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Acute myeloid leukemia (AML) is a malignant proliferative clonal disease,

characterized by a wide spectrum of molecular alterations. Although targeted therapy

for AML has resulted in pronounced achievements in the past decade, clinical resistance

caused by mutations in targeted oncogenes has been observed. A subset of patients with

AML still requires the treatment of refractory and relapsed diseases. The field of targeted

therapy in AML still presents many challenges. More studies are needed to overcome

those obstacles. Through the CiteSpace tool, we can gain a systematic understanding of

the current achievements in targeted therapy in AML, and we can predict hot research

topics. Relevant publications from the Web of Science Core Collection were retrieved,

and the acquired data were analyzed by CiteSpace to identify and predict trends and

research hotspots in this field. We found that research on AML had focused on

venetoclax resistance, novel therapies (such as targeting epigenetic modification), and

FLT3 mutation in the past decade. The clustering of keywords suggested interest in cell-

targeted therapy (chimeric antigen receptor T cells and natural killer cells), signaling

pathways (mTORC1), epigenetic therapies, and leukemic stem cells (LSCs). Drug

resistance causing failure and relapse of treatment has raised increasing concern, and

LSCs play a key role in relapsed AML, which represent an important direction for

identifying targets for AML treatment in the future.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease

caused by various gene mutations and cytogenetic abnormalities

that affect the differentiation and proliferation of myeloid lineage

cells (1). Advances in genomic investigations over the past 10

years have dramatically improved our understanding of mutated

genes in AML and have allowed the tailoring of therapeutic

strategies targeting mutated genes (2).

Several genes are recurrently mutated in AML, such as

internal tandem duplication (ITD) of FMS-like tyrosine kinase

3 (FLT3-ITD), and mutations in isocitrate dehydrogenase

(IDH1/2), nucleophosmin (NPM1), and/or CCAAT/enhancer

binding protein alpha (CEBPA). As predictive biomarkers, these

are indicators of prognosis and, in turn, can guide targeted

therapeutic strategies, because patients harboring these specific

mutations do not benefit from traditional chemotherapy (3, 4).

Fortunately, tremendous progress has been made in deciphering

the molecular pathogenesis of AML, enabling the development

of target drugs, such as the introduction of small-molecule

inhibitors of FLT3, IDH1/IDH2, and BCL-2. For example, the

presence of ITDs in the FLT3 receptor tyrosine kinase gene has

long been known to confer a poor prognosis in patients with

AML (5). The approval of multikinase FLT3 inhibitor (FLT3i)

midostaurin with induction therapy for newly diagnosed

FLT3mut AML, and a more specific and potent FLT3i

gilteritinib as monotherapy for relapsed/refractory (R/R)

FLT3mut AML, has improved outcomes in patients with

FLT3-mutated AML (4, 5).

However, targeted therapy in AML still faces challenges (6).

Clinical resistance caused by mutations in the targeted oncogene

has been observed (7–9). Furthermore, most cases of AML are

without a targetable mutation (10). Many efforts have been made

to explore new targets and develop the corresponding therapies.

Numerous novel approaches that aim to achieve a new goal are

currently being actively pursued.

To grasp the scope of research in this area, bibliometric

analysis was applied to analyze the progress of targeted therapy

in AML. Bibliometric analysis is a method used to analyze

enormous amounts of heterogeneous literature. It can be

applied to estimate the impact of research areas and to identify

emerging trends (11). CiteSpace is a bibliometric tool, which

aimed to analyze and visualize trends and patterns in the

scientific literature, and presents the structure and distribution

of current scientific knowledge (12). CiteSpace can be applied to

visualize research frontiers, the knowledge base, and time spans,

as well as the literature that has played a key role in research

evolution. It focuses on finding critical points in the

development of a field or a domain, especially intellectual

turning points and pivotal points (13). The visual analytic

tools applied in this review supplement traditional review, and

survey articles and the findings are valuable for identifying
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critical developments from a vast number of published studies.

In this review, we examine the evolution of targeted therapy in

AML and provide a critical perspective on the clinical

development of a variety of targeted treatments.
Materials and methods

Data sources and search strategy

The publications were obtained from the Web of Science

Core Collection database (WoSCC). The strategy used during

the search was Topic search #1 = (“acute myeloid leukemia” OR

“AML”) AND Topic search #2 = (“targeted therapy*”), and then,

the results were refined by [Document Types = (Articles or

Review) Timespan: 2012-01-01 to 2021-12-31]. A total of 4,205

results were found. After data cleaning, duplicate publications

were removed by CiteSpace v.5.8.R3; and ultimately, 4,150 total

unique records were used in the final analysis. All records were

then imported into CiteSpace v.5.8.R3.
Algorithms and parameters in
scientometric analysis

The time slices for analysis were set at 1 year, and the sources

selected included all publication details—title, abstract,

supplementary keywords and author keywords, selected

keywords, author, institution, country for the node, selected g-

index for the threshold, and the labels of clusters chosen by the

log-likelihood ratio (LRR) test method algorithm—were used in

the subsequent analysis. Pathfinder was selected for fine-tuning

the setting to highlight key points. Betweenness centrality

(BC) >0.1 was considered as pivot nodes. Modularity (Q) >0.3

was considered reasonable for the group. Silhouette >0.5 was

considered homogeneity clusters. BC can be used to partially

assess the influence of each node in the network (14). Usually, a

node with a BC >0.1 is displayed as a purple ring, whose size is

associated with the transformative potential of a scientific

contribution (15). In addition, cluster analysis was used as

another important approach to easily analyze knowledge

networks in CiteSpace. More specifically, terms are classified

according to their similarity and scored by specific algorithms,

and then, the term with the highest score of each cluster is

selected as the label of the cluster (16, 17).
Other statistical analyses

The R programming language (version 4.1.0) was used for

data visualization (packages ggplot2, tidyverse, ggthemes, ggsci,

maps, patchwork, and RColorBrewer).
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Results

Annual publishing and cite trends

The annual number of published articles is a significant

indicator for studying research trends in the field and reflects the

pace of subject knowledge (18). We found a total of 129,587

citations for AML, with 83,287 articles cited, and an h-index of

142 in the field of targeted therapy in AML. The proportion

studies investigating targeted therapies published annually in

overall AML treatment are visually displayed in Figure 1. The

number of targeted therapy documents in AML has increased

annually between 2012 and 2021. Furthermore, the proportion

of targeted therapy in total treatment has gradually increased,

with the number of articles growing much faster.
Country and institution analysis

Visualized knowledge maps and institutional networks can

provide information on the cooperative relationship between

different research teams and countries (19). An analysis of the

country distribution of these publications indicates that the

United States, China, and Germany ranked the top three in

the number of citations to articles. The United States (BC = 0.19)

and Germany (BC = 0.14) were the countries that are most

frequently associated with co-authored articles due to the highest

BC (Figures 2A, B).
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The network of institutions participating in publications is

visualized in Figure 2C. The MD Anderson Cancer Center of the

University of Texas, Memorial Sloan Kettering Cancer Center,

Dana-Farber Cancer Institute, Harvard Medical School, and

Harvard University ranked the top five institutions for the

number of articles published. High BC values were obtained

from the Dana-Farber Cancer Institute (BC = 0.12) and Harvard

Medical School (BC = 0.10), which were also in different clusters.
Co-author and categories analysis

BC measures the extent to which a node plays a bridging role

or influence in a network. Specifically, BC measures the extent

that the node falls within the shortest path between other pairs of

nodes in a network. If the author plays a bridge that makes

connections with other authors, then author’s BC value will high.

The more an A depends on B to make connections with other

people, the higher that B’s BC value (20). In particular, Lars

Bullinger (BC = 0.29) and Ross L. Levine (BC = 0.22) had

extensive contact with other researchers. Moreover, Ross L.

Levine, Farhad Ravandi, and Guillermo Garcia-Manero were

included the top three categories of citations (Figure 3A). In

Figure 3B, cluster groups can be observed. The connection

density between these groups was higher than that between

the other nodes. The nodes within each group were uniform, and

the number of publications and BC of co-occurring subject

categories in AML are shown in Figure 3C.
A

B C

FIGURE 1

Annual publishing and proportion trends. (A) Trends in the number of publications per year on general research on AML treatment. (B) Proportion of
publications about research for different AML treatment in 2012. (C) Proportion of publications about research into different AML treatment in 2021.
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A

B

C

FIGURE 2

Country and institution analysis of targeted therapy in AML. (A) Top 10 countries for publications on the world map. (B) The network of
countries for co-authored articles on targeted therapy in AML. Nodes represent publications from countries. The more frequently the
publications of countries are cited, the larger is the size of the node. Links between nodes describe a co-occurrence or a co-citation between
these nodes, and their thickness indicates the strength of these correlations: the thicker the line, the closer is the connection between them.
The node color and link color indicate different clusters; the nodes that are of the same color belong to the same closely related cluster.
(C) The network of institutions.
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Co-keyword analysis

As a highly condensed summary of the paper’s content,

keywords can be used to summarize the topics of the paper
Frontiers in Oncology 05
simply and directly. When the co-occurrence network of the

keywords was dense, we applied Pruning functions to select

important connections to highlight the key aspects of the

network. The co-occurrence of targeted therapy keywords in
A

B

C

FIGURE 3

Co-author and category analysis. (A) Co-author network. The circle in (A) indicates the author; the larger the size of the circle, the higher the
number of citations of the author. (B) Clusters of the co-author network. (C) Top 10 topics for publications. The right axis is the publication, and
the left axis is the BC value.
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AML and related research can be visualized in Figure 4A.

Figure 4B shows the top 14 keyword clusters based on the LLR

algorithm. This information, which consisted of highly cited and

representative terms, in each group is summarized in Table 1.

Burst detection is also a feature of CiteSpace, and a positive node

after burst detection indicates a sharp change in its frequency of

citations over a short period of time (15). Such nodes usually

suggest a shift in a certain field of research and are indicated in

red on the knowledge map. The identification of a research focus

was based on the keyword co-occurrence network. The top 25

keywords with the strongest citation bursts relative to targeted

therapy in AML in the last 10 years are shown in Figure 4C.
Reference co-citation analysis

The identification of core literature in a certain field depends

on the frequency of citations, and references with the highest

cited frequency, namely, high-impact publications, are usually

the focus of researchers. The top 10 cited references with the

highest number of citations are shown in Table 2. The themes of

references with the highest frequency of citations are divided

into three parts: guidelines (diagnosis and management of 2017

ELN recommendations, and 2016 WHO classification revision

from 2016 WHO); reviews of prognostic relevance of genomic

classification and epigenetic landscapes (DNMT3A mutations)

in AML; and targeted drugs for AML (midostaurin plus

chemotherapy for FLT3 mutation, and enasidenib for relapsed

or refractory AML).

Figures 5A, B shows the co-citation network and the timeline

view of reference sources on targeted therapy in AML and

related studies. The timeline view is a visualization method

that combines clustering and time-slicing techniques. Items
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are ranked according to their early or late appearance after

clustering, displaying both the topic distribution in the field and

illustrating the trends and interconnections of research topics

over time. The references with the highest BC were Wang F 2013

(BC = 0.15), followed by Papaemmanuil E 2016 (BC = 0.12),

Dombret H 2015 (BC = 0.10), Patel JP, 2012 (BC = 0.10), and

Welch JS, 2016, (BC = 0.10), namely, these are the critical

research authors driving research on the development of

targeted therapy in AML. In Figure 5B, a straight line at the

same horizontal position indicates all the references belonging to

the group, with the group label located at the right-hand end of

the line. Each cluster represents the fundamental knowledge of

the underlying specialty.

As can be seen in Figure 5B, research on AML-targeted

therapy focused onMLL-rearranged leukemia (cluster #1), TET2

mutations (cluster #9), and DNA methyltransferase cluster #11)

from 2007 to 2013. Research on targeted therapy in AML shifted

to venetoclax resistance (cluster #0), novel therapy (cluster #3),

and FLT3 mutations (cluster #4) from 2013 to 2021. The largest

cluster focused on venetoclax resistance. The information, which

consisted of highly cited and representative terms, in each group

is shown in Table 3.
Discussion

General information

Targeted therapy in AML has received increasing attention. In

the past decade, the number of publications in this field has

increased rapidly. Through the co-authored network analysis of

countries and institutions, we found that the United States and

Germany were the representative countries with the highest BC and
A B C

FIGURE 4

Co-occurrence and clustering of keywords. (A) Network of main keywords in publications. The circle in (A) indicates the keyword; the larger the
size of the circle, the higher the frequency of the keyword. Purple circles represent the node of BC > 0.1: purple circles are thicker and the BC is
higher. (B) Timeline view of keywords. Each horizontal line represents a cluster; the circular nodes on the line represent the top three keywords
with the highest frequency of occurrence in this time slice. The timeline is shown at the top of the figure, and the year corresponding to the
node is its publication time. The link between nodes represents the co-citation relationship. (C) The 25 keywords with the strongest citation
bursts. The blue line denotes the time axis, whereas the red segment on the blue time axis shows the burst detection, indicating the start year,
end year, and burst duration.
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were found in different clusters, surrounded by other countries. The

MD Anderson Cancer Center of the University of Texas, the

Memorial Sloan Kettering Cancer Center, the Dana-Farber

Cancer Institute, and Harvard Medical School, and Harvard

University ranked the top five in the number of articles published.
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Ross L. Levine, Farhad Ravandi, and Guillermo Garcia-

Manero were the top three most cited authors. We observed

that Lars Bullinger and Ross L. Levine had extensive contact with

other researchers. Farhad Ravandi and Guillermo Garcia-

Manero collaborated closely and specialized in state-of-the-art
TABLE 2 The top 10 cited references with the highest cited frequency.

Rank Title Citation
Counts

Cluster
ID

DOI

1 Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel 470 0 10.1182/blood-2016-
08-733196

2 Genomic classification and prognosis in acute myeloid leukemia 461 0 10.1056/
NEJMoa1516192

3 The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia 434 2 10.1182/blood-2016-
03-643544

4 Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia 420 2 10.1056/
NEJMoa1301689

5 Acute myeloid leukemia 290 5 10.1056/
NEJMra1406184

6 Prognostic relevance of integrated genetic profiling in acute myeloid leukemia 272 1 10.1056/
NEJMoa1112304

7 Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation 209 0 10.1056/
NEJMoa1614359

8 Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert
panel, on behalf of the European LeukemiaNet

178 1 10.1182/blood-2009-
07-235358

9 Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia 171 0 10.1182/blood-2017-
04-779405

10 DNMT3A mutations in acute myeloid leukemia 166 1 10.1056/
NEJMoa1005143
TABLE 1 The information of clusters about keyword co-citation analysis.

Clusters Label (LLR) Terms

0 CAR-T cell CAR-T cell; multiple myeloma; robust antitumor potential; CD7-positive malignancies; nanobody exhibit

1 Acute myeloid leukemia acute myeloid leukemia; FLT3 inhibition; FLT3 inhibitor; acute promyelocytic leukemia; possible strategies

2 mTORC1 blocker mTORC1 blocker; Hedgehog pathway inhibition; other BCL-2 family member protein; mTORC cascade inhibitor; anti-
leukemic role

3 Natural killer cell natural killer cell; adoptive cell therapy; hematologic malignancies; promising therapeutic target; cellular therapy

4 Cancer stem cell cancer stem cell; essential role; acute myeloid leukemia; myelodysplastic syndrome patient; cancer therapy

5 Reduced-intensity
conditioning

reduced-intensity conditioning; acute myeloid leukemia; cancer stem cell; pediatric acute myeloid leukemia; allogeneic stem
cell transplantation

6 Chronic myelomonocytic
leukemia

chronic myelomonocytic leukemia; ITD-positive acute myeloid leukemia; FLT3 inhibitor; mutant kinase; elderly high-risk
myelodysplastic syndrome

7 Chronic myeloid
leukemia

chronic myeloid leukemia; targeting mTOR; death knell; CD33-targeting drug; drug resistant lung cancer

8 Cancer therapy acute myeloid leukemia; cancer stem cell; cancer therapy; emerging role; targeting cancer stem cell

9 Myeloid leukemia cell myeloid leukemia cell; ultra-deep amplicon; monitoring therapy responses; leukemic subclone level; self-renewal activity

10 Novel agent acute myeloid leukemia; cancer stem cell; novel agent; antibody-drug conjugate; refractory acute myeloid leukemia

11 Using functional
genomics

acute myeloid leukemia; cancer stem cell; using functional genomics; complementary mechanism; next-generation cancer
treatment

12 Variant form variant form; chronic myeloid leukemia cell; stem cell population; lung adenocarcinoma cell; mitochondria-associated
cysteine-rich protein augments tumorigenicity

13 Epigenetic therapy epigenetic therapy; cancer stem cell; cancer therapy; aberrant microRNA expression; microRNA-143 target

14 Myelodysplastic
syndrome

myelodysplastic syndrome; pediatric AML; regulatory T cell; treatment efficacy prediction; MDS progression
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treatments for leukemia at The University of Texas MD

Anderson Cancer Center (21). The research field of the co-

author could be determined from the clusters of label names.

Related fields involved the following topics: leukemic

transformation, clonal hematopoiesis (CH), myelodysplastic

syndrome (MDS), and FLT3 study. Of these, the year of CH

clustering was the most recent. We also noticed that the

following categories were involved in driving the development

of the field: biochemistry and molecular biology, pharmacology

and pharmacy, immunology, applied microbiology and

biotechnology, and chemistry. There are various degrees of

interrelatedness between targeted therapy in AML and

different categories, namely, the field of targeted therapy in

AML is innovative and interdisciplinary.

We can discover topic distribution in the field and trends of

research topics over time. Through the co-citation timeline, we

found that research on targeted therapy in AML had changed to
Frontiers in Oncology 08
venetoclax resistance (cluster #0), novel therapy (cluster #3), and

FLT3 mutation (cluster #4) over the past decade. The clustering

of keywords focused on cell-targeted therapy [chimeric antigen

receptor T cells (CAR-T) and natural kill cells], signaling

pathways (mTORC1), epigenetic therapies, and leukemic stem

cells (LSCs). Combined with clustering of keywords and cited

references, it is obvious that LSCs appeared not only in clustering

of keywords but also in clustering of cited references, such as the

largest cluster representing venetoclax resistance.
Research progress on targeted therapy
in AML

Tyrosine kinase 3 (FLT3) inhibitor
The key term “FLT3 inhibitor” was present in a cluster of co-

references and in the keywords having the strongest citation
A

B

FIGURE 5

Co-citation network and timeline view of references. (A) Reference co-citation network. The circles in Figure 4A indicate references.
(B) Timeline view of references. The circular nodes on the line represent the three most cited references in this time slice.
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burst, respectively. Up to 2017, the European Leukemia-Net

(ELN) adjusted and updated cytogenetic and genomic mutations

to the classification based on relative evidence. ELN categories

were developed to correlate with genetic abnormalities having a

clinical prognostic impact. The categories of these guidelines are

divided into favorable, intermediate, and adverse. The adverse

categories included FLT3-ITD with a high allelic ratio (22). FLT3

mutations associated with an adverse prognosis have been

identified in approximately one-third of patients with AML

and represent an attractive therapeutic target.

The clinical development of FLT3 inhibitors is one of the

most active fields in AML (23). The standard first-line treatment

for AML had not changed for more than 45 years (24). With the

advent of FLT3 inhibitors, the treatment armamentarium for

FLT3-mutated AML has begun to expand. First-generation

agents, such as midostaurin, sorafenib, and lestaurtinib, are

broad-spectrum tyrosine kinase inhibitors. Midostaurin

became the first targeted therapy approved by the United

States Food and Drug Administration (FDA) for FLT3-

mutated AML in 2017 (25, 26). In the international

randomized phase III RATIFY trial, the multikinase inhibitor

midostaurin significantly improved overall and event-free

survival in patients aged 18 to 59 years of age with FLT3-

mutated AML (27). Data from a phase II single-arm trial have

provided evidence that midostaurin also improves the outcome

of patients of 60 to 70 years of age with FLT3-ITD positive AML

(28). The National Comprehensive Cancer Network Clinical

Practice Guidelines recommend clinic trails for patients

harboring molecular mutations. When a complete remission

(CR) is observed, enrollment in a clinical trial is recommended

for patients. Other recommendations include intermediate dose
Frontiers in Oncology 09
cytarabine and midostaurin for patients with FLT3-mutation–

positive AML (28, 29). In addition, next-generation FLT3

inhibitors, such as gilteritinib, quizartinib, and crenolanib, are

more selective and have shown promising activity as single

agents in early phase trials (30).

Although considerable progress has been made in the

treatment of AML by targeting FLT3, many challenges still

remain. Many resistance mechanisms have been identified

with FLT3 inhibitors, but not all have been fully elucidated.

These resistance patterns render FLT3-targeted molecules

ineffective in many ways, making them difficult to overcome.

Furthermore, although several FLT3 inhibitor studies have

included maintenance therapy (31), additional studies are still

needed to confirm these findings.

Epigenomic landscapes
Aberrations of DNA methylation also rank among the most

frequent alterations observed in patients with AML. Recurrent

somatic alterations in myeloid malignancies of key proteins

involved in DNA methylation have highlighted the importance

of epigenetic regulation of gene expression in the initiation and

maintenance of various malignancies (32).

DNMT3A is one of several epigenetic modifiers identified as

recurrently mutated in AML. DNMT3A mutations have also

been ident ified in pa t i en t s w i th MDSs (31) and

myeloproliferative neoplasms (33) and are associated with a

greater likelihood of progression to AML. In fact, in some

studies, the same DNMT3A mutation as the antecedent

hematologic disorder is identified in secondary AML,

suggesting that these mutations may be an early event in

malignant clonal evolution (34). These observations are further
TABLE 3 The information of clusters about reference co-citation analysis.

Clusters Label (LLR) Terms

0 Venetoclax Resistance venetoclax resistance; acute myeloid leukemia stem cell; BCL-2 inhibitor venetoclax; different face; intriguing clinical success

1 MLL-Rearranged
Leukemia

MLL-rearranged leukemia; writers eraser; histone orthography; new epigenetic therapy; attractive target

2 Myelodysplastic Syndrome myelodysplastic syndrome; acute myeloid leukemia; de novo; acute myeloid leukemia patient; NPML-mutated AML

3 Novel Therapy novel therapy; targeting epigenetic modification; epigenetic therapy combination; new metabolic therapeutic target;
microenvironment-derived metabolite

4 FLT3 Mutation FLT3 mutation; refractory acute myeloid leukemia; FLT3 inhibitor; overcoming resistance; targeted therapy

5 Normal Acute Myeloid
Leukemia

normal acute myeloid leukemia; intermediate-risk acute myeloid leukemia therapy; determining risk; personalizing therapy;
treatment strategy

6 Hematopoietic Disorder hematopoietic disorder; pre-leukemic phase; signaling pathway; targeting novel; resistant acute myeloid leukemia

7 Clonal Hematopoiesis clonal hematopoiesis; therapy-related myeloid neoplasm; myelodysplastic syndrome; high-throughput sequencing; acute
myeloid leukemia

8 TET2 Mutation TET2 mutation; unfavorable overall survival; stem cell; AML study group; clinical analysis

9 Glioma Cell glioma cell; IDH mutation; mutant IDH 1; isocitrate dehydrogenase mutation; pre-leukemic stem cell

10 IDH Mutation IDH mutation; clonal architecture; evolutionary dynamics; IDH 2 inhibition; cancer development

11 DNA Methyltransferase
Inhibitor

myelodysplastic syndrome; DNA methyltransferase inhibitor; epigenetic therapy; hypomethylating agent; predicting response

12 Acute Myeloid Leukemia myelodysplastic syndrome; acute myeloid leukemia; molecular testing; genetic mutation; molecular pathogenesis
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reinforced by recent findings demonstrating that recurrent

DNMT3A mutations are frequently present in a pool of

preleukemic clonal hematopoietic stem cells (HSCs) from

which AML develops (35). These HSCs have a competitive

multilineage repopulation advantage over wild-type HSCs and

also have been demonstrated to persist after chemotherapy, thus

acting as a reservoir for therapeutic resistance (36). Epigenetic

alterations result in changes in gene expression in the absence of

modifications of the relevant DNA sequence. Such alterations

have the potential to promote stem cell renewal and alter

progenitor cell differentiation (4, 37).

In other citations, TP53 mutations and decitabine treatment

have a high BC value in AML and MDS. With more and more

researchers focusing on the role of DNA methylation in AML,

decitabine (5-aza-2-deoxycytidine), a strong specific inhibitor of

DNA methylation, is commonly used as a single agent to treat

patients with MDS and older aged patients with AML (38).

However, response rates are low. Extended treatment exposure

to decitabine (administered on days 1 through 10 of the 28-day

cycles instead of on days 1 through 5) shows an improved

response rate (ranging from 40% to 64%). Patients with AML

and MDS presenting cytogenetic abnormalities associated with

unfavorable risk, TP53 mutations, or both had favorable clinical

responses and robust (but incomplete) mutation clearance after

receiving serial 10-day courses of decitabine. They achieved

overall survival rates similar to those among patients with

AML who had an intermediate-risk cytogenetic profile and

who also received serial 10-day courses of decitabine (39).

Targeted epigenetic therapies are effective therapies in

advanced preclinical and early clinical development (40).

Isocitrate dehydrogenases (IDHs) are present in 15%–30% of

AML patients (41). If mutations occur in IDH1 and IDH2, then

it would leads to gene hypermethylation, resulting in cellular

proliferation, aberrant gene expression, and the inhibition of

myeloid differentiation (42). It is reported that co-occurrence of

IDH and TET methylcytosine dioxygenase 2 (TET2) mutations

leads to DNA hypermethylation, contributing to leukemogenesis

(41, 43, 44). IDH1/2 inhibitor interrupts epigenetic changes.

Recently (45), IDH inhibitors have been approved by the FDA:

the IDH1 inhibitor ivosidenib (AG-120) and the IDH2 inhibitor

enasidenib (AG-221) (43).

Advances in genomics, epigenetics, and drug discovery have led

to the development of several potential novel therapeutic agents,

many of which are being investigated in ongoing clinical trials.

Additional studies will be necessary to determine how best to

incorporate these novel agents into the routine clinical treatment

of AML (10). The epigenetic therapies for AMLmight be one of the

most important future treatment options (46, 47).

Mixed lineage leukemia–rearranged leukemia
Mixed lineage leukemia (MLL) family, also named the

human KMT2 family, due to the role of the first member

KMT2A was found in this disease. Recent exome sequencing
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studies have revealed that the KMT2 genes are among the most

frequently mutated genes in many types of human cancers (48).

Rearrangements in the MLL gene cause aggressive AML

leukemias that follow an aggressive clinical course with poor

response to conventional chemotherapy and frequent early

relapse (49).

A new menin-MLL inhibitor (VTP-50469) appears to

promote leukemia cell differentiation through direct effects on

theHOX cofactor MEIS1 [HOX expression has been shown to be

essential to maintain the leukemic phenotype ofMLLr (50)]. The

MEIS1 HOX cofactor plays a key role in maintaining a functional

HOX network in AML (51)), paving the way for clinical trials

(10). VTP-50469 not only induced loss of Meis1 expression and

significant differentiation of cytosolic NPM1(NPM1c) leukemic

cells but also prevented long-term engraftment and subsequent

transformation of NPM1c-GMPs into leukemic cells after

secondary transplantation in mice. Furthermore, the inhibitor

was identified to suppress growth and induced differentiation in

human NPM1c AML cells in patient-derived xenograft

models (52).

In addition, there are other promising novel drugs: the

DOT1L inhibitor pinometostat is activated in KMT2A-

rearranged AML, KO-539, and SNDX-5613 (both are menin

inhibitors) useful for KMT2Ar and NPM1-mutated AML (10).

For example, in a phase I trial, KO-539 may be active in patients

with AML. The agent induced CRs in two patients with relapsed/

refractory disease and showed signs of activity in several

patients (53).

The increasing availability of high-throughput genomic

technologies in clinical settings allows a more accurate

diagnosis of MLL-rearranged leukemia, which may provide an

individual therapeutic strategy in time. The menin-MLL

inhibitor may become a promising preclinical drug and worth

investigating in the future, which will benefit patients with poor

response to conventional chemotherapy and frequent

early relapse.
Research hotspots and focus

Leukemia stem cells
Recently, research has focused on LSCs in AML (54).

Mounting evidence shows that LSCs are the key drivers of

relapse in AML (55).

Relapse is a major problem in AML. Although

chemotherapy can achieve CR in most patients with AML,

approximately two-thirds of patients relapse within 18 months

(56). The underlying reason for treatment failure is increasingly

attributed to the presence of a drug-resistant subpopulation of

AML cells, especially leukemia-initiating cells or LSCs (57). Most

HSCs are usually in a state of quiescence. A subpopulation of

AML cells is the same as HSCs, which means that LSCs also

acquire quiescence. Quiescence is an important contributor to
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LSC drug resistance, as conventional chemotherapeutics target

dividing cells (58).

The clonal representation of AML at the time of disease

relapse reflects the continued evolution of LSC in many patients

during remission. At relapse, minor clones present at diagnosis

can emerge as dominant ones, or founder clones can re-emerge

with new subclonal structures (59, 60). Even in rare cases of late

relapse, residual LSCs from founder clones are the usual cause

(61). In many reported cases, new mutations, particularly

transversions, are present in relapsed clones (59, 60),

suggesting that chemotherapy itself induces DNA damage that

accelerates LSC clonal (62).

Treatment regimens targeting the quiescent LSC population

or targeting niche-driven drug resistance are beginning to

emerge. For example, combination drug treatments where the

first treatment aims to activate quiescent LSCs or remove them

from the quiescence driving niche, such as CXCR4 antagonists

or E-selectin inhibitors that potentially block CD44 activation,

combined with a cytotoxic drug, hold promise (63, 64). The

differences between LSC and HSC quiescence are an important

direction for the identification of targets for AML treatment in

the future.

Clonal hematopoiesis
The number of gene mutations increases with age. Strong

evidence in AML points to the origins of LSCs in preleukemic

cells that arise through the sequential accumulation of somatic

DNA mutations in HSCs (65, 66). Among those mutations, one

may arise that confers a fitness advantage for a cell. When this

process occurs in the hematopoietic system, a substantial

proportion of circulating blood cells can derive from a single

mutated stem cell, which is called “clonal hematopoiesis” or CH

(56, 67).

Early mutations enhance or acquire self-renewal potential

and differentiation impairment (68, 69), both of which can lead

to variably expanded clonal populations of preleukemic HSCs in

patients (60, 70). Late mutations in molecules within signaling

pathways (for example, FLT3) promote proliferation, impose a

full differentiation block, and drive the development of

AML (71).

Previous research based on large samples found that CH is

largely the result of mutations in fixed “early”mutational events:

The genes that encode epigenetic modifiers, DNMT3A and

TET2, are the two most common mutations; the third most

commonly mutated gene was ASXL1, whereas mutations in

splicing factors (SF3B1, SRSF2, PRPF8, and U2AF1) were also

frequent (72).

Cancer-free individuals with somatic mutations in a cancer-

associated variant (with a variant allele fraction equal or greater

than 2%) should be considered to have CH of indeterminate

potential (CHIP) (56). The most common mutations in CHIP

are also recurrent drivers of AML. People with CHIP would be
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for malignant transformation. Mutations in DNMT3A, ASXL1,

IDH1/2, and TET2 are often acquired at the early stage of the

“two-hit hypothesis” (73–75). To refine the risk estimates for

developing AML associated with CH, two groups have

conducted studies with a large population having several years

of follow-up (76, 77). The results indicated that individuals with

antecedent CH had an approximately ~3- to 5-fold increased

risk of developing AML in subsequent years (72).

The research into CH may be a promising field and worth

focusing on. Such research could provide a theory for screening

for people at especially high risk of transformation in the future.

Additional studies are needed to understand and discover CHIP.

Most importantly, it is necessary to find ways to reverse the

pathogenic effects of CHIP. Ideally, drugs that can suppress

mutant clones in the future should be identified, which could

block malignant transformation in the “first hit” state to

some extent.

Chimeric antigen receptor T cell
Recently, with the development of immunotherapy, CAR-T

therapy targeting AML cells is undergoing active development

(78). The treatment strategy for AML is shifting from being

limited to two selections (cytotoxic chemotherapy followed by

hematopoietic stem cell transplant or hypomethylating agent) to

the availability of various novel target therapies (45).

After the great success in B cell malignancies, scientists turn

to focus on CAR products that could target AML; however, there

has been hindered by several obstacles. Numerous antigens are

being investigated to find the ideal AML target, one that is

expressed solely by the AML cell, including the LSCs, and that is

a driver for AML proliferation. The majority of CAR T or NK

cell antigens are cell surface antigens, which are commonly

expressed by normal HSCs. Targeting intracellular antigens

with CAR T or NK cells is a much more laborious task that

involves expression of the intracellular antigen, or segments of

the antigen, on the cell surface. FLT3, transmembrane receptor

tyrosine kinase, has a vital role in maintaining normal HSC and

progenitor cell function, including proliferation and

differentiation. Wang et al. described potent in vitro

cytotoxicity of FLT3 CAR Ts in AML cell lines, especially in

cells harboring the FLT3-ITD mutation (79). Surprisingly, the

growth of normal CD34+ HSC was not inhibited by the CARs.

Administration of the anti-FLT3 CAR also prolonged survival of

mice in a human FLT3+ AML xenograft mouse model.
Further challenges

As we can observe, the largest cluster in the co-citation

network of references is venetoclax resistance. Drug resistance

causing treatment failure and relapse raises increasing concern.
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Despite the discovery of multiple molecular and targeted

therapeutic targets and the ongoing development of various

targeted therapies, there are still major challenges for

resistance to targeted drugs.

Because of the genomic and/or epigenetic complexity of AML,

with clonal heterogeneity and multiple lesions already present at

diagnosis and subsequent further evolution throughout the course

of the disease that often leads to the emergence of additional

subclones with different resistance mechanisms, new targeted

therapies are likely to have only moderate activity. When

venetoclax is used as a single agent, therapeutic resistance

inevitably evolves, typically within weeks or months.

The true anti-leukaemic potential of venetoclax was revealed

only in combination with other agents, resulting in its approval

in combination with hypomethylating agents or low-dose

cytarabine, in elderly AML, but not as a monotherapy (80, 81).

We have learned that the efficacy is markedly enhanced and

might become evident only when the use of these agents is

combined with other therapies, such as standard of care

chemotherapies or HMA. Therefore, how to overcome drug

resistance will become a new topic in the future.
Limitations

There were some limitations in this study. First, our analysis

was based on articles from the WoSCC database. Because of the

restriction of the program, we only included Web of Science data.

However, had more databases been included, a broader coverage

of studies would have been provided. Second, because of the

restriction of the program, the study interval was not extensive,

with the extracted articles published from 2012 to 2021.
Conclusions

This review has revealed that targeted therapy for AML has

developed rapidly over the last decade. Through analysis of

clusters (co-author, keywords, and cited references), we defined

the topic distribution in the field and the trends in research topics

over time. The research of targeted therapy in AML has shifted to

venetoclax resistance, novel therapy (such as targeting epigenetic

modification), and FLT3 mutation during the past decade. The

clustering of keywords focused on cell-targeted therapy (CAR-T

and natural killer cells), signaling pathways (mTORC1),

epigenomic and epigenetic targeted therapies, and LSCs.

The advances in FLT3 inhibitors and the discovery of

epigenetic therapies (such as IDH1/2 inhibitors) have led to

the development of many potential novel therapeutic agents,

many of which are being investigated in ongoing clinical trials.

With the development of immunotherapy, CAR-T therapy

targeting AML cells is rapidly developing. Therapy

combination may give us possibilities for various treatments.
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As we can observe, the largest cluster in the co-citation

network of references was venetoclax resistance. Drug resistance

that causes failure and relapse of treatment raises growing

concern. LSCs play a key role in relapsed AML, which would

be a challenge but important direction for identification of

targets for AML treatment in future. Furthermore, as a pre-

leukemic event, CH has also received attention in the field of

targeted therapy in AML. Ideally, drugs that can suppress

mutant clones in the future will be found, which could block

malignant transformation in the “first hit” state to some extent.

Through bibliometric analysis, our study provides insight

into the process of developing targeted therapy in AML and

provides a perspective on the clinical development of a variety of

precision treatment approaches. We hope that our study will

provide researchers with a deeper understanding of AML

pathogenesis and treatment.
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