulating immunoglobulin complex, and external side of plasmamembrane. Their products were predominantly engaged in
immune components, encompassing immunoglobulin production, production of molecular mediator of immune response, B cell
activation, etc. Furthermore, these genes played a pivotal role in biological molecular functions, which covered antigen binding and
immunoglobulin receptor binding, etc. (Fig. 13C). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways mainly included
the B cell receptor signaling pathway, Ras signaling pathway, PI3K− Akt signaling pathway, Cytokine− cytokine receptor interaction,
Primary immunodeficiency, Hematopoietic cell lineage, etc. (Fig. 13D). Our GSEA results, presented in Fig. 13E, revealed that Ri-
bosomal large subunit biogenesis, Mitochondrial translation, Ncrna 3 End processing, Maturation of ssu Rrna from tricistronic Rrna
transcript ssu Rrna 5 8s Rrna lsu Rrna, amino acid activation were activated, while antigen receptor mediated signaling, regulation of B
cell activation, B cell mediated immunity, positive regulation of B cell activation, B cell receptor signaling pathway were suppressed in
the GCBs subgroup. According to the results of GSEA, many B-cell-associated pathways were suppressed in GCBs, highlighting the
presence of a B-cell response in patients with HNSCC.

3.13. Relationship of the OS in HNSCC patients among the TMB subgroups and drug sensitivity

In the gene mutation spectrum of the risk and age groups, 466 (91.37 %) of 510 HNSCC patients had the gene mutation (Fig. 13F
left). Among the 18 prognostic genes, 31 (6.08 %) had gene mutations in 510 HNSCC patients (Fig. 13F right). We further investigated
the frequency of CNV in a total of 526 samples. As shown in Fig. 13G, ACTB, RRAS2, SERPINA9, TCL1A, PKM, EZR, LCK, CD38, and
BIK had significant CNV amplification frequencies. In addition, the probability of simultaneous mutations in two groups of genes, PKM
and SERPINA9, TCL1A and STAG3, was higher (P < 0.05) (Fig. 13H). We selected the top 6 genes of somatic mutation rate for single
nucleotide polymorphism (SNP) analysis and found that SERPINA9, STAG3, ACTB, CD38, LCK, and PKM were dominated by missense
mutation (Fig. 13I). In the two risk subgroups, the TMB of the high risk group was higher than that of the low risk group (P < 0.001)
(Fig. 13J), and TMB was positively correlated with the risk score (P < 0.001) (Fig. 13K). Combined with the survival analysis in
Fig. 13L, the survival time of patients in high risk-high TMB group was the shortest, while that in low risk-low TMB group was the
longest, and the OS of patients in each group was significantly different (P < 0.0001). The AUC values were 0.541 (1 year), 0.532 (3
years), and 0.5I2 (5 years) (Fig. 13M). This indicates that the TMB model has a discernible predictive ability for the prognosis of
HNSCC patients. This indicates that the TMB model has a discernible predictive ability for the prognosis of HNSCC patients.
Furthermore, in drug sensitivity analysis, HNSCC patients in the low-risk subgroup demonstrated enhanced responsiveness to cisplatin
and docetaxel in chemotherapy (Fig. 13N). In contrast, the high-risk subgroup was more sensitive to Nilotinib and Rapamycin, both
targeted drugs (Fig. 13O). The IC50 values of ABT.263, AKT.inhibitor.VIII, CCT007093 were higher in the high-risk subgroup, and
Bosutinib, Epothilone. B and Pazopanib were higher in the low-risk subgroup (Fig. 13P). These discoveries not only furnish invaluable
insights into selecting suitable chemotherapy and targeted drugs following the risk score of HNSCC patients afflicted with HNSCC but

Fig. 10. | Screening for prognosis-related germinal center B cells in HNSCC patients. (A, F) Univariate Cox regression analysis was performed
to identify the prognosis-related genes. (B, G) Lasso regression analysis of prognosis-related genes. (C, H) Multivariate COX regression analysis on OS
in the TCGA cohort. (HR > 1 protective factor, <1 risk factor.). (D, I) Kaplan–Meier curves were created to estimate OS for high- and low-score
groups from TCGA cohort (P < 0.0001). (E, J, K) Kaplan-Meier curve showed that the prognosis of HNSCC with high expression of HMMR,
HSP90AA1, PRDX6, ACTB, BASP1, EZR, RRAS2 was poor in OS, while that of HNSCC with high expression of LRMP, RGS13, CD38, LCK, SMIM14,
TCL1A was better in OS. (L) The bar diagrams show the distribution of the expression of CD38, SMIM14 and TCL1A in N0, N1, N2, N3, NX.
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also facilitate informed clinical therapeutic deliberations.

3.14. In vitro experiment

Based on the cell communication analysis findings using cellchat between MEF2B+ B cells (C11 GCBs) and tumor cells, we con-
ducted in vitro knockdown experiments targeting the PLXNB2 gene in the head and neck cancer cell line. The results, illustrated in
Fig. 14A and B, manifest a conspicuous reduction in the proliferation capacity of both cell lines, discernibly contrasting with the
control group. Furthermore, plate cloning experiments unveiled a pronounced suppression in both the quantity and size of cell colonies
after the knockdown of the PLXNB2 gene in both cell lines (Fig. 14C and D).

Subsequent wound healing experiments showcased a statistically significant decrease in the cell migration rate within the PLXNB2
knockdown group (Fig. 14E and F). Moreover, Transwell experiments demonstrated a marked reduction in the number of cells
penetrating the lower chamber following PLXNB2 gene knockout, indicative of a substantial inhibition of the migration and invasion
capabilities of head and neck cancer cells (Fig. 14G and H).

3.15. Immunofluorescence detection of MEF2B+ B cells

Three tumor samples were used to explore the relationship between MEF2B and tumor microenvironment in HNSCC by mIHC
(Fig. S3). B cells were stained with anti-CD79a, and CD8+ T cells were stained with anti-CD8, and the tumor epithelium was stained
with anti-EPCAM. It was revealed that CD8+ T cells were less enriched in the MEF2B and CD79a double-positive area, suggesting that
high-level of MEF2B in CD79amight correlated with lower immune response. Thus, we have investigated the tumormicroenvironment
feature of MEF2B + B cell in HNSCC through bioinformatics analysis and mIHC.

4. Discussion

HNSCC is one of the most common malignant tumors in the world, with a high metastatic rate and low survival rate, often
accompanied by dysfunctions such as articulation and eating and disruption of facial appearance [37]. It was found that HNSCC
exhibited immunosuppressive features [38]. Tumor-infiltrated B cells are an essential component of the tumor microenvironment
(TME), and they play a fundamental role in the immunotherapeutic response as the primary effectors of humoral immunity [39].
However, in TME, B cells exert both pro- and anti-tumor effects. On the one hand, B cells exert their anti-tumor effects in three ways: 1.
secreting tumor-specific antibodies, promoting T cell functions [40]; 2. secreting Granzyme B, interferon-γ (IFNγ), and tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) to kill tumor cells directly [41–43]; 3. secreting immunoglobulins to mediate the
processes associated with complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC),
antibody-dependent cell-mediated phagocytosis (ADCP) [44]. On the other hand, B cells can also promote tumor progression through
several mechanisms, such as TIM-1+ Bregs. B cells can produce IL10, which inhibits the immune-killing effect of T cells [15]. B cells can
also produce cytokines such as IL-1β to promote the growth and invasion of cancer cells [45]. CD20+ B cells in TME are mainly
associated with a good prognosis in different solid tumors, including melanoma, colorectal, gastric, and non-small cell lung cancer
[46–49]. Distel et al. showed that CD20+ tumor-infiltrating lymphocytes are prognostic indicators of favorable outcomes in early-stage
HNSCC. Conversely, an inverse correlation emerged in advanced stages, implying a plasticity in B cells’ functional and compositional
attributes throughout the disease [50]. Consequently, B cells may be significant in the prognosis of HNSCC patients and may work as a
predictive biomarker for immunotherapy [51].

Historically, investigations into B cells have predominantly relied on Immunohistochemistry (IHC) or flow cytometry techniques,
which inherently constrain the precise categorization of B cell populations. Typically, based on their differentiation progression, B cells
can be stratified into three primary subgroups: naïve B cells, Memory B Cells (MBCs), and Antibody-Secreting Cells (ASCs), each
manifesting distinctive phenotypic profiles and functions in TME [52]. Due to the classification, functionality, and spatial presence of
different B cell subgroups in different tissues and the low proportion of B cells in specific tumors, B cells are also commonly classified as
CD19+CD20+ B cells and CD138+SDC1+ PCs. The application of scRNA-seq provides higher resolution for identifying B cell subgroups.
In our study, we analyzed the intratumoral B cell profiles within HNSCC and investigated the functional information of
tumor-responsive B cells. From a longitudinal perspective, we used cluster analysis to divide B cells into NBs, GCBs, MBs, and PCs for

Fig. 11. MEF2B+GCB score. (A) Visualization of genes constituted the MEF2B+ GCB score in different GCB subgroups and different HPV infection
statuses (HPV+ vs. HPV-), Phase (G1, S, G2M), and G2M.Scorce, S.Score, nCount_RNA, CNVscore, differential gene expression. (B–C) Expression of
18 prognosis-related genes in C11 and C14 subgroups. (D) Distribution and median value of risk scores of HNSCC patients. Distribution of OS status
and risk scores of HNSCC patients. The heatmap showed the expression of 18 prognosis-related genes in high and low-risk groups. (E) Pie charts
depict the differences in clinical characteristics (status, stage, TNM, phase) between high and low-risk groups in HNSCC. (F) The bar chart shows the
risk coefficients that make up the risk score genes. (G) Time-dependent ROC curves and AUC values evaluate the prognostic performance of the risk
score model at 1, 3, and 5 years. (H) An overview of the correlation between 18 prognosis-related genes. Red indicates a positive correlation, and
blue indicates a negative correlation. (I) ACTB, BASP1, EZR, PRDX6, and RRAS2 were positively correlated with risk scores. CD38, LCK, RGS13,
SMIM14, and TCL1A were negatively correlated with risk score (P < 0.001). (J) The differential expression of ACTB, BASP1, EZR, PRDX6, and
RRAS2 in high and low-risk groups. (K) ACTB, BASP1, EZR, PRDX6, RRAS2, and risk score were negatively correlated with OS. (L–M) The cor-
relation analysis among ACTB, BASP1, EZR, PRDX6, and RRAS2. (N) The differences of EZR and RRAS2 in high and low risk groups, different age
groups, different races and different TNM stages.
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the first time. High-throughput scRNA-Seq and pseudotime trajectory analysis showed that in the early stage of tumor-infiltrating B cell
development in HNSCC, NBs and GCBs with high differentiation ability were primarily present. In contrast, in the later stage of
development, a large number of MBs and a small number of PCs appeared. Nevertheless, the composition of B cells changes differently
during the development of different tumors and promotes or inhibits tumor development. In advanced non-small cell lung cancer
(NSCLC), a decrease in naive-like B cells is associated with a poor prognosis, whereas plasma-like B cells inhibit cancer cell growth in
the early stage of NSCLC but promote cell growth in the advanced stage of NSCLC [53]. B cells isolated from early-stage colorectal
cancer (CRC) exhibited a pre-B cell-like phenotype characterized by the expression of tumor suppressor molecules. In contrast, B cells
derived from advanced CRC displayed a propensity for differentiation into plasma cells and predicted a poor prognosis [54]. Research
has revealed that activated B cell populations exhibit a better prognosis, higher rates of immune cell infiltration, and significant levels
of immune checkpoint expression, including elevated PD-L1 levels [55]. In addition, the composition of tumor-infiltrating B cells
varies in many ways across the transversal dimensions of the tumor. The objective diversity of B cell subgroups in different tumors and
the subjective individualized approach of single-cell analysis contribute to the diversity of B cell subgroup definitions. For example, a
higher proportion of IgG plasma cells were found at the tumor sites than in the adjacent normal mucosal tissues in CRC [56]; however,
in a study in NSCLC, there were more B cells in the adjacent tissues than in the tumor, which may be related to infiltration of in-
flammatory cells [53]. B cells show less infiltration in esophageal squamous cell carcinoma (ESCC), breast invasive carcinoma (BRCA),
kidney cancer (KIRC), and hepatocellular carcinoma (HCC) than lung cancer (LC), colon adenocarcinoma (COAD), and skin cutaneous
melanoma (SKCM) [57]. The above results can reveal the existence of specific B cell subgroups of TME in different tissues, thus
revealing the immunogenic or immunosuppressive of TME.

The germinal center (GC) is located in the follicular zone of the secondary lymphoid organs. A study has generated a blueprint for B
cells, categorizing them into two distinct developmental pathways: extrafollicular and germinal center. The data indicates a balance
between the extrafollicular and germinal center responses in tumor-infiltrating B cells, suggesting that humoral immunity may be
utilized for B cell-targeting immunotherapy [58]. This particular structure aggregates B cells during the humoral immune response
[59]. Antigen-specific B cells accumulate in this remarkable structure and subsequently expand to produce high-frequency mutations
in somatic cells, undergo antibody-type switching, and eventually turn into high-affinity B cells against the antigen, a specific means of
targeting foreign invading antigens [60,61]. B cells undergo somatic high-frequencymutations along with high-affinity clones directed
against antigens, and the clones produce immunoglobulin molecules with higher affinity for antigens [62,63]. Increased immuno-
globulin affinity also requires antibody-type conversion. This process that requires the involvement of an enzyme called
activation-induced cytidine deaminase (AID), which is highly expressed in B cells in the germinal center and is an essential enzyme in
regulating the immune response in the germinal center, as well as being involved in the process of high-frequency mutation in somatic
cells described above [64,65]. AID-mediated high-frequency mutations and type conversions make B-cell mutation rates much more
likely, implying the potential for generating uncontrolled cancer cell clones and that germinal centers are critical sites for lymphocytic
cancer production [66]. The immune response to GC depends on follicular helper T cells (Tfh cells), found in the follicular zone of
secondary lymphoid organs, and co-localizes with GCBs to assist in B cell differentiation and clonal selection [67,68]. Tfh cells secrete
cytokines and membrane surface molecules in direct contact with the GCBs, transmitting signals to the GCBs to help them differentiate
into MBs or high-affinity PCs [69,70]. The recruitment of suitable Tfh cells into the GC during the humoral immune response is vital for
the maturation of antibody affinity and the generation of an effective humoral immune response.

This paper finds that molecules on GCBs enable B-cell action on tumor cells by expressing the high-affinity ligands CD99 and
SEMA4, which are involved in synaptic junctions to transmit signals for intercellular communication. SEMA4 is a member of the
Semaphorin family of molecules, named for the fact that family members all have a sema structural domain consisting of 7 β-folded
sheets in their molecular structures, consists of 8 subfamilies, and initially associated with axon guidance and neural development
[71–73]. Because of its functional specificity, the immune system is most commonly characterized by migratory movements of cells.
The most crucial function of Semaphorin signaling is its involvement in the migratory process of immune cells.

Dendritic cells (DCs) require SEMA4A for T-cell activation, and Th1 cells also precisely express SEMA4A, promoting the differ-
entiation of activated T cells into Th1 subgroups [74]. SEMA4D is also abundantly expressed on activated T cells and has been reported
to stimulate the production of high-affinity antibodies by humoral immunity [75,76]. Semaphorin involves several physiological
processes such as cardiac development [77], angiogenesis and regeneration [78,79], osteoclastogenesis [80], and immune regulation
[81]. It also engages in many pathological human disorders, including tumorigenesis and metastasis [82], neurogenic disorders [83],
and immune disorders [84]. A growing amount of evidence suggests that Semaphorin plays an essential role in tumor development and

Fig. 12. | Construction and verification of Nomogram and analysis of immune cell infiltration. (A) Multivariate analyses of the prognosis
model. (B) Nomogram plot constructed by combining the risk score and clinical features. (C–D) AUC values evaluate the prognostic performance of
the risk score model at 1, 3 and 5 years. (E) Deviations of actual 1-year, 3-year, and 5-year survival probabilities. (F)A heat map of principal
component analysis for the immune cell infiltration between high and low risk groups. (G–H) Differential analysis of estimate score, immune score,
stromal score, and tumor purity between high and low risk groups. (I)A boxplot of immune cells in the two risk subgroups. (J)Differential analysis of
immune cell infiltration distribution between high and low risk groups. (K)The correlation between risk score and immune cells. The horizontal axis
represents the correlation with the risk score, the vertical axis represents the proportion of immune cells, and the size of the circle represents the
absolute value of the correlation coefficient. The larger the circle, the higher the correlation. (L)The correlation between prognostic genes and
immune cells. Red indicates positive correlation, blue indicates negative correlation, *P < 0.05, **P < 0.01. (M)An overview of the correlation of
immune cells. (N)The distribution of prognostic genes, estimate score, immune score, stromal score, tumor purity and immune cells in high and low
risk groups. (O) RRAS2 was positively correlated with NBs, MBs, PB. (P) RRAS2 was negatively correlated with stromal score, immune score and
tumor purity. (Q) Analysis of the correlation between RRAS2 and immune cells.
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holds promise as a potential therapeutic target in various tumors.
CD99 is a 32 kDa transmembrane protein encoded by the pseudoautosomal geneMIC2 [85,86]. CD99 is well known to participate

in several crucial biological processes, including cell adhesion [87,88], migration [89,90], apoptosis [89,91], T cell differentiation [92,
93], inflammation [94], and immune responses [95], which suggests that CD99 plays a vital role in the peripheral immune response
and cell differentiation. CD99 exerts dual effects on the clinical outcomes of patients afflicted with solid tumors. On the one hand,
CD99 may act as a tumor suppressor in certain tumors. In patients with NSCLC, increased levels of CD99 stromal expression are
associated with better prognosis [96]. In osteosarcoma, CD99 expression is down-regulated in the majority of patient samples. In
contrast, overexpression of CD99 significantly negatively impacts osteosarcoma cell growth and survival, eliminating tumorigenicity
and metastatic capacity [97]. On the other hand, CD99 can also be an oncogene for tumor migration and invasion. CD99 is strongly
correlated with low survival and poor prognosis in gastric adenocarcinoma [98]. Overexpression of CD99 significantly increased
migration and invasiveness of glioma cells and decreased survival [99,100]. High expression of CD99 is a distinguishing feature of
Ewing sarcoma (EWS). As a result, CD99 stands out as the most frequently used diagnostic marker and therapeutic target for EWS
[101]. Our study found that tumor cells are the only target cells of CD99 and SEMA4 signaling pathway, and the source of CD99 and
SEMA4 ligands is also only GCBs, so it is speculated that GCBs may also be able to promote the development of HNSCC through CD99
and SEMA4 signaling pathway. Hence, CD99 and SEMA4might serve as robust biomarkers for HNSCC and a promising target for tumor
therapy.

By integrating risk scores and clinical characteristics, we created a risk score model based on 18 GCBs risk genes, and the inde-
pendent prognostic value of this model was subsequently validated. We used CIBERSORT, ssGSEA, and Xcell to analyze immune cell
infiltration in HNSCC samples and to distinguish between different immune cell subgroups in the immune microenvironment, which
have different prognostic implications. Compared with patients in the high-risk group, the low-risk group had a higher immune score
and a greater abundance of tumor-infiltrating immune cells (TIIC), which resulted in a better prognosis. The low-risk group had more
CD8+ T cell infiltration, and the high-risk group had more macrophage M2 infiltration. CD8+ T cells are the central effector cells in
anti-tumor immunity by directly lysing tumor cells by releasing multiple cytokines and enzymes [102,103]. In the breast cancer tumor
microenvironment interacting with tumor cells, the higher the number of CD8+ T cells, the better the regulation of anti-tumor activity
[104]. CD8+ T cells are closely linked to the survival of tumor patients, with patients with higher CD8+ T cell counts having a higher
5-year survival rate [105] and a better prognosis [106,107]. M2 macrophages can suppress tumor immunity by secreting the
immunosuppressive factors IL-10 and TGF-β, and at the same time, secrete EGF to promote neovascularisation within the tumor, which
promotes tumor invasion and metastasis [108,109]. Increased infiltration of M2 macrophages in breast cancers indicates a poor
prognosis [110,111]. These findings are consistent with our results in HNSCC. In summary, the ratio of immune effector cells to
suppressor cells, the location of immune cell infiltration, and the degree of immune cell activation in TME also affect the prognosis of
patients and their clinical immunotherapy response.

There are some limitations to this study. Firstly, the data in this study came from part of the open single-cell cohort, which may not
be representative because of the small sample size of B-cell studies in HNSCC. Secondly, there is a lack of studies on the association of B
cells with treatment efficacy in HNSCC, which needs to be analyzed and studied in the future by further expanding the sample size.
Thirdly, some studies related to assessing B cells on prognosis and efficacy in HNSCC are still controversial. These differences may be
because B cell subgroups are highly functionally plastic and heterogeneous, so the composition and localization of tumor-infiltrating B
cells vary. Hence, future validation in clinical trials is necessary.

In conclusion, we report that GCBs are B-cell-specific prognostic biomarkers for survival in HNSCC. The emergence and devel-
opment of HNSCC are dependent on somatic cell gene mutations and are closely connected with the tumor microenvironment. All anti-
tumor or pro-tumor factors form a network in the tumor microenvironment that determines tumor initiation, progression, and
outcome. Therefore, we can further apply B cells in diagnosis and therapeutic evaluation and develop targeted therapies against the
tumor immune microenvironment. These results underscore a compelling rationale for employing B-cell markers in patient stratifi-
cation and exploring innovative therapeutics targeting B-cell subgroups.
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Fig. 13. | (A–B) DEGs analysis between high and low risk groups. (C–E) Functional enrichment analysis between the high and low risk groups of
HNSCC patients. (C) Results of the GO enrichment analysis. (D) Results of the KEGG enrichment analysis. (E) Enrichment plots from the gene set
enrichment analysis. Biological processes enriched in the high-risk group of HNSCC patients. Signaling pathways enriched in the low-risk HNSCC
samples. (F) The waterfall map showed the distribution of the top 20 genes of TMB in the high and low risk groups. The horizontal coordinates
represent the different samples and the vertical coordinates represent the genes. The different colors in the note below represent different types of
mutations, the upper bars represent the probability of mutation in each sample, and the right bars represent the proportion of different types of
mutations in each gene. (G) The CNV amplifcation, deletion or absence of data of risk genes. (H) Analysis of the correlation between gene and gene
mutation. Mutually exclusive: if one gene is mutated, there is a high probability that no mutation will occur in the corresponding gene.
Co− occurrence: two genes mutate at the same time. (I) The sample numbers, type, and location of mutations in each gene. The figure notes below
represent the different mutation types. The dots in the figure represent the samples in which the mutation occurred, and the connected vertical lines
indicate the location of the mutation. (J) TMB in high and low risk groups. (K) Correlation analysis between risk scores and TMB (P < 0.001). (L)
Survival analysis of high risk-high TMB, high risk-low TMB, low risk-high TMB, low risk-low TMB. (M) AUC values evaluate the prognostic per-
formance of the TMB model at 1, 3 and 5 years. (N–P) Chemotherapy and targeted drugs sensitivity of high- and low-risk subgroups.
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Fig. 14. | PLXNB2 significantly affects the proliferation and migration of head and neck cancer cell lines. (A, B) CCK-8 experiment. After
PLXNB2 knockdown, the proliferation ability of HN-5 and UMSCC-47 cell lines decreased significantly. (C, D) Plate cloning experiment. After
PLXNB2 knockdown, the colony-forming ability of HN-5 and UMSCC-47 cell lines was significantly decreased. (E, F) wound healing test. After
PLXNB2 knockdown, the migration ability of HN-5 and UMSCC-47 cell lines decreased significantly. (G, H) Transwell experiment. After PLXNB2
knockdown, the migration and invasion ability of HN-5 and UMSCC-47 cell lines were significantly reduced. (*P < 0.05; **P < 0.01; ***P < 0.001).
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Abbreviation

(HNSCC) Head and neck squamous carcinoma
(OS) Overall survival
(TIME) Tumor immune microenvironment
(bulk RNA-seq) Bulk RNA-sequencing
(scRNA-seq) Single-cell RNA-sequencing
(HNSC) Head and Neck Cancer
(Tfh cells) Follicular helper T cells
(BCR) B cell receptor
(PBL) Peripheral blood
(DEGs) Differentially expressed genes
(NBs) Naive B cells
(GCBs) Germinal center B cells
(MBs) Memory B cells
(PCs) Plasma cells
(GEO) Gene Expression Omnibus
(TMB) Tumor mutational burden
(CT) Computed Tomography
(MRI) Magnetic Resonance Imaging
(TIME) Tumor immune microenvironment
(Bregs) Regulatory B cell subgroups
GCBs
(LASSO) Least Absolute Shrinkage and Selection Operator
(AUC) Area Under the ROC Curve
(TME) Tumor microenvironment
(Tregs) T cells regulatory
(GO) Gene Ontology
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(KEGG) Kyoto Encyclopedia of Genes and Genomes
(IFNγ) Interferon-γ
(TRAIL) Tumor necrosis factor-related apoptosis-inducing ligand
(CDC) Complement-dependent cytotoxicity
(ADCC) Antibody-dependent cell-mediated cytotoxicity
(ADCP) Antibody-dependent cell-mediated phagocytosis
(IHC) Immunohistochemistry
(ASCs) Antibody-Secreting Cells
(NSCLC) Non-small cell lung cancer
(CRC) Colorectal cancer
(ESCC) Esophageal squamous cell carcinoma
(BRCA) Breast invasive carcinoma
(KIRC) Kidney cancer
(HCC) hepatocellular carcinoma
(LC) Lung cancer
(COAD) Colon adenocarcinoma
(SKCM) Skin cutaneous melanoma
(GC) Germinal center
(AID) Activation-induced cytidine deaminase
(DCs) Dendritic cells
(EWS)
Ewing sarcoma
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