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Abstract: In this study, a novel classification method for a driver’s cognitive stress level was proposed,
whereby the interbeat intervals extracted from an electrocardiogram (ECG) signal were transferred to
pictures, and a convolution neural network (CNN) was used to train the pictures to classify a driver’s
cognitive stress level. First, we defined three levels of tasks and collected the ECG signal of the driver
at different cognitive stress levels by designing and performing a driving simulation experiment. We
extracted the interbeat intervals and converted them to pictures according to the number of consecutive
interbeat intervals in each picture. Second, the CNN model was used to train the data set to recognize the
cognitive stress levels. Classification accuracies of 100%, 91.6% and 92.8% were obtained for the training
set, validation set and test set, respectively, and were compared with those the BP neural network. Last,
we discussed the influence of the number of interbeat intervals in each picture on the performance of
the proposed classification method. The results showed that the performance initially improved with
an increase in the number of interbeat intervals. A downward trend was observed when the number
exceeded 40, and when the number was 40, the model performed best with the highest accuracy (98.79%)
and a relatively low relative standard deviation (0.019).

Keywords: traffic safety; cognitive stress level; convolution neural network; BP neural network;
ECG signal

1. Introduction

Traffic safety has always been a critical global problem. For both highway traffic and urban traffic,
the influencing factors of traffic accidents, including human factors, vehicle factors and road factors,
are complicated, and a driver has the most important role in the human-vehicle-road environment. In
2018, the National Highway Traffic Safety Administration (NHTSA) reported that 3,157 fatal crashes
occurred on U.S. roadways in 2016, of which 3450 fatalities involved distracted drivers [1]. With the
development of advanced driving assistant systems and automatic driving, monitoring a driver’s
cognitive status in real time is more meaningful. On the one hand, monitoring of a driver’s cognitive
stress level is needed to develop the warning function or automatic operation correction function of a
driving assistant system; on the other hand, when the driving rights of the automatic driving need to
be handed over to the driver, knowledge of a driver’s cognitive status is necessary.

During driving, drivers often perform actions that are unrelated to the driving task, such as making
telephone calls, talking with passengers in the car, listening to music, smoking, eating, and thinking about
matters unrelated to driving. These behaviors may decrease drivers’ driving ability and increase the risk
of accidents. With the development of technology and an increase in in-vehicle electronic devices, the
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number of sources that distract drivers has increased. We refer to tasks that are unrelated to the driving
task as secondary tasks. Ratcliff et al. used a one-boundary diffusion model to model the data from two
experiments, in which subjects performed a simple simulated driving task and observed that drivers
would take longer to react in response to an unexpected situation when performing a secondary task,
such as taking a mobile call [2]. Some researchers discovered that drivers will pay attention to the vehicle
in front of them but disregard the instrument panel, side mirrors, and surrounding objects due to the
increase in workload caused by an in-vehicle secondary task [3,4]. Strayer et al. noted that a driver’s
ability to scan, predict, identify, make decisions, and execute a response was affected when driving while
performing an unrelated secondary task [5]. These reactions will affect a driver’s operation and increase
the likelihood of a car accident. According to the NHTSA, distracting driving can be categorized as three
types: visual distraction, manual distraction and cognitive distraction [6].

Recently, an increasing number of researchers have become committed to studying the monitoring
and classification methods of driver status, which can be divided into three aspects according to
the research objects: (1) classification methods based on the driving data (vehicle speed, vehicle
acceleration, steering wheel angle, etc.); (2) classification methods based on drivers’ behaviors acquired
by a camera; and (3) classification methods based on drivers’ physical data. For the first type, Chen et al.
observed a significant difference in the lateral acceleration rate and yaw rate between “normal driving”
and drowsy/distracted driving. Their study also showed that the lateral acceleration rate and yaw
rate during drowsy/distracted driving were significantly larger than those during normal driving [7].
Based on a driver’s driving data, this type of method will be affected by the driver’s experience, the
vehicle type and the road condition, which can interfere with detection and increase the difficulty of
accurate classification. For the second type, Abouelnaga et al. proposed a novel system that consists of
a genetically weighted ensemble of convolutional neural networks (CNNs) and achieved a driving
posture estimation classification accuracy of 95.98% [8]. Mbouna et al. applied a support vector
machine (SVM) to classify whether the driver in a driving event is alert or not alert based on the eye
state and head pose and accomplished continuous monitoring of the alertness of a vehicle driver [9].
Craye et al. utilized drivers’ behavior features (eye behavior, arm position, head orientation, and
facial expressions) to classify a driver’s distracted state and obtained a 90% classification accuracy [10].
However, these methods of obtaining information via a camera may involve privacy issues and have a
high demand on the ambient light. Some special cognitive distraction circumstances, such as “looked
but failed to see”, are not suitable for this type of method. For the third type, Tjolleng et al. applied
an artificial neural network based on the ECG signal to classify a driver’s cognitive workload and
achieved an 82% classification accuracy [11]. Research conducted by Guardiola et al. revealed an
increase in heart anomalies during high-stress driving, which can serve as an index to weigh a driver’s
workload [12]. This type of method is reliable because the physiological data can directly reflect a
driver’s physiological state and will change when the driver’s attention changes, and the process of
signal acquisition is more convenient and easier with the development of wireless signal acquisition
technology. Researchers in this field are paying more attention to the application of physiological
signals, such as electrocardiogram (ECG) [13–15], electroencephalogram (EEG) [16–21], galvanic skin
response (GSR) [22–25], and electrooculogram (EOG) [26–28]. Improving the accuracy and reliability
of recognition is a research goal of scholars.

In this study, a novel method for classifying a driver’s cognitive stress level by transferring
interbeat intervals of an ECG signal to pictures was proposed, and the classification accuracy of the
proposed method was compared with that of the common BP neural network classification method.

2. Materials and Methods

2.1. Novel Classification Method for a Driver’s Cognitive Stress Level

Although traditional machine learning methods can achieve a reasonable effect in the detection of
drivers’ statuses, they have some limitations. Constructing a pattern-recognition or machine learning
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system requires careful engineering and considerable domain expertise to design a feature extractor
that transforms raw data (such as original ECG signals) into a suitable internal representation or
feature vector from which the learning subsystem, often a classifier, can detect or classify patterns in
the input [29]. In this process, the selection of features is very important and has a considerable impact
on the accuracy of the final detection or classification. Identifying the most suitable features for the
model is difficult and time consuming.

In this paper, we proposed a novel method based on deep learning to detect and classify drivers’
cognitive stress levels. Because traditional machine learning methods require a substantial amount
of time to extract features from data and we may not be able to manually obtain the best features,
we employ a deep learning algorithm. Deep learning methods do not require feature engineering,
which means that we can achieve satisfactory performance by inputting raw data into a deep learning
network. A CNN is a kind of feedforward neural network with convolutional computation and a
deep structure, and is a representative deep learning algorithm. A convolutional neural network is
constructed according to the visual perception mechanism of a creature, which can perform supervised
learning and unsupervised learning. The convolutional kernel parameter sharing and sparseness of
the interlayer connection in the hidden layer enable the convolutional neural network to learn grid-like
topology features, such as pixels and audio, with less calculation and have a stable effect and no
additional feature engineering requirements for the data. We intend to apply a CNN model; thus, we
need to make some changes to our data [30,31].

As shown in Figure 1, first, we collect the ECG signals of a driver’s different statuses by simulation
experiments and extract the interbeat intervals from the ECG signals. Second, we divide the entire time
interval of the interbeat intervals into several intervals according to the distribution of the interbeat
intervals. The number of divisions is N. Third, we create an N × 1 column vector for each interbeat
interval and determine to which interval the interbeat belongs. The corresponding element of the
vector is 1, and the remaining elements are 0. Fourth, we splice consecutive m column vectors into
one n ×m matrix and transfer the matrix to a picture. Last, we use these pictures as the data set for
subsequent training.
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2.2. Data Source

To obtain the data to verify the feasibility of the proposed method, we have designed and
performed a simulation experiment to simulate the different stress levels of a driver. We set numeral
calculations as the cognitive distracting task, and the calculation difficulty is a two-digit addition and
subtraction method that requires carrying and borrowing. The participants were instructed to drive a
driving simulator (primary task) while performing a numeral calculation task (secondary task). In this
paper, we define the rest state as a low cognitive stress level (as shown in the blue phase of Figure 2),
the normal driving state as a normal cognitive stress level (as shown in the yellow phase of Figure 2)
and the distracted driving state as a high cognitive stress level (as shown in the red phase of Figure 2).
All subjects gave their informed consent for inclusion before they participated in the study. The study
was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the
Second Xiangya Hospital of Central South University Institutional Review Board.
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Figure 2. Driving simulation experiment.

The entire experiment was divided into seven sections: Practice, Rest (lasting 5 min and 30 s),
Normal driving 1 (lasting 5 min and 30 s), Numeral calculations 1 (lasting 3 min), Normal driving 2
(lasting 5 min and 30 s), Numeral calculations 2 (lasting 3 min), and Normal driving 3 (lasting 5 min
and 30 s). The ECG data, with the exception of the practice phase, was recorded. As shown in Figure 2,
the practice phase was to familiarize the driver with the driving simulator; the collection of ECG data
in this phase was not required. In the rest state, data were collected when the driver was at rest. In
the normal driving period, data was collected when the driver was under normal pressure. In the
numeral calculation period, a high-pressure state of the driver was simulated, and the driver’s ECG
data were collected.

Considering the security issues, the entire experiment was performed using the scientific vehicle
driving simulator produced by FORUM8 Co., Ltd. (Tokyo, Japan), and the map modeling software was
the UC-win/Road driving simulation software. The ECG signal was recorded by the MP150-BioNomadix
multichannel wireless physiological analysis recorder (BIOPAC Systems Inc., Goleta, CA, USA).

2.3. Signal Preprocessing

Noise is inevitable when collecting ECG data, and the main sources of noise are the power
frequency interference and the baseline drift. To accurately extract the relevant information in the
ECG signal, we need to remove the noise interference in the ECG signal before extraction. The power
frequency interference is a noise problem caused by electromagnetic radiation in the surrounding
environment during the operation of the equipment; its frequency is 50 Hz. The baseline drift refers to
the instability of the working conditions of the instrument when measuring the ECG signal, leading to
the baseline of the ECG signal being not a horizontal line but oscillating up and down. As shown in
Figure 3a,b, two main sources of noise exist in the signal. The effects of these noises can be substantially
removed by different digital filtering methods. Recently, the Blind Source Separation (BSS) techniques
such as Independent Component Analysis (ICA) are wildly used for the artifact removal of the
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physiological signals [32–34], however, our signals are single channel signals while the BSS techniques
requires multi-channels signals, thus, we choose the traditional methods to remove the noise. First, we
applied a notch filter to remove the effect of the power frequency interference. As we can see from the
ECG signal after removing the power frequency interference, shown in Figure 3c, and its spectrogram,
shown in Figure 3d, the majority of the 50 Hz noise was removed. We utilized a zero-phase filter to
correct the baseline drift; the effect is shown in Figure 3e,f.
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2.4. Data Set for the Proposed Novel Method with a CNN Model

After denoising the ECG signal, we can start to construct the data set. First, for the ECG signal
of the rest phase and normal driving 1 phase, consider the middle five minutes as the data for the
low pressure and medium pressure states, and separately consider the middle 2.5 min of the ECG
signal of numeral calculations 1 and numeral calculations 2 as the data for the high pressure state,
which is done to avoid the transition effects of different state transitions. Second, use the pan_tompkin
algorithm [35] coded in MATLAB to acquire the IBI data, and remove the abnormal points outside
the normal range of IBIs (0.6 s–1.2 s). Third, divide the IBI data into 28 intervals from 0.6 s to 1.2 s as
follows: [0.6, 0.625), [0.625, 0.65), [0.65, 0.675), [0.675, 0.7), [0.7, 0.72), [0.72, 0.74), [0.74, 0.76), [0.76, 0.78),
[0.78, 0.8), [0.8, 0.82), [0.82, 0.84), [0.84, 0.86), [0.86, 0.88), [0.88, 0.9), [0.9, 0.92), [0.92, 0.94), [0.94, 0.96),
[0.96, 0.98), [0.98, 1), [1, 1.02), [1.02, 1.04), [1.04, 1.06), [1.06, 1.08), [1.08, 1.1), [1.1, 1.125), [1.125, 1.15),
[1.15, 1.175), and [1.175, 1.2]. Fourth, determine to which interval each IBI belongs to obtain the matrix
shown in Figure 4. Last, convert the 28 consecutive IBIs to pictures to obtain the data sets for the CNN
model (as shown in the red box; the number 28 is randomly selected, which will be discussed later).
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2.5. CNN Modeling

In this research, we build an 8-layer CNN model; the CNN structure is illustrated in Figure 5. The
first five layers are convolution layers and pooling layers, and the pooling layer is positioned between
two convolution layers. Each convolution layer includes 6 filters, 16 filters and 120 filters, and each
filter is a convolution kernel of a 5 × 5 receptive field. The size of the pooling layers is 2 × 2. The last
several layers are fully connected layers, and their depths are 120, 84 and 3. The input of the CNN
model is the previously acquired data set. We divided the data set into three parts: the training set, the
validation set, and the test set. The first 70% of the data in chronological order were the training set,
and the remaining data were randomly divided into two equal-number data sets for the validation set
and the test set. The outputs were low cognitive pressure (LP), normal cognitive pressure (NP), and
high cognitive pressure (HP).
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2.6. Comparative Experiment

To illustrate the effect of the distraction detection method in this paper, the more common and
effective ANN model is selected for comparative experiments. ECG signals can be quantified in
terms of time and frequency domains. Many studies have revealed that the time domain features are
significantly related to drivers’ stress levels, while the frequency domain features are insignificantly
related to the drivers’ stress levels [11]. In this paper, we extracted three times domain features (mean
interbeat interval (mean IBI), standard deviation of IBIs (SDNN), and root mean squared difference of
adjacent IBIs (RMSSD)), which have been frequently employed. Features were collected according to
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the following steps. First, for the ECG signal of the rest phase and normal driving 1 phase, consider
the middle five minutes as the data for the low pressure and medium pressure states, and separately
consider the middle 2.5 min of the ECG signal of numeral calculations 1 and numeral calculations 2 as
the data for the high pressure state, which prevents the transition effects of different state transitions.
Second, segment each part of the ECG signal, as illustrated in Figure 6. A moving window of 10 s with
an overlap of 8 s was applied to each state. Third, use the pan tompkin algorithm coded in MATLAB
to acquire the IBI data, and remove the abnormal points outside the normal range of IBIs (0.6 s–1.2 s).
Last, calculate the three times domain features using Equations (1)–(3):

Mean IBI =
∑n

i=1 IBIi

n
, (1)

where n = number of interbeat intervals, and IBIi = i-th interbeat interval.

SDNN =

√∑n
i=1

(
IBIi − IBI

)
n− 1

, (2)

where IBI = average of interbeat intervals.

RMSSD =

√∑n−1
i=1 (IBIi+1 − IBIi)

2

n− 1
, (3)

Sensors 2020, 20, x FOR PEER REVIEW 7 of 12 

 

consider the middle 2.5 min of the ECG signal of numeral calculations 1 and numeral  

calculations 2 as the data for the high pressure state, which prevents the transition effects of different 

state transitions. Second, segment each part of the ECG signal, as illustrated in Figure 6. A moving 

window of 10 s with an overlap of 8 s was applied to each state. Third, use the pan tompkin algorithm 

coded in MATLAB to acquire the IBI data, and remove the abnormal points outside the normal range 

of IBIs (0.6 s–1.2 s). Last, calculate the three times domain features using Equations (1)–(3): 

𝑀𝑒𝑎𝑛 𝐼𝐵𝐼 =  
∑ 𝐼𝐵𝐼𝑖

𝑛
𝑖=1

𝑛
, (1) 

where n = number of interbeat intervals, and 𝐼𝐵𝐼𝑖  = i-th interbeat interval. 

𝑆𝐷𝑁𝑁 =  √
∑ (𝐼𝐵𝐼𝑖−𝐼𝐵𝐼̅̅ ̅̅̅)𝑛

𝑖=1

𝑛−1
, (2) 

where 𝐼𝐵𝐼̅̅ ̅̅  = average of interbeat intervals. 

𝑅𝑀𝑆𝑆𝐷 =  √
∑ (𝐼𝐵𝐼𝑖+1−𝐼𝐵𝐼𝑖)2𝑛−1

𝑖=1

𝑛−1
, (3) 

10s

2s 
gap 10s

 

Figure 6. Data segment for ANN model. 

The ANN model consists of three layers (input layer, hidden layer, and output layer), as shown in 

Figure 7. The input layer has three nodes for the three ECG features (mean IBI, SDNN, and RMSSD). 

The hidden layer has 15 neurons and uses a sigmoid activation function. The output layer has three 

nodes for the three types of driver status (low cognitive pressure, normal cognitive pressure, and 

high cognitive pressure). 

Low Pressure

Normal Pressure

High Pressure

1

2

3

1

2

3

15

1

2

3

...

Input Layer Hidden Layer Output Layer

Mean IBI

SDNN

RMSSD

 

Figure 7. Three-layer ANN model structure. 

We use a standard feed-forward and backpropagation neural network in this paper. A 

hyperbolic tangent sigmoid transfer function is applied as the transfer function of the hidden layer. 

A linear transfer function is used for the transfer function of the output layer. The scaled conjugate 

gradient is utilized as a backpropagation network learning function. Last, the data sets acquired in 

Section 2.3 are randomly divided into a learning set and a test set: 70% of the data for learning the 

ANN model, 15% of the data for validation, and the remaining data for testing. 

Figure 6. Data segment for ANN model.

The ANN model consists of three layers (input layer, hidden layer, and output layer), as shown in
Figure 7. The input layer has three nodes for the three ECG features (mean IBI, SDNN, and RMSSD).
The hidden layer has 15 neurons and uses a sigmoid activation function. The output layer has three
nodes for the three types of driver status (low cognitive pressure, normal cognitive pressure, and high
cognitive pressure).

We use a standard feed-forward and backpropagation neural network in this paper. A hyperbolic
tangent sigmoid transfer function is applied as the transfer function of the hidden layer. A linear
transfer function is used for the transfer function of the output layer. The scaled conjugate gradient is
utilized as a backpropagation network learning function. Last, the data sets are randomly divided
into a learning set and a test set: 70% of the data for learning the ANN model, 15% of the data for
validation, and the remaining data for testing.
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3. Results

3.1. Experimental Design Validation

First, we verified the validation of the experimental design. In our experiment, we increased
the driver’s cognitive stress by adding the numerical calculations during normal driving, and we
collected the ECG signals from which we extracted inter-beat intervals to reveal the change of the
driver’s cognitive stress. A repeated measures ANOVA test of the inter-beat intervals of different
period revealed that the inter-beat intervals were significantly (p < 0.001) altered by the cognitive
stress level, which means that the driver’s physiological signals did change with the cognitive stress
level in our experiment. Besides, we also performed a one-factor (cognitive stress level) within-subject
ANOVA test of the ANN features, and the result revealed that the three time domain features (mean
IBI (p < 0.001); SDNN (p < 0.001); RMSSD (p < 0.001)) were significantly different among the different
cognitive stress levels at α = 0.001.

3.2. Classification Performance

The classification accuracy of the proposed method was satisfactory for the learning set, validation
set and test set. The input was the data set created in Section 2.4, and the outputs were low pressure
(LP), normal pressure (NP), and high pressure (HP). The classification accuracies for the training
set, validation set and test set were 100%, 91.6% and 92.8%, respectively, with no systematic bias
in the sensitivity (true positive rate) and specificity (true negative rate), as shown in Figure 8a.
The classification accuracy of the ANN method was also satisfactory for the learning set, validation
set and test set. The input features were the mean IBI, SDNN, and RMSSD, and the outputs were
low pressure (LP), normal pressure (NP), and high pressure (HP). The classification accuracies for
the learning set, validation set and test set were 86.6%, 81.8% and 80.3%, respectively. As shown in
Figure 8b, the sensitivity (true positive rate) and specificity (true negative rate) had no systematic bias
in the learning, validation, and test sets.

The results showed that the accuracies of the proposed method were substantially better than
those of the ANN method (as shown in Figures 8 and 9), which meant that the method proposed in
this paper was feasible and performed better than the ANN method. Because the number of interbeat
intervals in each picture was randomly selected, we discuss it in the next section.
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3.3. Discussion of the Number of Inter-Beat Intervals in Each Picture

In this section, we discuss the number of interbeat intervals in each picture to determine the best
number. Considering that the state of the driver can be represented when the segment of the ECG
signal exceeds 10 s, we set the minimum number of IBIs in each image of the data set for the CNN
model in the proposed method to 16 and increased the number by one each time. We employed the
CNN model to train and test the data sets. To compare the performances of the proposed method on
the data sets that consisted of the pictures of different number of IBIs, we repeatedly trained each data
set 50 times and recorded the accuracy every time. We calculated the average and relative standard
deviation (RSD) of the accuracies for each data set according to the following formula. The results are
shown in Table 1.

RSD =

√∑50
i=1(acci−acc)

50−1

acc
, (4)

where acci = i-th accuracy in the 50 times, and acc = average of 50 accuracies.
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Table 1. Performance on the CNN model for different data sets created with the pictures of different
number of IBIs.

Number of the
IBIs acc RSD Number of the

IBIs acc RSD

16 0.822538 0.033492962 32 0.961929 0.024117106
17 0.840061 0.028479318 33 0.974084 0.016536709
18 0.840612 0.035208451 34 0.97129 0.019219709
19 0.859388 0.031058617 35 0.969121 0.024874458
20 0.866564 0.035717147 36 0.974202 0.02229789
21 0.878523 0.034267829 37 0.974837 0.019388527
22 0.894613 0.028537217 38 0.978224 0.022435945
23 0.894845 0.035023254 39 0.98462 0.018765861
24 0.905776 0.032437347 40 0.987881 0.019297169
25 0.927712 0.028323002 41 0.980731 0.024735957
26 0.927837 0.030237982 42 0.982809 0.028324661
27 0.942642 0.023011742 43 0.985552 0.027109379
28 0.94991 0.019888319 44 0.972256 0.030862739
29 0.947111 0.020351297 45 0.967864 0.03522804
30 0.954013 0.020923643 46 0.960407 0.039515134
31 0.957572 0.019682664 47 0.959864 0.042232649

We drew a scatter plot to more intuitively analyze the data in the table. As shown in Figure 10,
under the structure of the CNN model in Figure 5, the accuracy rate initially increases as the number of
IBIs in each picture in the data set increases and shows a downward trend when the number exceeds
40. When the number is small, the information in a picture in the data set is limited and does not
represent the status of low cognitive pressure, medium cognitive pressure or high cognitive pressure.
Thus, the performance of the proposed method is poor, and the accuracy is relatively low. As the
number increases, the amount of information in an image increases, and each image is increasingly
more representative of a driver’s status. Thus, the performance of the proposed method improves, and
the accuracy increases. However, when the number exceeds a certain number, which is 40 in this paper,
the accuracy shows a downward trend. Because a picture contains a vast amount of information, the
model can only learn the information of each state in the training set and cannot extend to that in the
validation set and test set. Thus, the performance of the proposed method worsens on the validation
set and the test set, and the accuracy decreases.
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Based on the data acquired by our simulation experiment and the CNN model in Section 2.5,
when the number of IBIs in each picture is 40, the accuracy of the proposed method is the highest and
the relative standard deviation is at a relatively low level, as shown in Figure 10. The model performs
steadily; therefore, we conclude that the best number of IBIs in a picture to classify a driver’s cognitive
stress level is 40.

4. Discussion

In this paper, we proposed a novel method to detect and classify a drivers’ cognitive stress level
by using a convolution neural network and achieved a satisfactory performance. First, based on the
purpose of the experiment, we designed numeral calculations as the distracting driving task. The
calculation difficulty was a two-digit addition and subtraction method that required carrying and
borrowing. Second, we used the MP150-BioNomadix multichannel wireless physiological analysis
recorder to obtain ECG signals of the driver for different cognitive stress levels in the driving simulation
experiment. We also denoised the collected ECG signals by digital signal processing methods to
accurately extract the interbeat intervals from the ECG signals. Third, we constructed the data set
for the ANN model according to Figure 6 and the data set for the CNN model according to Figure 4.
Fourth, we separately trained the ANN model and CNN model and compared the accuracies of the
ANN method and the proposed method. The accuracies of the proposed method were substantially
higher than the accuracies of the ANN method. Last, we compared the accuracies of the CNN model
of the proposed method for different numbers of the interbeat intervals.

The results of the paper show that the method is feasible and performs better than the methods
based on the ANN model, which have been frequently applied in recent studies. Considering the
feasibility and convenience of the method proposed in this paper, it can be applied in future research
and provide a method for future driver monitoring. However, the method proposed has a weakness
because it needs to take time to determine the best number of interbeat intervals contained in one
picture for each driver. Although the method can achieve a good performance, the step of selecting the
best number is inevitable.

Some future researches are needed to enhance the applicability of the proposed method. First,
we just discussed the influence of the number of inter-beat intervals each picture contained, and the
number of divided intervals was also needed to be discussed. Second, a real driving data is needed
to validate the result of the paper because the experiment in this paper was performed in a driving
simulator in which the conditions and the environment were controlled.
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