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Resilience is the capacity of an animal to be minimally affected by disturbances or to rapidly 
return to the state pertained before exposure to a disturbance. Less resilient animals are 
expected to be more susceptible to environmental perturbations, such as diseases, and 
will consequently show more and/or greater fluctuations in production than more resilient 
animals. Natural antibodies (NAb) are antibodies recognizing antigens without previous 
exposure to these, and are hypothesized to be an indication of general disease resistance. 
The objective of this research was to investigate genetic parameters of resilience indicators 
based on standardized body weight (BW) deviations and to investigate its relation with 
immunity (i.e. NAb) and disease resistance. Keyhole limpet hemocyanin-binding NAb 
were measured in layer chickens, which were selectively bred for high and low keyhole 
limpet hemocyanin-binding NAb levels during six generations. In addition, BW data of 
these layers were collected on a four-weekly interval from 4 weeks of age until 32 weeks 
of age. Standardized deviations of BW from an individual were compared to lines’ average 
BW (i.e. across individuals), and these were used to calculate resilience indicators: natural 
logarithm-transformed variance [ln(variance)], skewness, and lag-one autocorrelation of 
deviations (i.e. all within an individual). Heritabilities of resilience indicators were between 
0.09 and 0.11. Genetic correlations between the three resilience indicators were between 
-0.20 and 0.40 (with high SE), which might suggest that the resilience indicators capture 
different aspects of resilience. Genetic correlations between resilience indicators and NAb 
were close to zero, which suggests that the resilience indicators and NAb capture different 
aspects of immunity. This might indicate that, in this dataset, environmental perturbations 
are only to a small extent affected by disease incidence, possibly due to a lack of disease 
occurrence. However, a lower estimated breeding value for ln(variance) was predictive for 
lower lesion scores after an avian pathogenic Escherichia coli inoculation and vice versa. 
In conclusion, this study shows that there is genetic variation in resilience indicators based 
on BW deviations in layer chickens, which opens up possibilities to improve resilience by 
means of selective breeding.

Keywords: resilience, immunity, disease resistance, natural antibody, production, body weight, deviation, 
micro-environment

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1216

ORIgInaL ReseaRCh

doi: 10.3389/fgene.2019.01216
published: 13 December 2019

https://creativecommons.org/licenses/by/4.0/
mailto:tom.berghof@wur.nl
https://doi.org/10.3389/fgene.2019.01216
https://www.frontiersin.org/article/10.3389/fgene.2019.01216/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01216/full
https://loop.frontiersin.org/people/449105
https://loop.frontiersin.org/people/41096
https://loop.frontiersin.org/people/314177
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01216
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01216&domain=pdf&date_stamp=2019-12-13


Body Weight Deviations and ResilienceBerghof et al.

2

InTRODUCTIOn
Resilience (or in other work referred to as robustness) is the 
capacity of an animal to be minimally affected by disturbances 
or to rapidly return to the state pertained before exposure to a 
disturbance (Colditz and Hine, 2016; Berghof et al., 2019b). 
Resilient livestock are essential for future livestock production as 
resilient livestock are easy-to-manage and require less individual 
treatment (Elgersma et al., 2018), which results in a greater 
production without negative effects on animals and farmers 
(Berghof et al., 2019b). Resilience can be of different nature based 
on the disturbance (e.g. disease, heat stress) (Colditz and Hine, 
2016). Thus, “general” resilience is a composite trait consisting 
of different resilience types, such as disease-resilience and heat 
stress-resilience (Colditz and Hine, 2016; Friggens et al., 2017; 
Berghof et al., 2019b).

Improving general resilience on livestock animals can be 
achieved via different complementary strategies, of which one is 
breeding. In a recent paper, Berghof et al. (2019b) showed that 
economic values for resilience can be derived based on reduced 
labor and health costs. Scenarios for pig and dairy cattle breeding 
schemes showed a greater selection response when information 
on resilience was used in selection (Berghof et al., 2019b). These 
simulations suggest that resilience should be included in total 
merit indices of livestock. However, these simulations assumed 
the availability of suitable indicators for resilience, which is not 
the case in practice.

Resilience indicators for individual animals have been 
proposed based on longitudinal data by calculating deviations 
of observed from expected production (Knap, 2009; Doeschl-
Wilson et al., 2012; Colditz and Hine, 2016; Friggens et al., 2017). 
Deviations and their patterns in production traits have been 
shown before as indicative for health-related traits, although 
these approaches use only relatively-large, short-time deviations 
(e.g. De Haas et al., 2004; Codrea et al., 2011; Fischer et al., 
2018; Nguyen-Ba et al., 2019; Revilla et al., 2019; Byrd et al., 
2019). Berghof et al. (2019b), however, used a different approach 
to define three resilience indicators based on all production 
deviations due to unknown disturbances during a production 
cycle using concepts to study resilience of ecosystems (Scheffer 
et al., 2009; Scheffer et al., 2015; Scheffer et  al., 2018): natural 
logarithm-transformed variance [ln(variance)] of deviations, 
skewness of deviations, and autocorrelation of deviations 
(Berghof et al., 2019b). These resilience indicators were 
proposed to have potential, because they are easy to obtain in 
livestock production data, cover the whole production period, 
and are expected to represent different aspects of resilience 
(Berghof et al., 2019b). More resilient animals are expected to 
show few(er) and smaller deviations compared to less resilient 
animals, because they are less influenced by disturbances. This 
is assumed to be independent of the nature and degree of the 
disturbances (i.e. no re-ranking), which are often unknown and 
never completely constant anyway. Figure 1 illustrates a more 
resilient sire-family and a less resilient sire-family based on the 
sire's estimated breeding values (EBV) for ln(variance) of body 
weight (BW) deviations. More resilient animals are expected to 
have a smaller ln(variance) (i.e. closer to zero), and a skewness 

and an autocorrelation around zero compared to the population 
average (Berghof et al., 2019b).

Three studies have investigated the genetic potential of 
the variance of deviations of longitudinal data as an indicator 
for resilience in livestock and found favorable relations with 
health: Elgersma et al. (2018) and Poppe et al. (2020) found 
that fluctuations in daily milk yield in dairy cows are heritable, 
and are favorably and negatively genetically correlated to health 
and longevity traits (Elgersma et al., 2018; Poppe et al., 2020). 
Putz et al. (2019) found that fluctuations in daily feed intake and 
daily duration at the feeder in pigs are heritable, and favorably 
and negatively genetically correlated to mortality and treatment 
rate (Putz et al., 2019). In addition, many studies found heritable 
variation in uniformity in livestock species, which is the same as 
genetic heterogeneity of residual variance (see Hill and Mulder, 
2010 and Elgersma et al., 2018 for overviews; e.g. Rowe et al., 
2006; Mulder et al., 2007; Mulder et al., 2008; Ibáñez-Escriche et 
al., 2008a; Ibáñez-Escriche et al., 2008b; Mulder et al., 2009; Wolc 
et al., 2009; Neves et al., 2011; Wolc et al., 2012; Janhunen et al., 
2012; Sae-Lim et al., 2015; Mulder et al., 2016; Sae-Lim et al., 
2016; Sae-Lim et al., 2017). Thus, variance of production traits 
is heritable and seems to indicate resilience, however skewness 
and autocorrelation of production traits have not previously been 
investigated as potential indicators for resilience in livestock.

Natural antibodies (NAb) are antigen binding antibodies 
present in individuals without a (known) previous exposure to 
this antigen (Baumgarth et al., 2005). Previous studies showed 
that commercial layer chickens with high NAb levels binding 
keyhole limpet hemocyanin (KLH) were associated with lower 
mortality (Star et al., 2007; Sun et al., 2011; Wondmeneh et al., 
2015). A NAb-selection experiment divergently selected layer 
chickens on total keyhole limpet hemocyanin (KLH)-binding 
NAb levels (IgTotal), resulting in a line with high NAb levels 
(High line) and a line with low NAb levels (low line) (Berghof, 
2018). The High line showed increased antibody response to 
some antigens (Berghof et al., 2018a). Moreover, the High line 
had a 3.0 times reduced risk to die during an avian pathogenic 
Escherichia coli (APEC)-inoculation compared to chickens 
of the low line. Surviving High line chickens also had lower 
total lesion scores (i.e. morbidity) compared to surviving low 
line chickens at the end of the experiment (Berghof et al., 
2019a). It was hypothesized that the NAb-selection lines differ 
in general (bacterial) disease resistance (Berghof, 2018). We 
hypothesize that the NAb-selection lines also differ in disease 
resilience and consequentially differ in general resilience (i.e. 
the resilience indicators).
The objectives of this study were:

1. to investigate the genetic parameters of resilience indicators 
based on four-weekly standardized BW deviations of layer 
chickens divergently selected for total KLH-binding NAb levels;

2. to investigate the relationship between resilience indicators 
and immunity by estimating the (genetic) correlation between 
resilience indicators and NAb levels; and

3. to investigate the relationship between resilience indicators 
and disease resistance by investigating the predictive ability of 
resilience indicators on APEC-resistance.
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Given the current developments in the field of sensor 
technology, it is expected that large amounts of longitudinal data 
(“big data”) will become available for investigation of resilience 
based on deviations. This study explores the potential of resilience 
indicators based on longitudinal data. Moreover, this study is, 
as far as we know, the first to investigate genetic parameters of 
skewness and autocorrelation, and the first to investigate a direct 
relationship between resilience, immunity and disease resistance.

MaTeRIaLs anD MeThODs

study Populations
The study populations consisted of the high and low NAb-selection 
lines in the selection experiment (including base population) and 
the NAb-selection lines in the infection experiments. Figure 2 
gives an overview of the study populations.

Selection Experiment
For objective 1 and objective 2, genetic parameters of resilience 
indicators based on BW deviations and their relations with NAb 
were investigated based on data of the NAb-selection experiment. 

The selection experiment-population consisted of an unselected 
(i.e. not for NAb selected) base population [generation (G)0] 
and six generations of NAb-selection lines [generation 1–6 (G1–
G6)]. A steady increase in phenotypic differences in NAb and 
NAb EBV was observed over six generations between the high 
and low NAb-selection line, see Berghof (2018).

Briefly, the selection process was performed as follows:

• The G0 consisted of almost 3,700 purebred White Leghorn 
chickens (approximately 2,400 females and 1,300 males) 
from the “WA” line of Hendrix Genetics. Plasma samples of 
the studied chicken population were collected at 15 weeks 
of age (males) or 19 weeks of age (females). Selection of the 
breeding candidates was based on total KLH-binding NAb 
(IgTotal) titer (see below). For the high and low line, 25 
males and 50 females with the highest and lowest titers were 
selected to breed G1. Each male was mated to 2 females and 
each female was mated to 1 male (adjusted from Berghof 
et al., 2018a).

• Incubation of eggs and housing of chickens for the selection 
lines (from G1 onwards) was at research facility “Carus” from 
Wageningen University & Research according to standard 

FIgURe 1 | Examples of a more resilient sire-family (a and C; in blue) and a less resilient sire-family (B and D; in red) based on the sire's estimated breeding values 
for natural logarithm-transformed variance [ln(variance)]. a and B show body weights (BW) over time. C and D show standardized BW over time. C and D illustrate 
the difference in ln(variance) most easily: a more horizontal standardized BW line over time indicates a lower ln(variance) and thus a greater (hypothesized) resilience, 
and vice versa. The sire-families were obtained by mating the sire with two dams. The two families within the sire-family are indicated with different markers (round 
or square). Only BW of offspring with estimates for the resilience indicators (5 or more BW observations) are shown. The sire-families in this figure are families of 
generation 5 of the high line of the natural antibody (NAb)-selection experiment (i.e. the sires were generation 4).
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production practices. Each generation consisted of approximately 
600 chickens per line. Plasma samples were collected at 16 weeks 
of age. Selection of the breeding candidates was based on total 
KLH-binding NAb (IgTotal) titer (see below).Within a line, the 
25 best males and the 50 best females were selected to breed the 
next generation. Selected males and females were group housed 
from 0 to 16 weeks of age and individually housed from 16 weeks 
of age to 32 weeks of age. Non-selected males were culled after 16 
weeks of age and non-selected females were group-housed from 
0 weeks of age to 32 weeks of age. Chickens were not exchanged 
between lines. Each male was mated to 2 unrelated females (i.e. 
not mated with siblings or half-siblings) and each female was 
mated to 1 unrelated male (i.e. not mated with sibling or half-
sibling) (adjusted from Berghof et al., 2018a).

More information about G0 can be found in Van Der Klein 
et al. (2015), and more information about the NAb-selection 
experiment can be found in Berghof et al. (2018a).

Infection Experiments
For objective 3, data of infection experiments of the NAb-
selection lines were used to investigate the relationship between 
resilience and disease resistance. An additional G4 and G6 were 
bred during the NAb-selection experiment, and inoculated with 
APEC, see Disease Resistance: APEC Mortality and APEC Lesion 
Scores and Berghof et al. (2019a) for more details.

Resilience Indicators Based on Body 
Weight Deviations
BW were collected approximately every 4 weeks from 4 weeks 
of age to approximately 32 weeks of age for hens in the selection 
experiment, except at 28 weeks of age. Roosters were not included 
in the dataset, because only roosters selected for breeding the 
next generation of the selection experiment were kept until 
approximately 32 weeks of age.

BW records were visually checked for reliability across 
individuals of their respective cohort of line*generation*weighing 
moment with the Interactive Data Analysis tool from SAS® 
software (SAS software V9.3 TS Level 1M2): 4 BW observations 
of different individuals were considered to be unreliable and were 
removed from the dataset. For these individuals, BW doubled 
between time point 1 and time point 2 and was subsequently 
reduced with more than 25% between time point 2 and time 
point 3. Time point 2 was then considered to be an unreliable 
BW observation and was removed.

BW were standardized to an average of zero and a standard 
deviation of one across individuals of their respective cohort of 
line*generation*weighing moment to correct for scaling effects 
during life and known cohort differences in BW (Berghof, 
2018) (see Supplementary Table 1 for descriptive statistics of 
the cohorts). As a consequence, the standardized BW records 
are equal to standardized deviations. Thus, deviations were 
calculated as:

FIgURe 2 | Overview of the study populations. Body weight deviations and natural antibody (NAb) were measured during the selection experiment. Avian 
pathogenic Escherichia coli (APEC) mortality and APEC lesion scores were measured during the infection experiments. Base population is the unselected population 
(G0) and the NAb-selection lines are generation (G)1 to G6. High line and Low line are the selected lines for high and low total keyhole limpet hemocyanin-binding 
NAb titers at 16 weeks of age, respectively. G4+ and G6+ are the additionally bred chickens for the infection experiments and are similar to G4 and G6 of the 
selection experiment.
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where BWyz is BW y of the zth cohort, BWz  is the average BW 
of the zth cohort, and sz is the standard deviation of BW of the 
zth cohort.

The resilience indicators used in this study are the 
ln-transformed variance of deviations within an individual, the 
skewness of deviations within an individual, and the lag-one 
autocorrelation of deviations within an individual (Berghof et al., 
2019b). The variance was ln-transformed with a natural logarithm 
(ln), because this is the commonly used scale to express the 
variance (also known as uniformity) in other studies and allows 
direct comparison of the additive genetic variance between studies 
(Hill and Mulder, 2010; Sell-Kubiak et al., 2015). The resilience 
indicators were calculated for each individual with 5 or more BW 
observations, which resulted in the removal of all individuals in 
G0 and G1 and removal of G2–G6 individuals without sufficient 
observations. The dataset contained 4,966 individuals before 
editing. A total of 3,393 individuals were removed (G0: 2,392 
individuals, G1: 458 individuals, and G2–G6: 543 individuals). 
The final dataset for ln(variance) and skewness consisted of 1,593 
individuals. Autocorrelation was only kept in the dataset if an 
individual had five or more subsequent observations in order to 
obtain at least 4 pairs of data points to estimate autocorrelation. 
This resulted in an additional removal of 110 individuals, which 
resulted in 1,463 individuals in the final dataset for autocorrelation.

The ln(variance) of deviations of the jth individual was 
calculated as:
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where xij is deviation i of the jth individual, x j  is the mean of 
deviations of the jth individual, and nj is the number of deviation 
observations of the jth individual.

The skewness of deviations of the jth individual was 
calculated as:
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where nj is the number of deviation observations of the 
jth individual, xij is deviation i of the jth individual, x j  is 
the mean of deviations of the jth individual, and s j

2  is the 
variance of deviations of the jth individual being calculated as: 
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x j is the mean of deviations of the jth individual, and nj is the 
number of deviation observations of the jth individual.

The autocorrelation of deviations of the jth individual was 
calculated as:
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where nj is the number of pairs of subsequent deviations of the jth 
individual, xij is deviation i of the jth individual, x j  is the mean 
of deviations of the jth individual, and x(i+1)j is the subsequent 
deviation of deviation i of the jth individual.

Table 1 shows an overview of the number of observations for 
the three resilience indicators per line and generation.

Immunity: natural antibodies
NAb optical densities (OD) were determined in individual 
plasma samples by an indirect two-step ELISA and calculated as 
described by Berghof et al. (2018c).

Briefly, plasma samples were 1:10 pre-diluted with dilution 
buffer. Flat-bottomed, 96-well medium binding plates were coated 
with 2 μg/ml KLH in 100 μl coating buffer and incubated at 4°C 
overnight. After washing for 6 s with tap water containing Tween® 
20, plates were tapped dry. The 1:10 pre-dilution of the samples 
were further diluted with dilution buffer to 1:40, 1:160, 1:640, 
and 1:2,560 test dilutions. Duplicate standard positive plasma 
samples were stepwise 1:1 diluted with dilution buffer. The plates 
were incubated for 1.5 h at room temperature (20–25°C). After 
washing, plates were incubated with 1:20,000-diluted anti-chicken 
IgG heavy and light chain (IgTotal) labeled with horse radish 
peroxidase (PO), or 1:20,000-diluted anti-chicken IgM labeled with 
PO, or 1:40,000-diluted anti-chicken IgG(Fc) labeled with PO, and 
incubated for 1.5 h at room temperature (20–25°C). After washing, 
binding of the antibodies to KLH was visualized by adding 100 μl 
substrate buffer at room temperature (20–25°C). After 15 min the 
reaction was stopped with 50 μl of 1.25 M H2SO4. OD were measured 
at 450 nm [adjusted from Berghof et al. (2018c)].

Antibody titers were calculated as described by Berghof 
et al. (2018c) (based on Frankena, 1987). Briefly, the OD of the 
duplicate standard positive plasma samples were averaged for 
each plate. Logit values of the OD per plate were calculated, and 
a linear regression line of the logit OD against the respective 
log2-dilution values of the averaged duplicate standard positive 
plasma samples was fitted. Titers of the plasma samples per plate 
were calculated using the linear regression line (adjusted from 
Berghof et al., 2018c). Table 1 shows an overview of the number 
of observations for NAb titers per line and generation.

Disease Resistance: avian Pathogenic 
Escherichia coli Mortality and avian 
Pathogenic Escherichia coli Lesion scores
Two inoculation experiments were performed with additionally 
bred G4 and G6 chickens, as described by Berghof et al. (2019a). 
Care was taken to select one male and one female of each family 
(where possible) per treatment to have a balanced representation 
of both NAb-selection lines.

Briefly, at 8 days of age, chickens of both selection lines 
received an intratracheal inoculation of 0.2 ml phosphate 
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buffered saline containing 108.20 colony-forming units (CFU)/
milliliter APEC in the additional G4 (197 individuals in total), 
or 106.64 CFU/ml APEC in the additional G6 (180 individuals 
in total) (adjusted from Berghof et al., 2019a). These treatments 
were selected, because they had the largest variation in mortality 
(108.20 CFU/ml) and lesion scores (106.64 CFU/ml) (Berghof et al., 
2019a, see Berghof et al., 2019a for all treatments).

After inoculation, chickens were checked every 2 h for the first 
4 days post inoculation, and subsequently every 8 h until the end of 
the experiment (approximately 170 h post inoculation). Mortality 
was scored as the percentage of chickens alive at a certain moment 
divided by the total number of chickens at the start of the experiment. 
At 15 days of age (7 days post inoculation), all surviving chickens 
were euthanized [adjusted from Berghof et al. (2019a)].

Lesion scores (i.e. morbidity) were macroscopically assessed 
on the surviving chickens at the end of the experiment based on 
Van Eck and Goren (1991). Lesion scoring was performed on the 
left thoracic air sac, the right thoracic air sac, the pericardium, 
and the serosal surface of the liver, always in the same order. 
Severity of the lesion scores were defined as follows: 0: no lesions, 
0.5: one single pinhead-sized inflammatory spot, 1: two or more 
pinhead-sized spots, 2: fibrinous patches on various locations, 
and 3: extensive fibrinous patches (Van Eck and Goren, 1991). 
The total lesion score is the sum of scores for the four individual 
locations [adjusted from Berghof et al. (2019a)].

statistical analyses
Genetic Parameters of Resilience Indicators
Genetic parameters for the resilience indicators based on four-
weekly BW deviations of layer chickens were estimated.

The following linear animal model was used for estimating 
variance components for the resilience indicators:

 y nObs Gen Sel a eabcj a b c bc j abcj= + + + + ∗ + +µ ( ) ,Gen Sel  

where yabcj is the resilience indicator ln(variance), skewness, or 
autocorrelation, μ is the overall mean, nObsa is the fixed effect of 
the number of observations for the resilience indicator (a = 5–7 
for ln(variance) and skewness, and a = 4–6 for autocorrelation), 
Genb is the fixed effect of generation (b = 2–6), Selc is the fixed 
effect of individual housing (after 16 weeks of age) of the females 
selected for producing the next generation within the selection 
experiment (with c being not selected or being selected), (Gen 
⃰ Sel)bc is the fixed effect of the interaction term between Genb 
and Selc, aj is the random additive genetic effect of the jth animal 
assumed to be 

N( , )0 2Aσ a , eabcj is the residual term assumed to 
be N( , )0 2Iσ e . Assumed (co)variance structures of the random 
model terms are Aσ a

2  and Iσ e
2 , in which A is the additive 

genetic relationship matrix based on the pedigree consisting 
of 11,360 individuals from in total 13 generations, σ a

2  is the 
additive genetic variance, I is an identity matrix, and σ e

2  is the 
residual variance.

Heritabilities were calculated as

 
h a

p

2
2

2= σ
σ

,
 

where σ a
2  is the additive genetic variance, and σ p

2  is the 
phenotypic variance being calculated as: σ σ σp a e

2 2 2= + , where σ a
2  

TaBLe 1 | Average, standard deviation (in parentheses) and number of observations (in italic) for the three resilience indicators and keyhole-limpet hemocyanin-binding 
natural antibody (NAb) titers at 16 weeks of age per generation per line (H, high NAb-selection line; L, low NAb-selection line) and total.

Trait generation Total

0a 1 2 3 4 5 6

h L h L h L h L h L h L

ln(variance) – – -1.27 -1.20 -1.56 -1.31 -1.25 -1.20 -1.34 -1.11 -1.51 -1.57 -1.32
(0.88) (0.92) (1.04) (1.00) (0.85) (0.80) (1.01) (0.87) (0.98) (1.06) (0.94)
117 139 108 95 209 224 160 186 177 158 1,573

skewness – – -0.29 -0.18 -0.08 -0.27 -0.13 -0.16 -0.15 -0.21 -0.18 -0.11 -0.17
(0.82) (0.91) (0.95) (1.03) (0.84) (0.89) (0.82) (0.88) (0.84) (0.80) (0.87)
117 139 108 95 209 224 160 186 177 158 1,573

autocorrelation – – 0.23 0.25 0.29 0.17 0.27 0.25 0.22 0.23 0.39 0.39 0.27
(0.42) (0.45) (0.56) (0.57) (0.39) (0.40) (0.52) (0.56) (0.48) (0.55) (0.48)
115 135 94 82 209 224 148 168 157 131 1,463

IgTotal NAbbc 7.3 6.4 5.9 6.4 5.2 8.1 6.8 6.4 4.3 6.6 4.6 7.5 5.5 -c

(1.4) (1.2) (1.3) (1.3) (1.4) (1.6) (1.8) (1.3) (1.6) (1.3) (1.7) (0.9) (1.4)
3,664 467 479 385 435 264 262 460 455 578 557 372 335 8,713

IgM NAbc 7.5 6.6 6.1 6.7 5.7 6.4 5.2 6.1 4.3 6.7 4.0 6.3 3.6 -c

(1.3) (1.0) (1.0) (0.8) (0.9) (0.8) (1.0) (0.9) (1.1) (0.9) (1.2) (1.1) (1.2)
3,664 467 479 385 435 264 262 460 455 578 557 372 335 8,713

IgG NAbc 6.3 6.3 5.8 6.0 5.2 5.8 5.0 6.0 4.4 6.5 4.8 6.7 4.4 -c

(1.6) (1.3) (1.4) (1.3) (1.4) (1.5) (1.8) (1.4) (1.6) (1.4) (1.7) (1.6) (1.9)
3,664 467 479 385 435 264 262 460 455 578 557 372 335 8,713

aBase population, not selected for NAb.
bSelection criterion.
cNAb are measured on a relative scale and comparison over generations is therefore not possible.
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is the additive genetic variance and σ e
2  is the residual variance. 

The likelihood ratio test was used to test whether estimated 
heritabilities were significantly different from zero, comparing the 
tested model to a model in which the additive genetic variance 
was fixed at a value of 0.000001. The likelihood ratio test was 

-2ln(Λ(x)) with Λ( )
max[L | x]
max[L | x]

x = 0

1
, where L0 is the likelihood 

under the null hypothesis with the additive genetic variance fixed 
at 0.000001, L1 is the likelihood under the alternative hypothesis 
without variance components constrained, and x is the given 
dataset. Significance was assessed with the likelihood-ratio test 
assuming that the likelihood ratio follows a χ1

2 -distribution.
The genetic coefficient of variation (GCV) was calculated as:

 
GCV a=

σ
µ

2

,
 

where σ a
2  is the additive genetic variance of the resilience 

indicator skewness or autocorrelation, and μ is the overall mean 
of the resilience indicator. For ln(variance), the GCV is calculated 
as σ a

2 , because the ln-transformation implicitly assumes an 
exponential model. Therefore σ a

2  is without units and division 
by μ is redundant (Mulder et al., 2007; Hill and Mulder, 2010).

To estimate the similarity between resilience indicators, 
phenotypic and genetic correlations between resilience indicators 
were estimated based on bivariate analyses using the linear 
animal models for the resilience indicators described above.

Resilience Indicators and Immunity
To investigate the relationship between resilience indicators 
and immunity, the phenotypic and genetic correlations between 
resilience indicators and NAb, and the correlated selection 
response of resilience indicators in the NAb-selection lines 
were estimated.

Phenotypic and genetic correlations between resilience 
indicators and NAb were estimated based on bivariate analyses 
using the linear animal models for the resilience indicators 
described above and the following linear animal model for NAb 
as described by Berghof (2018):

 y Plate a dam edjk d j k djk= + + + +µ  

where ydjk is the IgTotal, IgM, or IgG titer, μ is the overall mean, 
Plated is the fixed effect of plate d on which a sample was analyzed 
(d = 1-422), aj is the random additive genetic effect of the jth animal 
assumed to be N( , )0 2Aσ a , damk is the random effect of the kth 
dam assumed to be N( , )0 2Iσ m , and edjk is the residual term 
assumed to be N( , )0 2Iσ e . Assumed (co)variance structures of 
the random model terms are Aσ a

2 , Iσ m
2 , and Iσ e

2 , in which A 
is the additive genetic relationship matrix based on the pedigree 
consisting of 11,360 individuals from in total 13 generations, σ a

2

is the additive genetic variance, I is an identity matrix, σ m
2  is the 

maternal variance, and σ e
2  is the residual variance. Note that the 

plate effect accounts for confounded effects on the samples, such 
as sex, storage, and analysis effects.

The correlated selection response of resilience indicators 
was investigated by plotting the average EBV of the resilience 
indicators (obtained from the univariate linear animal models) 
for each line and generation.

Resilience Indicators and Disease Resistance
To investigate the relationship between resilience indicators and 
disease resistance, the predictive ability of the resilience indicators 
on APEC mortality and APEC lesion scores was investigated.

EBV of the resilience indicators and IgTotal (obtained from 
the univariate linear animal models) were used as predictors for 
mortality in infection experiment 1 (G4) and total lesion scores in 
infection experiment 2 (G6). Because individuals in the challenge 
experiments were not part of the NAb-selection lines (i.e. additional 
G4 and G6), the EBV basically represent parents' EBV averages.

The statistical model used for performing the survival analysis 
to investigate the relationship between resilience indicators and 
APEC mortality in the additional G4 was a Cox proportional 
hazards model (Cox, 1972; Kleinbaum and Klein, 2012):

 h t h tj ( ) ( ) [ ],= ×0 exp Xββ  

where hj(t) is a hazard function describing the probability at 
time t (t = 0–170 h post inoculation) for death to occur on the 
jth APEC-inoculated chicken (j = 1–197), h0(t) is an unspecified 
baseline hazard function at time t, exp is the natural exponential 
function (i.e. ex with x being Xβ), X is a design matrix containing 
predictors with β being the vector with parameters. The 
investigated predictors were EBV variance

j
ln( ) , EBV

jskewness , or 
EBV

jautocorrelation  for the jth APEC-inoculated chicken. To account 
for the effect of selection on IgTotal NAb, the model was also 
extended with EBVIgTotalj

 for the jth APEC-inoculated chicken.
Conditional probabilities were calculated for chickens that 

died at the same moment (i.e. ties), according to Kalbfleisch and 
Prentice (2011). Chickens that were euthanized at the end of the 
experiment were censored (adjusted from Berghof et al., 2019a).

The statistical model used for performing the analysis to 
investigate the relationship between resilience indicators and 
APEC lesion scores in the additional G6 was an analysis of 
covariance (i.e. a general linear model):

 y ej j= +µ Xββ + ,  

where yj is the total lesion score on the jth surviving APEC-
inoculated chicken (j = 1-180), μ is the overall mean, X is a 
design matrix containing predictors with β being the vector with 
parameters, and ej is the residual term assumed to be N( , )0 2Iσ e
where I is an identity matrix and σ e

2  is the residual variance. 
The investigated predictors were EBV variance

j
ln( ) , EBV

jskewness
, or 

EBV
jautocorrelation  for the jth APEC-inoculated chicken. To account 

for the effect of selection on IgTotal NAb, the model was also 
extended with EBVIgTotal j

 for the jth APEC-inoculated chicken.

Miscellaneous
Genetic parameters of NAb have already been reported based on 
(part of) this data elsewhere, and will therefore not be reported 
here (Berghof et al., 2015; Berghof, 2018).
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Statistical analyses were performed using ASReml 4.1 
(Gilmour et al., 2014) for “Genetic Parameters of Resilience 
Indicators” and “Resilience Indicators and Immunity,” and by 
using SAS® software (SAS software V9.3 TS Level 1M2) for 
“Resilience Indicators and Disease Resistance.”

Significance was declared for p-values ≤ 0.05 and tendency to 
significance was declared for p-values ≤ 0.10.

ResULTs

genetic Parameters of Resilience 
Indicators
Variance components, heritabilities, and GCV of the resilience 
indicators ln(variance), skewness, and autocorrelation are 
reported in Table 2. The additive genetic variance ( σ a

2 ) for 
ln(variance) was 0.09, for skewness σ a

2  was 0.07, and for the 
autocorrelation σ a

2  was 0.02. Heritabilities were estimated 
to be 0.10 for ln(variance) and 0.09 for skewness, and were 
significantly different from zero. However, the heritability 
for autocorrelation was estimated to be 0.11 and tended to 
significance (p = 0.053). GCV was 0.30 for ln(variance), 1.56 
for skewness, and 0.52 for autocorrelation. Note that the 
means of skewness and autocorrelation were close to zero, 
which may inflate their GCV. Thus, resilience indicators 
based on BW deviations are heritable and show high 
genetic variability.

Phenotypic and genetic correlations among resilience 
indicators are reported in Table 3. Phenotypic correlations (rp) 
among resilience indicators were all weak (-0.10 ≤ rp ≤ 0.32). 
The genetic correlations (rg) between the resilience indicators 
were low to moderate: the genetic correlation was -0.20 

between ln(variance) and skewness, 0.40 between ln(variance) 
and autocorrelation, and 0.07 between skewness and 
autocorrelation, all with high SE. Thus, the weak correlations 
suggest that the resilience indicators capture different aspects 
of BW deviations.

Resilience Indicators and Immunity
Phenotypic and genetic correlations of the resilience indicators 
and IgTotal, IgM, and IgG NAb are reported in Table 4. The 
phenotypic and genetic correlations between the resilience 
indicators and NAb were low: -0.03 ≤ rp ≤ 0.02 and -0.09 ≤ rg 
≤ 0.08, all with high SE. Thus, the resilience indicators are 
genetically different from NAb, i.e. they contain hardly any 
common genetic variation.

Average EBV of the two NAb-selection lines for the three 
resilience indicators are shown in Figure 3. In agreement 
with the estimated genetic correlation, the High line showed a 
negative trend in average EBVln(variance) and the low line showed 
a positive trend. EBVskewness and EBVautocorrelation averages did not 
show clear line differences and remained around zero. Thus, even 
though the genetic correlations between resilience indicators and 
NAb were low, EBV of ln(variance) showed a small correlated 
selection response for IgTotal NAb.

Resilience Indicators and Disease 
Resistance
The predictive ability of EBV of the resilience indicators and 
IgTotal NAb for APEC mortality is shown in Table 5. EBVIgTotal 
significantly predicted mortality (hazard ratio = 0.59; p = 0.01). 
None of the EBV of the resilience indicators did significantly 
predicted mortality, neither as single predictor, nor in 
combination with EBVIgTotal. Thus, the resilience indicators do 
not predict APEC-induced mortality.

The predictive ability of EBV of the resilience indicator and 
IgTotal NAb for APEC morbidity is shown in Table 6. EBVIgTotal 
tended to significantly predict mortality (β = -0.50; p = 0.09). 

TaBLe 2 | Variance components and SE (in parentheses), heritability and SE (in 
parentheses), and the genetic coefficient of variation (GCV) of the three resilience 
indicators {i.e. natural logarithm-transformed variance [ln(variance)], skewness, 
and autocorrelation}.

ln(variance) skewness autocorrelation

σ a
2 0.09 (0.03) 0.07 (0.03) 0.02 (0.01)

σ e
2 0.78 (0.04) 0.70 (0.03) 0.21 (0.01)

σ p
2 0.87 (0.03) 0.77 (0.03) 0.23 (0.01)

Heritability 0.10 (0.04) 0.09 (0.04) 0.11 (0.04)a

GCV 0.30 1.56 0.52

aNot significantly different from zero; p-value = 0.053. Significance was assessed with 
the likelihood-ratio test assuming that the likelihood ratio follows a χ1

2
-distribution.

TaBLe 3 | Phenotypic (above diagonal) and genetic correlations (below diagonal) 
and SE (in parentheses) of the three resilience indicators from the linear animal 
model {natural logarithm-transformed variance [ln(variance)], skewness, and 
autocorrelation}.

ln(variance) skewness autocorrelation

ln(variance) – -0.10 (0.03) 0.32 (0.03)
skewness -0.20 (0.28) – 0.04 (0.03)
autocorrelation 0.40 (0.24) 0.07 (0.29) –

TaBLe 4 | Phenotypic and genetic correlations and SE (in parentheses) of the three resilience indicators {natural logarithm-transformed variance [ln(variance)], 
skewness, and autocorrelation} and the natural antibodies (NAb).

Phenotypic correlations genetic correlations

IgTotal IgM Igg IgTotal IgM Igg

ln(variance) -0.03 (0.03) -0.01 (0.03) -0.03 (0.03) -0.09 (0.12) -0.09 (0.12) -0.06 (0.13)
skewness -0.02 (0.03) 0.02 (0.03) -0.02 (0.03) 0.01 (0.12) -0.01 (0.13) 0.01 (0.13)
autocorrelation -0.03 (0.03) 0.02 (0.03) -0.02 (0.03) 0.02 (0.12) 0.08 (0.12) 0.01 (0.13)
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EBVln(variance) significantly predicted lesion scores (p = 0.03). 
The regression coefficient was positive (β = 6.20) and therefore 
favorable: greater EBVln(variance) (i.e. lower resilience) was 
associated with greater lesion scores (i.e. larger disease impact). 
The EBVln(variance) difference (minimum = -0.33, maximum = 0.19) 
accounted for a maximal total lesion score difference of 3.2 (out 
of 12), while EBVIgTotal difference (minimum = -1.45, maximum = 

1.41) accounted for a maximal total lesion score difference of 1.4. 
EBVln(variance) was significant when solely included as a predictor 
in the model, but only tended to significance (p = 0.07) when 
EBVIgTotal was included. This suggests that EBVln(variance) and 
EBVIgTotal partly compete to explain the same variance by the 
model. EBVskewness and EBVautocorrelation did not significantly predict 

FIgURe 3 | Average estimated breeding values (EBV) and standard errors of the two natural antibody (NAb)-selection lines (High line in blue and Low line in red) 
over six generations of selection for the three resilience indicators from the linear animal model (a: natural logarithm-transformed variance; B: skewness; and 
C: autocorrelation). Only EBV of females are shown. EBV of generation 0 and generation 1 are based on offspring phenotypes (i.e. no own phenotypes).

TaBLe 5 | Predictors for avian pathogenic Escherichia coli mortality. 

Predictor # Predictors hR p

EBVNAb 1 0.59 0.01
EBVln(variance) 1 1.98 0.63
EBVskewness 1 2.60 0.59
EBVautocorrelation 1 33.70 0.26
EBVNAb 2 0.54 0.01
 + EBVln(variance) 0.26 0.39
EBVNAb 2 0.59 0.01
 + EBVskewness 1.89 0.70
EBVNAb 2 0.58 0.01
 + EBVautocorrelation 39.90 0.22

Predictors are estimated breeding values (EBV) for natural antibodies (NAb) 
(EBVNAb) and EBV for resilience indicators (natural logarithm-transformed variance 
[ln(variance)], skewness, and autocorrelation) (EBVresilience indicator). Predictors were 
tested as one covariate (i.e. EBVNAb or EBVresilience indicator) and two covariates (i.e. 
EBVNAb and EBVresilience indicator). Shown is the hazard ratio (HR) and the p-value of 
the HR.

TaBLe 6 | Predictors for avian pathogenic Escherichia coli total lesion scores. 

Predictor # Predictors β p

EBVNAb 1 -0.50 0.09
EBVln(variance) 1 6.20 0.03
EBVskewness 1 5.85 0.20
EBVautocorrelation 1 -5.70 0.76
EBVNAb 2 -0.37 0.23
 + EBVln(variance) 5.36 0.07
EBVNAb 2 -0.38 0.07
 + EBVskewness 4.89 0.14
EBVNAb 2 -0.54 0.09
 + EBVautocorrelation -6.49 0.60

Predictors are estimated breeding values (EBV) for natural antibodies (NAb) 
(EBVNAb) and EBV for resilience indicators (natural logarithm-transformed variance 
[ln(variance)], skewness, and autocorrelation) (EBVresilience indicator). Predictors were 
tested as one covariate (i.e. EBVNAb or EBVresilience indicator) and two covariates (i.e. 
EBVNAb and EBVresilience indicator). The total lesion score is the sum of scores (0-3) for 
the left thoracic air sac, the right thoracic air sac, the pericardium, and the serosal 
surface of the liver. Shown is the regression coefficient β and the p-value of the 
regression coefficient.
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lesion scores. Thus, EBV of the resilience indicator ln(variance) 
had a favorable relationship to APEC-induced lesion scores.

DIsCUssIOn
Breeding for improved resilience seems a promising strategy 
to obtain trouble-free livestock which is easy-to-manage, 
and has a greater welfare and health. Berghof et al. (2019b) 
proposed three resilience indicators to measure resilience based 
on deviations between expected production and observed 
production: ln(variance) of deviations, skewness of deviations, 
and autocorrelation of deviations (Berghof et al., 2019b). 
Recent studies suggest that fluctuations of longitudinally 
observed production traits might indeed be related to improved 
(disease) resilience in livestock (Elgersma et al., 2018); Putz 
et al., 2019; Poppe et al., 2020). Alternative resilience indicators 
like skewness and autocorrelation, however, have not been 
reported before (but is investigated in dairy cattle by Poppe 
et al., 2020). Breeding for greater NAb levels has been shown 
to improve APEC-resistance in chickens (Berghof et al., 2019a) 
and greater NAb levels have been hypothesized to improve or to 
be indicative for improved general disease resistance (Berghof, 
2018). This study is the first to investigate heritabilities of 
ln(variance), skewness, and autocorrelation of longitudinal-
observed deviations, and to relate these resilience indicators 
with immunity and disease resistance. The obtained results 
increase our understanding of the biological mechanisms 
underlying resilience in animals.

genetic Parameters of Resilience Indicators
The additive genetic variance of ln(variance) was within the 
range of previously reported estimates based on variation of 
different traits in different livestock species (e.g. Rönnegård et al., 
2013; Vandenplas et al., 2013; Sell-Kubiak et al., 2015; Mulder 
et al., 2016; Iung et al., 2017; Elgersma et al., 2018), including BW 
variation in chickens (Rowe et al., 2006; Mulder et al., 2009; Wolc 
et al., 2009). Although reported heritabilities for ln(variance) 
are mostly low (0.00–0.10), GVC are generally considerable 
(0.15–0.30), which was observed for ln(variance) in this study as 
well. This indicates that there are good prospects for the genetic 
improvement of ln(variance) and thus for genetic improvement 
of resilience.

This study is the first study to investigate skewness and 
autocorrelation of deviations. Heritability estimates of skewness 
and autocorrelation were similar to the heritability of ln(variance). 
Poppe et al. (2020) estimated a heritability for autocorrelation 
based on daily milk deviations similar to this study, although 
the GCV was considerably lower (0.07–0.17) due to a much 
lower additive genetic variance. In contrast to our study, they 
estimated a very low heritability of 0.01 for skewness based on 
daily milk deviations and a low GCV (0.05–0.10) due to a much 
lower additive genetic variance compared to this study (factor 10 
lower). Three major differences between Poppe et al.'s study and 
this study might underlie these differences observed for skewness 
and autocorrelation: 1. Poppe et al. used daily observations with 
a minimum of 50 observations per individual in contrast to 

this study's four-weekly observations with a minimum of five 
observations per individual. Poppe et al.'s approach captures 
(smaller, shorter) disturbances more accurately and is therefore 
expected to be a more accurate representation of resilience (as 
discussed in Berghof et al., 2019b); 2. Poppe et al. used milk yield 
deviations as an indicator. Milk yield is known to respond fast 
to environmental factors (i.e. disturbances) and changes in milk 
yield can be observed between days. In contrast, BW responds 
slowly to environmental factors, except for enteric diseases, and, 
generally, changes in BW only become apparent after several days. 
Thus, daily milk yield deviations can be a “fast resilience indicator,” 
while BW deviations (even if taken daily) are a “slow” resilience 
indicator. Therefore, it is expected that resilience indicators based 
on daily milk yield deviations are different from resilient indicators 
based on BW deviations; and 3. Poppe et al. based the expected 
production of an individual on the individual's lactation curve in 
contrast to this study's cohort average (line*generation*weighing 
moment). To approximate this method, deviations based on 
Gompertz curves for growth of each individual were used to 
estimate resilience indicators (results not shown). However, due 
to the small number of BW observations, deviations were almost 
completely absorbed into the Gompertz curve parameters, which 
resulted in very small resilience indicators. Therefore, fitting the 
Gompertz curve or fitting any other growth curve seems not 
appropriate when the number of observations is small, which 
effectively results in a low number of degrees of freedom. On the 
contrary, when using deviations from cohort averages to calculate 
resilience indicators, genetic differences in individual growth 
curves might end up as deviations from the cohort averages. As 
a consequence, resilience and growth curves are confounded. To 
investigate this potential confounding, the genetic correlations 
between the resilience indicators and the Gompertz curve's 
parameter a (estimated BW after the growth phase), parameter 
b (estimated BW before the growth phase), and parameter c (the 
estimated growth during the growth phase) were estimated (results 
not shown). The correlations were around zero between the 
resilience indicators and parameters a and b, which indicates that 
the resilience indicators are independent of the maximum BW and 
the initial BW. This is expected, because all resilience indicators 
are (mathematically) independent of averages. However, from the 
definitions of the three parameters, it is most likely that parameter 
c would yield non-zero genetic correlations with the resilience 
indicators. Indeed, the estimated genetic correlation between 
skewness and parameter c was -0.58 (SE = 0.17), while the genetic 
correlations between parameter c and ln(variance), and between 
parameter c and autocorrelations were close to zero. This suggests 
that skewness based on cohort averages captures partly individual 
differences in growth rate, and this might explain the differences 
observed for skewness between the study of Poppe et al. (2020), 
who used individual lactation curves, and this study. This finding 
does not per se exclude skewness based on BW deviations as a 
resilience indicator, because the individual growth differences 
might be a consequence of differences in resilience. It can be 
concluded that using cohort averages to calculate deviations is 
useful when the number of observations is low, but skewness of 
deviations based on cohort averages may also capture individual 
genetic differences in trait curves.
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Genetic correlations between resilience indicators were low. 
This might indicate that some of the resilience indicators are 
not predictive or that the different resilience indicators capture 
different aspects of resilience (as argued above). However, it 
cannot be excluded that the genetic correlations are actually 
greater than estimated in this study and consequently that 
the resilience indicators are more alike, because of the large 
SE of the estimations. The large SE might be a consequence of 
the low frequency and impact of (disease) disturbances in the 
study population's environment. However, similar results were 
observed in the study of Poppe et al. (2020) under commercial 
settings, supporting the hypothesis of a different genetic makeup 
and different information of the resilience indicators (Berghof 
et al., 2019b), even though these indicators are based on the 
same deviations. In order to genetically improve resilience, the 
different resilience indicators need to be combined in a selection 
index, if such an index indeed predicts resilience better than any 
of the individual indicators alone.

In previous studies, ln(variance) was investigated by using 
double-hierarchical generalized linear models (DHGLM), which 
accounts for the mean and variance of deviations simultaneously 
(Rönnegård et al., 2010; Felleki et al., 2012; Mulder et al., 2013). 
DHGLM analyses are computationally and mathematically more 
challenging to perform and to achieve convergence, which makes 
implementations of these models into breeding programs also 
practically challenging. Nevertheless, a DHGLM was used to 
analyze the BW data and results were compared to the simpler 
approach reported here (results not shown). Interestingly, the 
additive genetic variance of the DHGLM-ln(variance) was equal 
to the additive genetic variance of ln(variance) with a high 
genetic correlation (0.995). This shows that the more complex 
DHGLM approach, though theoretically more accurate, can be 
approximated very well by a more simplistic approach (similar to 
Sell-Kubiak et al., 2015), which can be more easily implemented 
in practice.

Possible factors influencing the BW deviations are permanent 
environmental effects and maternal environmental effects. 
Permanent environmental effects exist on BW, because of 
the repeated measurements. However, we condensed the 
BW information to one estimate of a resilience indicator per 
animal, and therefore permanent environmental effects are 
not identifiable. Maternal environmental effects could not be 
estimated (results not shown), because for most of the dams too 
few (i.e. <5) offspring were present in the dataset. Not accounting 
for maternal effects might result in overestimation of the genetic 
variance. Genetic analyses of BW at different time points did 
have significant maternal environmental effects at all time points 
(Berghof et al., in preparation). When maternal environmental 
effects were estimated for the resilience indicators, a significant 
maternal environmental effect was found for autocorrelation. 
However, this also completely absorbed the genetic variance (i.e. 
heritability was not significantly different from zero), confirming 
difficulties to disentangle genetic variance and maternal 
variance with a low number of offspring per dam in this dataset. 
Nevertheless, this indicates that environmental effects may 
influence resilience indicators and should be considered in future 
studies whenever possible.

The proposed resilience indicators by Berghof et al. (2019b) 
are defined based on longitudinal data on a commonly-measured 
production trait. This study used 5 to 7 BW measurements for 
estimating the heritability of ln(variance). The ln(variance) 
heritability in this study was clearly greater than ln(variance) 
heritability estimates based on one observation per individual 
(e.g. Janhunen et al., 2012; Sae-Lim et al., 2015; Iung et al., 2017; 
see also Hill and Mulder, 2010 for a review). This fits within the 
proposed idea of high-frequency BW measurements (Friedman 
et al., 2012; Revilla et al., 2019) and the strong increase in 
heritability estimates with the addition of a few observations for 
an individual (Figure 2 from Berghof et al., 2019b). Moreover, the 
current technological developments are expected to allow more 
frequent (i.e. daily) measurements on different phenotypes in all 
livestock species in the near future, including chickens (Friggens 
et al., 2017; Mulder, 2017; Berghof et al., 2019b). This study is 
therefore also an exploratory study to investigate the potential of 
different resilience indicators based on longitudinal data.

Resilience Indicators and Immunity
To investigate the relationship between resilience and immunity, 
the genetic correlations between the three resilience indicators and 
NAb were investigated in chickens divergently selected for NAb 
levels (see Berghof, 2018 for more information). High levels of 
KLH-binding NAb were previously associated with lower mortality, 
improved immunity, and increased disease resistance in chickens 
(Lammers et al., 2004; Star et al., 2007; Sun et al., 2011; Wondmeneh 
et al., 2015; Berghof, 2018; Berghof et al., 2018a; Berghof et al., 
2019a). Thus, NAb are expected to influence both the resistance (i.e. 
“minimally affected”) and the recovery (i.e. “rapidly return”), which 
are both intrinsic parts of (the definition of) resilience (Berghof 
et al., 2019b). We hypothesized that chickens selectively bred for 
greater NAb levels have a greater resilience compared to chickens 
selectively bred for lower NAb levels.

Genetic correlations between the resilience indicators and NAb 
were low, and thus, in contrast to our hypothesis, shared common 
mechanisms seem not to be present. This means that the resilience 
indicators do not account for disease resistance, or, more likely, do 
not cover disease resistance in this study population due to a too 
low level of disease pressure to exploit genetic differences under 
the standardized conditions of the research facility. It is well-
known that in high challenge environment more genetic variation 
in resistance or resilience is observed compared to “normal” 
environments (Drangsholt et al., 2011; LaFrentz et al., 2016; Putz 
et al., 2019). For example, Putz et al. (2019) investigated resilience 
indicators in pigs housed in a “natural disease challenge model” 
(i.e. an environment with a high multifactorial disease pressure). 
They found relatively high heritabilities for variation (0.15–0.26), 
and favorable correlations between variation and mortality, and 
variation and number of treatments (0.37–0.85) (Putz et al., 2019). 
In the same study population, NAb (measured before entering the 
high challenge environment) were predictive for fewer medical 
treatments and a greater resilience (i.e. decreased day-to-day 
fluctuations in feed intake) (Tibbs et al., 2018). Although the 
phenotypic correlations were weak (< |0.09|; Tibbs et al., 2018), 
they are similar to the phenotypic correlations in this study. We are 
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currently investigating the relation between resilience indicators 
and NAb in cross-bred populations housed in conventional 
production system. This will give more insight in their relationship 
under more challenging conditions. Anyhow, we hypothesize 
for now that NAb are informative for disease resilience before 
disturbances (i.e. diseases) are present, while the resilience 
indicators are informative for disease resilience after disturbances.

Remarkably, in preliminary work on the resilience indicators in 
animals up to G5, larger favorable genetic correlations (approximately 
-0.3) were found between ln(variance) and NAb (Berghof et al., 
2018b). The preliminary study (G0–G5) and this study (G0–G6) 
have similar variance components, which suggests that G6 is similar 
to G0–G5. However, reported SE of both studies are large (around 
0.2) due to a small study population, and consequently the difference 
in genetic correlations might be due to sampling. In addition, the 
discrepancy between G0–G5 and G0–G6 can also indicate that G6 
added different information to the dataset regarding the relationship 
between NAb and resilience. G6 did have two notable differences 
compared to the other generations: 1. an E. coli infection was 
present in the flock during the first two weeks of life and the animals 
were treated with antibiotics. It can be expected that such an event 
would actually increase BW variation. However, that seems not the 
case. Alternatively, NAb levels and NAb level development during 
early life might have been influenced by this event; and 2. G6 was 
bred from parents of approximately 50 weeks of age due to other 
experimental work, while parents of the other generations were 
between 30 and 35 weeks of age. Such an age difference can result in 
for example differences of maternal antibody transfer to offspring, 
which can permanently influence humoral immunity (Klipper et al., 
2004; Lammers et al., 2004; Gharaibeh et al., 2008; Hasselquist and 
Nilsson, 2009; Ulmer-Franco et al., 2012). However, maternal effects 
on NAb levels did not seem to be different in G6 (results not shown). 
Nevertheless, this remains speculative and future studies will have to 
give more insight in the genetic relationship between resilience and 
NAb, and the influence of maternal effects (e.g. dam age).

Resilience Indicators and Disease 
Resistance
As stated above, a possible lack of disease challenges in the study 
population can explain an apparent weak relationship between 
resilience indicators and NAb. Berghof et al. (2019a) performed 
two APEC-challenge experiments to measure disease resistance 
in the NAb-selection lines. Although the experiments are too 
short to measure BW deviations to obtain resilience indicators on 
the challenged individuals, EBV for resilience indicators for the 
challenged individuals were obtained from the genetic parameter 
estimation. The predictive ability of EBV of resilience indicators 
on APEC-induced mortality and total lesion scores in the infection 
experiments was investigated to obtain insights in the relationships 
between resilience indicators and the response to diseases, i.e. APEC.

EBVskewness and EBVautocorrelation were not predictive for mortality 
or lesion scores. This is in line with Poppe et al. (2020), who 
concluded that skewness and autocorrelation of deviations in 
milk yield seem less useful as resilience indicators in dairy cows. 
Therefore, their potential use as resilience indicators seems to be 
limited, but needs further investigation in other study populations.

EBVln(variance) was predictive for lesion scores, but not for 
mortality. Possibly, lesion scores represent the capacity to deal with 
infections (i.e. not dying) and thus might be closer to the definition 
of resilience (i.e. recovery). Chickens with lower EBVln(variance) (i.e. 
a greater resilience) had lower lesion scores compared to chickens 
with greater EBVln(variance) (i.e. a lower resilience). EBVln(variance) 
predicted up to 25% of the total lesion score, which was twice 
as much as the EBV for IgTotal NAb, i.e. the selection criterion. 
Compared to ln(variance), this difference might be due to: 1. the 
protective function of NAb being more related to disease resistance 
(and mortality) rather than recovery, which is circumvented in this 
experiment by applying a standardized dose of an infectious agent; 
2. the immunological function of NAb being more related to the 
initiation of the (humoral) adaptive immune response, which is 
barely initiated within the experimental period (i.e. one week is too 
short) (Berghof et al., in preparation); or 3. APEC-resistance being 
not solely dependent on NAb levels. Nevertheless, some common 
background in resilience and immunity/disease resistance seems to 
be present, since EBV of ln(variance) and NAb accounted for the 
same model variance. Thus, in line with previous studies (Elgersma 
et al., 2018; Putz et al., 2019; Poppe et al., 2020), ln(variance) seems 
to have predictive capacity for disease resilience.

COnCLUsIOn
This study described three proposed resilience indicators 
in chickens: ln(variance), skewness, and autocorrelation of 
standardized BW deviations. All three resilience indicators were 
heritable, and suggest to capture different parts of resilience. In 
contrast to our hypothesis, NAb (as a measure of immunity) 
were not or only weakly genetically correlated with resilience 
indicators in this study population. Thus, resilience indicators 
and NAb seem not to be under common genetic control, 
suggesting that diseases cause only a small (negligible?) part of 
day-to-day disturbances. However, this might be a consequence 
of a lack of disease challenges during life. In addition, hints of 
a small common genetic background between ln(variance) and 
NAb were found: 1. the high NAb-selection line had a greater 
resilience compared to the low NAb-selection line based on 
EBV of ln(variance); and 2. individuals with a lower EBV for 
ln(variance) had lower APEC-induced lesion scores. Thus, 
ln(variance) might be an indicator for disease resilience and can, 
together with NAb, be included in breeding indices to improve 
resilience and immunity.

This study is, as far as we know, the first to investigate genetic 
parameters of skewness and autocorrelation, and the first to 
investigate a direct relationship between resilience phenotypes 
(as defined by Berghof et al., 2019b) and the immune system. 
Overall, this study suggests that ln(variance) is a promising 
resilience indicator, because it shows a (weak) relationship to 
immunity and disease resistance in a relatively high hygiene 
environment. More studies are needed to investigate the potential 
for skewness and autocorrelation, but these parameters seem less 
promising. Anyhow, the genetic variation found for the proposed 
resilience indicators gives ample opportunity to genetically 
improve resilience in chickens.
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