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In the industry of fermented food and beverages, yeast cultures are often selected and
standardized in order to ensure a better control of fermentation and a more stable
product over time. Several studies have shown that the organoleptic characteristics
of fermented products reflect geographic variations of the microbial community
composition. Despite investigations of the worldwide distribution and genetic diversity of
Saccharomyces cerevisiae, it is still unclear how and to what extent human intervention
has shaped the brewer’s yeast population structure. The genotypic and phenotypic
characterization of environmental yeast populations and their potential application
in the fermentative processes can significantly enrich the industrial fermentation
products. Social insects have proven to be closely associated to the yeasts ecology.
The relationships between yeasts and insects represent a fundamental aspect for
understanding the ecological and evolutionary forces shaping their adaptation to
different niches. Studies on phylogenetic relationships of S. cerevisiae populations
showed genetic differences among strains isolated from gut and non-gut environments
(i.e., natural sources and fermentation). Recent evidences showed that insect’s gut is
a reservoir and an evolutionary niche for Saccharomyces, contributing to its survival
and evolution, favoring its dispersion, mating and improving the inter-specific hybrids
production during hibernation. Here, we discuss the potential use of social insects for
production of a wide range of hybrid yeasts from environmental Saccharomyces isolates
suitable for industrial and biotechnological applications.

Keywords: Saccharomyces cerevisiae, social insects, yeast–insect association, hybrids, wine, beer,
biotechnological application, ecology

HISTORY OF FERMENTATION AND YEAST DOMESTICATION

Many species of Saccharomycetes and non-Saccharomycetes are essential components of human
production of fermented food and beverages. Saccharomyces cerevisiae, known as the brewer’s or
bakery’s yeast, has been widely used for its fermentative capacity for thousands of years (Legras
et al., 2007) (Figure 1). The fermentation process has allowed preservation of perishable food
and made bioavailable nutrients and microelements, improving the quality of foods (Hatoum
et al., 2012). The oldest traces of yeast and fermented foods have been found in the tomb of U-j
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FIGURE 1 | History of fermentation and yeast domestication. S. cerevisiae and human activities related to the production of fermented products. In the timeline: on
the top of the dashed line, the oldest traces of S. cerevisiae across the human history and geography. Blue: fermented products; purple: wine; brown: bakery
products. Below the dashed line, events related to S. cerevisiae in the history of fermentation and scientific advancements.

of King/Jiahu in Henan in China (7,000 B.C.) (McGovern
et al., 2004), in Iran (6,000 B.C.) (Fatahi et al., 2003), in
wine jars of tomb of Scorpion King in Egypt (3,150 B.C.)
(Cavalieri et al., 2003), and in Mesopotamia (about 4,000 to
3,100 B.C.) (McGovern, 2003), demonstrating that fermentation
of cereals, honey and fruit, has been carried out since the dawn
of civilization (McGovern et al., 2004; Kupfer, 2013, 2015).
Successively, viticulture spread in Asia Minor and northern
Africa, and around 1,000 B.C. arrived in Mediterranean countries
(Legras et al., 2007). Beer production is supposed to be almost
as ancient as wine and came from the Middle East, subsequently
acquired by Germanic and Celtic populations around 1st century
A.C. (Legras et al., 2007).

The long lasting association of S. cerevisiae with fermentative
processes has led to propose the idea that its wide use caused
its domestication as adaptation to different fermented products
(Legras et al., 2007; Sicard and Legras, 2011). Yet the effect of
domestication on trait selection has been proven only in the
yeast strains used for the beer production (Piskur et al., 2006;
Berlowska et al., 2015; Gallone et al., 2016, 2018).

The art of fermentation had been developed empirically
from generation to generation. Scientific awareness related
to biochemical transformations during fermentation started
around the end of the 18th and in 19th century (Gay-
Lussac, 1815; Kützing, 1837; Cagniard-Latour, 1838). In 1883,
the first pure yeast culture was created by Emil Christian
Hansen for beer production (Figure 1). Hansen had been

brought to work from Copenhagen University to the Carlsberg’s
Laboratories by Jacobsen, the founder of the Carlsberg Empire,
to standardize the quality of beer by isolating and stabilizing
the microorganism used in the brewing process. Subsequently
in 1890, Hermann Mueller-Thurgau planned the process for
a better control and repeatability of wine fermentations with
starter cultures (Marsit and Dequin, 2015) (Figure 1). The rise
of the industry of fermented products and the application of
innovative biotechnological methods for selection of enhanced
yeast strains or production of hybrids suitable for different types
of fermentable substrates enables a much more defined control of
the fermentation process than the generally used strains.

SOCIAL INSECTS AND YEASTS OF
NATURAL ENVIRONMENTS

The ability of yeasts to metabolize sugars by producing ethanol
through anaerobic fermentation even when oxygen is available
(the Crabtree effect) (Chambers and Pretorius, 2010) and in
presence of high glucose concentrations (Otterstedt et al., 2004)
has enabled S. cerevisiae to gain an evolutionary advantage
over other microorganisms (Albergaria and Arneborg, 2016).
Ethanol production and acidification of the growth medium have
always kept bacteria and other aerobic molds under control. The
microbial communities, including yeasts, can play a key role in
triggering fermentation processes conferring a typical bouquet,
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thanks to volatile compounds (El-Sayed et al., 2005; Christiaens
et al., 2014). S. cerevisiae produces several aromatic esters: ethyl
acetate (varnish, nail polish, and fruity aroma), isoamyl acetate
(banana and pear), isobutyl acetate (banana), phenylethyl acetate
(fruity and flowery), ethyl hexanoate (apple, banana, and violets),
ethyl octanoate (pineapple and pear), and ethyl decanoate (floral)
(Ruiz et al., 2019).

The question of the natural environmental niche for
S. cerevisiae was debated for a long time (Goddard and Greig,
2015). Environmental S. cerevisiae strains are subjected to harsh
conditions and they developed survival strategies, which are
not retained when laboratory or industrial strains are cultured
under most favorable conditions. S. cerevisiae has been isolated
from different natural environments, such as oak trees (Sampaio
and Goncalves, 2008; Zhang et al., 2010; Hyma and Fay, 2013),
maize (Hayford and Jespersen, 1999; Halm et al., 2004), various
fermentations and other substrates, including soil (van der
Aa Kuhle et al., 2001; Oba et al., 2011; Dunn et al., 2012;
Kubo et al., 2014).

Saccharomyces cerevisiae has adapted itself and evolved to
different environmental niches (Goddard and Greig, 2015; Peter
et al., 2018). Evidences indicated that, although S. cerevisiae is
found in abundance in environments, such as wineries, it does
not originate from grapevines or grape berries. Mortimer and
Polsinelli (Mortimer and Polsinelli, 1999) demonstrated that
S. cerevisiae was found at very low frequency on unripe and intact
grape berries (0.05% on average), while during grape maturation
it was present on average with a frequency of 25% on broken
berries (Mortimer et al., 1994; Polsinelli et al., 1996; Mortimer
and Polsinelli, 1999). Thus, ripe and crushed grape berries (with
high concentration of fermentable sugars), represent a suitable
environment for S. cerevisiae. In a recent study (Taylor et al.,
2014) the rare presence of S. cerevisiae in intact grapes was
confirmed: one S. cerevisiae cell was found among 20,000 cells of
other fungi by metagenomic approach.

Researchers wondered how S. cerevisiae could be carried on
the grapes. The agents proposed to play a role in spreading
of microorganisms in the environment are animal vectors (e.g.,
insects and birds) (Mortimer and Polsinelli, 1999; Goddard
et al., 2010; Stefanini et al., 2012). Unlike bacteria and fungal
spores that can easily be dispersed by other means (e.g.,
air/wind) (Madden et al., 2018), yeast spores are not adapted
for wind-borne transmission. Many decades ago (Grace and
Collins, 1976), testing the dispersion rate of bacteria and yeasts
spores using a wind tunnel, demonstrated that the wind is

unable to disperse S. cerevisiae cells when these are adhered to
the leaf surface.

Evidences showed that insects have a mutualistic relationship
with yeasts (Belisle et al., 2012; Stefanini et al., 2012, 2016;
Madden et al., 2018) and play a key role for yeast dispersion
in natural environments. Saccharomyces spp., in particular
S. cerevisiae, were detected in different insects worldwide
(Stefanini et al., 2012; Buser et al., 2014; Jimenez et al., 2017;
Meriggi et al., 2020; YeastFinder1; Table 1).

Social insects represent a fulcrum in the yeast ecology and
evolution. At the same time, volatile compounds produced by
yeasts attract insects that preferentially foraged nectar sources,
and influence their behavior and physiology (Becher et al., 2012;
Babcock et al., 2017; Stefanini, 2018).

In our previous studies (Stefanini et al., 2012, 2016), we
demonstrated not only that wasps contribute to dispersion of
yeast strains into the environment, but also that they can host
yeasts in their gut, contributing to their survival and biodiversity.
Polistes dominula allows the transmission of yeasts to the progeny
(Stefanini et al., 2012), ensuring the presence of yeast in the
colony and in the foraging area. This make a flow of yeast cells
in the environments (in the vineyard, on grapes) from autumn
to spring. These observations allow to explain where yeasts can
reside during the winter and how reappear during the spring and
summer, an unsolved question up until few years ago.

In spite these evidences, specific factors that select natural
yeasts in the insect gut have not yet been found. Our recent
findings showed that yeast has evolved strategies to adapt to
the gastrointestinal tract of insects (Stefanini et al., 2012, 2016;
Ramazzotti et al., 2018). The wall of the ascospore is able to
resist to the insects gastric digestion, allowing survival within the
host gut (Coluccio et al., 2008; Stefanini et al., 2012, 2016). More
recently, we demonstrated that host’s gut, not only of insect but
also human, is a potential reservoir for yeasts (Ramazzotti et al.,
2018). Genetic and phenotypic differences, including peculiar
cell wall composition, different ability to sporulation and to
induce host immune response were discovered between strains
isolated from human and insect’s gut and non-gut environment,
suggesting the existence of gut-specific features that could
represent a selective advantage for survival and expansion in the
gut environment (Ramazzotti et al., 2018).

Based on our previous studies (Stefanini et al., 2012,
2016), the insect’s gut is an advantageous ecological niche for

1www.stefaninilab.com/tools/

TABLE 1 | Isolation of Saccharomyces spp. in the insects’ gut and geographical distribution.

Insect order Insect common name Yeast species Geographical distribution References

Hymenoptera Wasps
Honeybees

Saccharomyces cerevisiae
Saccharomyces ludwigii

North America, Brasil, Europe, and
New Zeland

Batra et al. (1973), Sandhu and Waraich
(1985), Stefanini et al. (2012), Jimenez
et al. (2017), and Meriggi et al. (2019)

Diptera Fruit flies
Flies

Saccharomyces cerevisiae
Saccharomyces ludwigii

New Zeland, Australia, Taiwan,
Seychelles Islands, Brasil, and Europe

Phaff and Knapp (1956), Kircher et al.
(1982), Broderick and Lemaitre (2012),
Buser et al. (2014), and Meriggi et al.
(2019)

Coleoptera Beeteals Saccharomyces cerevisiae North America, Asia, and Africa Suh et al. (2005) and Stefanini (2018)

Frontiers in Microbiology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 578425

http://www.stefaninilab.com/tools/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-578425 October 25, 2020 Time: 13:43 # 4

Di Paola et al. Insect’s Gut and Yeast Hybrid

S. cerevisiae, favoring the intra− and inter−species mating
of yeast cells, and allowing increased fitness of hybrids, thus
representing an environment favoring the generation of yeast
genetic biodiversity.

The current used industrial strains represent a small fraction
of the natural biodiversity (Liti et al., 2009). The nature could
provide unknown strains with relevant characteristics that may
enhance the industrial fermentations. Specific strategies could
help to transfer these properties to industrial strains or create
novel strains with best performance for fermentation processes.
Here, we propose and discuss the use of wasp’s gut for accelerated
selection and production of hybrids suitable for different types of
fermentable substrates.

YEAST STRAINS AND FERMENTATION
INDUSTRY: HYBRIDS DO IT BETTER

Recent genomic studies provided a comprehensive overview of
the biodiversity of wild and industrial Saccharomyces strains
(Liti et al., 2009; Schacherer et al., 2009). Diversity within
S. cerevisiae population structure was at least in part associated
to its industrial application. According to the domestication
hypothesis, this long-term process has resulted in different strains
with specific characteristics suited for industrial fermentation,
clustering differently from wild populations (Fay and Benavides,
2005; Liti et al., 2009; Schacherer et al., 2009; Sicard and
Legras, 2011). Several studies reported genome-wide signatures
of clonal expansion of yeast strains, as well as convergent
evolution of industrially relevant traits in separate lineages (Liti
et al., 2009; Gallone et al., 2016; Parapouli et al., 2020). Yet
the only bona fide evidence for selection on genomic regions
associated to domestication was reported by Gallone et al. (2019)
that studied the whole-genome of more than 200 industrial
yeasts showing that about 25% consisted of interspecific hybrids
derived from S. cerevisiae, S. kudriavzevii, S. eubayanus, and
S. uvarum. Langdon et al. (2019) analyzed the genomes of 122
interspecies hybrids and introgressed strains in Saccharomyces
genus revealing three domesticated lineages, including wild
lineages from Europe and Northern continents of the world.
These evidences show that industrial yeasts are the result of
selection following clonal expansion and adaptation of specific
strains, shaped by genetic drift caused by bottlenecking.

Beer’s yeasts present the strongest and maybe only genetic
and phenotypic signatures of domestication (Gallone et al., 2019;
Langdon et al., 2019). The strong selective pressure imposed over
many generations allowed to obtain desirable phenotypes, but
has also dramatically affected the genomic structure and stability
of domesticated yeasts (Legras et al., 2007; Gallone et al., 2016,
2018). Hybrid strains are preferred in the industrial fermentation
because they show phenomena, such as “vigor of the hybrid”
that confer better fermentation capacity in terms of speed, use
of alternative sugar source and an enriched pattern of aromatic
compounds (Bellon et al., 2011; Piotrowski et al., 2012; Bellon
et al., 2013; Gamero et al., 2013; Snoek et al., 2015).

An example of yeast’s domestication trait is the ability
to ferment maltotriose. This trait evolved independently and

through different genetic pathways in the two main beer lineages,
such as ale (by the top-fermenting S. cerevisiae) and lager (by
the bottom – fermenter S. pastorianus, a interspecific hybrid
S. cerevisiae × S. eubayanus), suggesting strong selection pressure
(Gallone et al., 2016, 2018). S. pastorianus can ferment at
lower temperatures than S. cerevisiae (Dunn and Sherlock, 2008;
Libkind et al., 2011). This hybridization process has combined
the efficiency of S. cerevisiae in the sugar metabolism and
the cryoprotective capacities of S. eubayanus (Hebly et al.,
2015; Krogerus et al., 2015). The cryoprotective capacity was
demonstrated to be related with the mitochondrial genome
inheritance. S. eubayanus (Baker et al., 2019) and S. uvarum
(Li et al., 2019) mitochondrial genome provided with low-
temperature tolerance to the interspecies hybrids compared
when the same hybrids inherited the mitochondrial genome
of S. cerevisiae. In addition, hybrids between natural strains of
S. kudriavzevii × S. cerevisiae, selected to confer diverse flavors,
are used for the production of Trappist beers (a subgroup of
ale) (Gonzalez et al., 2008; Peris et al., 2018; Gallone et al., 2019;
Langdon et al., 2019).

On the other hand, several authors suggested that during
centuries of wine production, S. cerevisiae acquired remarkable
resistance/tolerance to high sugar concentrations and nitrogen
metabolic activity, through adaptive horizontal gene transfer and
copy number variations (Fay and Benavides, 2005; Aa et al.,
2006; Ezov et al., 2006; Ruderfer et al., 2006; Legras et al.,
2007; Stefanini and Cavalieri, 2018). These events potentially
conferred competitive advantages during must fermentation
(Almeida et al., 2017), and production of a wide spectrum
of aromatic profiles (González et al., 2007). Triple hybrid
S. cerevisiae × S. kudriavzevii × S. uvarum has shown to be
able to use fructose more efficiently than S. uvarum strain and
to restart fermentation (Christ et al., 2015), avoiding the upper
hand of bacteria and the consequent spoilage of the must.
Inactive or stuck fermentations are detrimental to wine/beer
production. These events have been reduced by the commercial
availability of selected yeast strains used as starter. However, this
practice limits the developing of wild yeasts during fermentation
(Parapouli et al., 2020). Camarasa et al. (2011) investigated
the fermentative efficiency of a set of S. cerevisiae strains,
observing that strains isolated from sugar-rich environments
were able to complete the fermentation process, while the
laboratory or environmental strains were unable. The extensive
genetic diversity of environmental S. cerevisiae isolates, in
particular of interspecific hybrids, could be an extremely
significant source of innovation for biotechnological applications
(Parapouli et al., 2020).

BIOTECHNOLOGICAL APPLICATIONS
OF INSECTS AS YEAST HYBRIDS’
PRODUCERS

The quest for increased and improved productivity and
adaptability to changing consumer preferences lead to the
study and development of industrial strains with novel and
desired properties.
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Non-genetically modified organisms (non-GMO) and GMO
techniques can be used for selection of yeast strains with suitable
traits and industrially relevant phenotypes. Jan Steensels et al.
(2014) extensively described these approaches, indicating their
advantages and limitations. Non-GMO techniques have been
developed to create performant yeast variants, that can be
freely used in industrial fermentations, without encounter any
problems with legislation and/or consumer acceptance.

Currently there are four main approaches for generate
artificial diversity in yeast strain using sexual hybridization:
(i) direct mating – crossing of two haploid cells or spores of
opposite mating types; (ii) rare mating – crossing of strains
without sporulation by occasional and rare homothallic mating-
type switch; (iii) mass mating – crossing of multiple parental
strains or a heterogeneous population of the same parental strain;
and (iv) genome shuffling of multiple strains. In addition, asexual
hybridization includes cytoduction (a method that transfer
cytoplasmically inherited traits) and protoplast fusion (asexually
merging of cells after cell wall distruption in osmotic medium).
Overall, the above mentioned approaches could have important
impact in the optimization of industrial processes, at technical
and economic level. Our previous studies demonstrated that
the insects’ gut represents the environment where S. cerevisiae
mates and interspecific hybrids arise spontaneously. After 2 and
4 months of hibernation in the wasp’s gut, S. paradoxus can
survive only in hybrid shape with S. cerevisiae. The rate of
inbreeding in S. cerevisiae spores increases up to ten times when
inoculated in the insect gut. The high frequency of outbreeding
coincides with the rates of mosaicism and genetic diversity in
yeast strains (Reuter et al., 2007).

In last years, the interest for insects for food and applicative
purposes is growing. The insects breeding is a sustainable method
with low energy impact and represents a great opportunity
for large-scale industrial applications. Social insects could play
a role in the evolution and genetic recombination of yeasts.
They seems to be a perfect niche in which the formation of
hybrids occurs naturally and much more efficiently than in any
other wild place, without employing artificial strategies of genetic
manipulation, as recently showed by Peris et al. (2020) making
synthetic hybrids by six yeast species. Wasps could provide yeast
communities with the level of genetic variation required in time
to adapt to a changing environment. Given the fast pace at which
climate change is affecting the man made, “ersatz” environment
where fermented products are produced, maintaining the genetic
variation force driven by the presence of insects could be very

important to support the adaptability of yeast to these changes.
Considering that many yeasts used in the fermentation industry
are interspecific hybrid strains, we could speculate that insects
have been the breeders of the past, having likely provided a great
deal to the evolution of brewing and wine making. The need
of product diversification present in the fermented beverages
field could look with great interest at the potential of using
wasps as breeding places to produce yeasts of biotechnological
interest, including yeasts producing beverages with a reduced
ethanol content.

CONCLUSION

Optimization of current strategies and novel technologies such as
next-generation sequencing, together with a better understanding
of complex phenotypes allows to create yeasts with more variants
and better adapted to the industrial goals. In the near future, the
fermented beverages industry could benefit significantly from the
possibility to breed insects massively and use them as a forge
for accelerated selection and production of hybrids suitable for
different types of fermentable substrates, further modeling these
according to biotechnological requirements.

We can conclude that the yeasts–insect association certainly
goes beyond the simple link between vectors and transported.
In a future perspective, a better understanding of the ecology
and relationships between insects and yeasts can play a key
role in producing fermented beverages meeting the needs of
tomorrow’s consumers.
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