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The current histologically based grading system for glioma does not accurately predict

which patients will have better outcomes or benefit from adjuvant chemotherapy. We

proposed that combining the expression profiles of multiple long non-coding RNAs

(lncRNAs) into a single model could improve prediction accuracy. We included 1,094

glioma patients from three different datasets. Using the least absolute shrinkage and

selection operator (LASSO) Cox regression model, we built a multiple-lncRNA-based

classifier on the basis of a training set. The predictive and prognostic accuracy of

the classifier was validated using an internal test set and two external independent

sets. Using this classifier, we classified patients in the training set into high- or low-risk

groups with significantly different overall survival (OS, HR = 8.42, 95% CI = 4.99–14.2,

p < 0.0001). The prognostic power of the classifier was then assessed in the other sets.

The classifier was an independent prognostic factor and had better prognostic value

than clinicopathological risk factors. The patients in the high-risk group were found to

have a favorable response to adjuvant chemotherapy (HR = 0.4, 95% CI = 0.25–0.64,

p < 0.0001). We built a nomogram that integrated the 10-lncRNA-based classifier and

four clinicopathological risk factors to predict 3 and 5 year OS. Gene set variation analysis

(GSVA) showed that pathways related to tumorigenesis, undifferentiated cancer, and

epithelial–mesenchymal transition were enriched in the high-risk groups. Our classifier

built on 10-lncRNAs is a reliable prognostic and predictive tool for OS in glioma patients

and could predict which patients would benefit from adjuvant chemotherapy.
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INTRODUCTION

About 81% of malignant brain tumors are due to gliomas (1). Maximal surgical resection followed
by adjuvant chemotherapy or radiotherapy is the standard treatment for glioma patients (2).
Based on histopathological features, glioma can be divided into four groups (Grades I, II, III, and
IV) (3).
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The histopathological grading system is the key determinant
for prognostic prediction and risk stratification for treatment
decisions. Although patients with the same grade of
glioma receive similar treatment, their clinical prognoses
vary widely (4, 5). Therefore, the current histologically
based grading system is not sufficient to predict which
patients will have better outcomes or benefit from adjuvant
chemotherapy. Prognostic differences may be attributed to
biological heterogeneity. Molecular investigation could provide
biomarkers for predicting OS and the benefits from adjuvant
chemotherapy and for guiding treatment decisions for patients
in different risk groups. Thus, it is necessary to augment the
prognostic and predictive value of the histologically based
grading system, which could be achieved with the use of
new biomarkers.

Long non-coding RNAs (lncRNAs) belong to the family of
non-coding RNAs and range from 200 nucleotides to multiple
kilobases in length (6). Accumulating evidence suggests that
dysregulation of lncRNAs has been associated with glioma (7–
9), and some of them have been implicated in prognostication
and diagnosis (9, 10). Integrating multiple biomarkers rather
than a single one into a single model could improve the
prognostic value substantially (11, 12). When over tens of
thousands of biomarkers are simultaneously detected using
microarrays or RNA-seq high-throughput techniques, the
number of covariates is close to, or greater than, the number of
observations. The Cox proportional hazards regression analysis,
being the most universal method for evaluating prognosis
and survival, is not suitable for high-dimensional data where
the ratio of samples to variables is very small (13, 14).
Instead, LASSO can eliminate this limitation and has been
widely adopted for optimal selection of prognostic genes
(15–18).

In our study, 1,094 glioma samples from different populations
were analyzed, and a multi-lncRNA-based classifier was
established using a LASSO Cox regression model to predict
OS and benefit from adjuvant chemotherapy for patients
with glioma who had already had surgery. We assessed the
prognostic and predictive accuracy of the classifier in the
training set and validated it in one internal testing group and two
independent patient groups. We also compared its prognostic
and predictive efficacy to those of every single lncRNA and
clinicopathological risk factor. Furthermore, we assessed the
prognostic value of the classifier when stratified by these
clinicopathological risk factors. In addition, we combined the
multi-lncRNA-based classifier and clinical variables to build,
for the first time, a nomogram for glioma, which achieves
excellent prediction compared to clinicopathological risk factors
for OS.

MATERIALS AND METHODS

Dataset Preparation
In total, 1,094 gliomas derived from three independent datasets
were studied here, comprising one dataset from the Chinese
Glioma Genome Atlas (CGGA), one dataset from The Cancer
Genome Atlas (TCGA), and one dataset (GSE16011) from the

Gene Expression Omnibus (GEO). The samples without clinical
survival information in these datasets were filtered out. The
dataset from GEO (GSE16011) was processed using the chip
platform (Affymetrix Human Genome U133 Plus 2.0 Array,
Santa Clara, CA, USA), which has been most commonly applied
in transcriptome analysis.

Data Processing and lncRNA Profile Mining
For microarray data (GSE16011), the raw probe-level data
in each CEL file was processed via the robust multi-array
average (RMA) algorithm of the Affy package (19). For genes
that match multiple probes, we used average probe values
for expression value (20). For TCGA data, the count files
downloaded from the data portal of TCGA were normalized
through the edgER package (21). For the CGGA dataset,
RNA-seq data and corresponding clinical information were
downloaded from the data portal of CGGA. Missing data in
these gene expression matrixes were assigned using the k-
Nearest Neighbor (KNN) approach (k = 10) (22). lncRNA
profile mining was achieved by the established mining approach
(23). Firstly, we converted the probe ID or transcript ID
or Ensembl gene ID to gene name. Secondly, gene names
were mapped to an annotation file of GENCODE v30, and
long non-coding RNAs were extracted. Finally, we retained
the 361 lncRNAs that were annotated in all three datasets
(CGGA, TCGA, and GSE16011) to ensure the validation
of the lncRNA-based classifier. The lncRNA expression data
was Z-score transformed to avoid systematic error across
different experiments.

Development and Validation of the
10-lncRNA-Based Classifier
The relationship between lncRNA profile and patient OS was
evaluated with univariable Cox regression analysis using R
software. Due to the high dimensionality of the gene expression
data, there could be overfitting during analysis. LASSO is
the standard high-dimensional data analysis approach, as it
has the potential to increases prediction precision as well
as interpretation (15, 24). Consequently, we applied this
model to choose the most suitable prognostic indicators
and to build the lncRNA classifier. R software version 3.4.3
and the “glmnet” package (R Foundation for Statistical
Computing, Vienna, Austria) were applied to perform the
LASSO Cox regression model study. We created a risk score
formula based on the expression levels of the 10 lncRNAs
for OS prediction, where risk score = (0.353815∗expression
level of LINC00645) + (0.800399∗expression level
of LINC00339) + (0.681679∗expression level of
ZNF790-AS1) + (0.211079∗expression level of HOXD-
AS2) + (0.120801∗expression level of RHPN1-
AS1) + (0.140439∗expression level of FOXD2-AS1)
– (1.778034∗expression level of TMEM72-AS1) –
(0.404113∗expression level of ARHGEF26-AS1) –
(0.708967∗expression level of HAR1A) – (0.413111∗expression
level of EPB41L4A-AS1). By design, the X-tile program chooses
the optimum cut-off point depending on the uppermost χ²
(minimum p) value determined via Kaplan–Meier survival
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analysis and log-rank test (25). The optimum cut-off values
in this study were selected via X-tile plots. Using the cut-off
values, each dataset was categorized into low- and high-risk
groups. The resultant plots were generated by 3.6.1 version
X-tile software (School of Medicine, Yale University, New
Haven, CT, USA). We explored prognosis or predictive
accuracy per variable as well as the 10-lncRNA-constructed
classifier with time-dependent ROC analysis (26). R software
version 3.4.3 and the “survival” package together with the
“riskRegression” package were used to perform time-dependent
ROC analysis.

Statistical Analysis
We compared two groups using the t-test for continuous
variables and the χ² test for categorical variables. During
survival analysis, the Kaplan-Meier process was used to analyze
the association between variables and OS and the log-rank
test was used for comparison of survival curves. Furthermore,
a Cox regression model was applied in standard univariate
and multivariate analysis, and Cox regression coefficients were
used to generate the nomogram. ROC analysis depending
on time was performed to evaluate the nomogram predictive
accuracy. 3.4.3 version R software plus the “rms” package
were employed in generating nomogram and calibration plots.
Decision curve analysis (DCA) was applied to determine
the clinical feasibility of the nomogram (27, 28). The most
significantly differentially expressed gene sets (p-value < 0.001)
were selected. The entire statistical analysis was completed
using R software version 3.4.3 at a statistical significance
of 0.05.

RESULTS

The 10-lncRNA-Based Classifier and
Patient Survival in the Training Set
The 249 glioma samples of the CGGA dataset were randomly
assigned to a training set (n = 166) and an internal testing set
(n = 83). The training set was used to detect the prognostic
lncRNAs. After using univariable Cox regression to analyze the
lncRNA expression data of the training set, we identified 176
lncRNAs whose parameter p-value was lower than 0.01. Then,
we build a prognostic classifier via the LASSO Cox regression
model. A dotted vertical line was drawn (Figures 1A,B) at the
value chosen by 10-fold cross-validation. The optimal λ value,
0.187, with log(λ) = −1.678 results in 10 non-zero coefficients.
Thus, the 10-lncRNAs were selected from 176 lncRNAs:
HAR1A, EPB41L4A-AS1, LINC00339, RHPN1-AS1, FOXD2-
AS1, TMEM72-AS1, ARHGEF26-AS1, LINC00645, ZNF790-
AS1, and HOXD-AS2 (Figures 1A,B, Table S1). The expression
of the 10 lncRNAs had low correlations (Figure S1A). We
created a risk score formula based on the expression levels
of the 10 lncRNAs for OS prediction (shown in the methods
section). Then, we calculated the 10-lncRNA-based risk score
for each patient in the training set and ranked them according
to their risk scores. Patients in the training set were classified
into the high-risk or low-risk group with an optimum cut-
off value of 2.11 by using X-tile plots (Figures S1B–S1D).

FIGURE 1 | Construction of the 10-lncRNA-based classifier. (A) Ten-time

cross-validation for tuning parameter selection in the LASSO model. The solid

vertical lines are partial likelihood deviance ± standard error (SE). The dotted

vertical lines are drawn at the optimal values by minimum criteria and 1-SE

criteria. A λ value of 0.187 with log(λ) = −1.678 was chosen by 10-time

cross-validation via 1-SE criteria. (B) LASSO coefficient profiles of the 176

glioma-prognosis-associated lncRNAs. A dotted vertical line is drawn at the

value identified by 10-fold cross-validation.

The clinical characteristics of these datasets are listed in
Table S2.

Additionally, we evaluated the prognostic precision of the
10-lncRNA-based risk score with time-dependent ROC analysis
at different follow-up periods (Figure 2A). The Kaplan-Meier
survival analysis of the training set revealed that patients in
the high-risk group had significantly worse outcomes than
those in the low-risk group (Figure 2A). Then, we assessed the
distributions of risk scores, survival time, and status and found
that patient with lower risk scores generally had better survival
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FIGURE 2 | Risk score by the 10-lncRNA-based classifier, patient’s survival status and time, time-dependent ROC curves, and Kaplan-Meier survival in the training,

internal testing, and two independent validation sets. (A) Training set. (B) Internal testing set. (C) Independent validation set I. (D) Independent validation set II. We

used AUCs at 3 and 5 years to assess prognostic accuracy and calculated p-values using the log-rank test. Data are AUC (95% CI) or hazard ratio (95% CI).

than those with higher risk scores (Figure 2A). In addition, the
10-lncRNA-based classifier was a strong variable correlated with
prognosis in the univariate Cox regression model (Figure S2A).

After multivariable adjustment by clinicopathological factor,
the 10-lncRNA-based classifier remained a powerful and
independent factor in the training set (Figure 3A).
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FIGURE 3 | Multivariate analysis based on the 10-lncRNA-based classifier and clinical risk factors in the training, internal testing, and two independent validation sets.

(A) Training set. (B) Internal testing set. (C) Independent validation set I. (D) Independent validation set II. Solid and black squares represent the HR of death.

Close-ended horizontal lines represent 95% CI. We calculated p-values using Cox regression hazard analysis.

Validation of the 10-lncRNA Based
Classifier for Survival Prediction in the
Internal Testing Set and the Entire CGGA
Dataset
To confirm the robustness of the classifier, we validated the
10-lncRNA-based classifier in the internal testing set and the
entire CGGA dataset. Using the same risk score formula, we
calculated the risk score for each patient and classified them
into high-risk and low-risk groups using the same cut-off point
(2.11). Consistent with the above finding, the high-risk patients
set displayed considerably shorter median OS than the low-
risk patients (Figure 2B, Figure S3A). We performed time-
dependent ROC analysis to assess the prognostic accuracy of
the 10-lncRNA-based risk score at two follow-up times (3 and
5 years) in both sets (Figure 2B, Figure S3A). We also found
that patients with a lower risk score mostly had better survival

than those with higher risk scores (Figure 2B, Figure S3A). In
addition, univariate Cox regression analysis also revealed that
the 10-lncRNA-based classifier was a strong factor correlated
with prognosis (Figures S2B, S3B). Likewise, after multivariable
adjustment by clinicopathological factor, the 10-lncRNA-based
classifier remained a powerful and independent factor in the two
sets (Figure 3B, Figure S3C).

Further Validation of the 10-lncRNA-Based
Classifier in Two Other Independent Sets
To confirm that the classifier had similar prognostic value in
diverse populations, we further used it in two other independent
glioma datasets obtained from TCGA (Independent validation
set I, n = 598) and GSE16011 (Independent validation set II,
n = 247). The clinical characteristics of the two datasets are
listed in Table S2. The two independent sets of individuals
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FIGURE 4 | Kaplan-Meier survival analysis for patients in the training set according to the 10-lncRNA-based classifier stratified by clinicopathological risk factors.

(A,B) Age. (C,D) Gender. (E,F) Adjuvant chemotherapy. (G,H) Radiotherapy. (I,J) IDH1 status. (K,L) Low-grade glioma (LGG) or high-grade glioma (HGG). We

calculated p-values using the log-rank test.

were grouped into high-risk and low-risk groups based on
their risk score, using the same cut-off point as previously
(2.11). Consistent with the findings described above, the 10-
lncRNA-based classifier could effectively predict patient OS
(Figures 2C,D). Furthermore, univariate Cox regression analysis
showed that the 10-lncRNA-based classifier was significantly
associated with OS in the two independent sets (Figures S2C,
S2D). Moreover, for the multivariable Cox regression model, the
10-lncRNA-based classifier remained an independent variable in
the two independent sets (Figures 3C,D).

10-lncRNA-Based Classifier Kaplan-Meier
Survival Analysis for Gliomas Stratified by
Clinicopathological Risk Factors
When stratified by clinicopathological risk factors, the 10-
lncRNA-based classifier remained a clinically and statistically
significant prognostic model (Figure 4). For example, the
stratification analysis showed that the 10-lncRNA-based classifier
could identify patients with different prognoses despite their
having the same chemotherapy stratum. In the training set, the
10-lncRNA-based classifier could subdivide the patients with
adjuvant chemotherapy (n= 100) into those likely to have longer
vs. shorter survival (Figure 4F). Similarly, among the patients

without adjuvant chemotherapy (n = 66), the 10-lncRNA-based
classifier could still subdivide them into two subgroups with
significantly disparate survival (Figure 4E). In addition, when
stratified by other clinicopathological risk factors, including age
(age >= 50 vs. age < 50), gender, radiotherapy, IDH1 mutation
(mutation vs. wild-type), and grade, the classifier remained a
strong prognostic tool (Figure 4).

These findings were validated in other datasets (Internal
testing set, Figure S4A; Independent validation set I, Figure S4B;
Independent validation set II, Figure S4C), which also showed
the 10-lncRNA classifier remained an efficient prognostic tool
when stratified by clinicopathological risk factors.

Comparison of Prognostic Accuracy
Between the 10-lncRNA-Based Classifier
and Any Clinicopathological Risk Factor or
Single lncRNA
We perform time-dependent ROC analysis for the training set to
compare the prognostic precision of the classifier with that of any
clinicopathological risk factor or single lncRNA. The area under
the curve (AUC) was assessed and compared among these factors.
As shown in Figure 5A, ROC time-based analysis at 3 year
follow-up revealed that the 10-lncRNA-based classifier showed
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FIGURE 5 | Time-dependent ROC curves comparing the prognostic accuracy of the 10-lncRNA-based classifier with those of clinicopathological risk factors and

single lncRNAs in the training set. (A,B) Comparisons of prognostic accuracy by the 10-lncRNA-based classifier (high risk vs. low risk), glioma grade, age (age >= 50

vs. age < 50), radiotherapy (with vs. without radiotherapy), chemotherapy (with vs. without chemotherapy), combined clinical prognostic factors alone, the classifier

(Continued)
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FIGURE 5 | and glioma grade combined, or the classifier and clinical prognostic factors combined. (C,D) Comparisons of the prognostic accuracy by the

10-lncRNA-based classifier (high risk vs. low risk), HAR1A (high vs. low expression), EPB41L4A-AS1 (high vs. low expression), LINC00339 (high vs. low expression),

RHPN1-AS1 (high vs. low expression), FOXD2-AS1 (high vs. low expression), TMEM72-AS1 (high vs. low expression), ARHGEF26-AS1 (high vs. low expression),

LINC00645 (high vs. low expression), ZNF790-AS1 (high vs. low expression), or HOXD-AS2 (high vs. low expression). The optimum cut-off points for the 10-lncRNAs

were generated using X-tile plots. (A,C) AUC at 3 years. (B,D) AUC at 5 years. The p-value shows the AUC at 3 or 5 years for the 10-lncRNA-based classifier vs. the

AUC at 3 or 5 years for other features.

significantly higher prognostic accuracy than age, radiotherapy,
or chemotherapy. There was no significant difference between the
AUC of the 10-lncRNA based classifier and that of glioma grade
(Figure 5A). However, the AUCof the 10-lncRNAbased classifier
combined with glioma grade was significantly greater than that of
the 10-lncRNA based classifier alone (Figure 5A). Furthermore,
the AUC of the 10-lncRNA based classifier combined with all
clinicopathological risk factors (glioma grade, age, radiotherapy,
and chemotherapy) was also significantly greater than that of the
10-lncRNA based classifier alone (Figure 5A). Time-dependent
ROC analysis showed similar results for 5 year follow-up
(Figure 5B).

X-tile plots were used to produce the best cut-off points
for the 10-lncRNAs in the training set (Figure S5). According
to the cut-off point of each lncRNA, patients were divided
into the high or low expression group. Time-dependent ROC
analysis at 3 year follow-up showed that the 10-lncRNA-based
classifier had significantly higher prognostic accuracy than any
single lncRNA alone (Figure 5C). Time-dependent ROC analysis
showed similar results for 5 year follow-up (Figure 5D).

Although the prognostic ability of the 10-lncRNA-based
classifier was equivalent to that of glioma grade, the 10-lncRNA
classifier could add prognostic value to clinicopathological
prognostic features, which indicated that the 10-lncRNA-based
classifier combined with glioma grade or all clinicopathological
risk factors could have a stronger power for OS prediction in
time-dependent ROC analysis at 3 or 5 year follow-up.

The 10-lncRNA-Based Classifier Can
Identify Glioma Patients Suitable for
Adjuvant Chemotherapy
It was noteworthy that adjuvant chemotherapy did not enhance
survival in all 249 patients in the training set (Figures 6A,E) or
in patients with any poor prognostic features (Age >=50, grade
IV, without radiotherapy or IDH1 wild-type; Figures 6B,E).
Results from an ad-hoc exploratory subgroup analysis using
our 10-lncRNA-based classifier revealed that patients in the
classifier-defined high-risk group had a favorable response
to adjuvant chemotherapy (Figures 6C,E). Additionally, those
with poor prognostic features and high risk had much better
survival benefits from adjuvant chemotherapy (Figures 6D,E).
These results suggest that our 10-lncRNA-based classifier could
successfully identify patients with glioma who were suitable
candidates for adjuvant chemotherapy.

Identification of the 10-lncRNA-Based
Classifier-Associated Biological Pathways
To detect 10-lncRNA-associated pathways, we used GSVA to
search for differentially activated gene sets between high-

and low-risk groups. The “GSVA” package was applied to
perform the analysis. The results showed that tumorigenesis-,
undifferentiated cancer-, epithelial mesenchymal transition-, and
poor survival-linked gene groups were enriched in the high-risk
group, while patients in the low-risk group were more likely to
show less metastasis and tumor vasculature or well-differentiated
tumor (Figure 7).

Clinical Utility of the 10-lncRNA-Based
Classifier
To provide the clinician with a quantitative method for
predicting the probability of 3- and 5 year OS in glioma, a
nomogram incorporating the 10-lncRNA classifier and four
clinicopathological risk features was constructed (Figure 8A).
Calibration was applied to check whether the actual nomogram
results were close to the expected ones. In Figure 8B, the x-axis
denotes predicted survival probability from the nomogram, and
the y-axis represents the actual freedom fromOS for the patients.
The 45◦ line represents perfect nomogram performance, which
represents an outcome likelihood consistent with the actual
outcome. Marks plot near the 45◦ line in a well-calibrated model.
The calibration plots showed that the nomogram performed well
in the training set and internal testing set when compared with
an ideal model (Figure 8B, Figure S6). The predictive accuracy
of the nomogram is shown in Figure 7. The AUCs at 3 and 5
years were 0.887 and 0.893 for the nomogram in the training
set, respectively (Figure 8C). The internal testing set was used
to test the predictive accuracy of the nomogram, which showed
that the AUCs at 3 and 5 years were 0.914 and 0.945, respectively
(Figure 8D). The nomogram decision curve analysis is shown
in Figure 8E. The curve analysis shows that if the threshold
probability of 3 and 5 year OS is > 0.11 and 0.22, respectively,
the use of the nomogram could offer a higher net benefit than
treating all patients or treating no patients.

DISCUSSION

Here, we established and validated a new prognostic tool on the
basis of the expression profile of 10-lncRNAs to improve the
prediction of OS and benefit from adjuvant chemotherapy for
glioma patients who had already had surgery. It was evident that
the classifier could effectively divide patients into high and low-
risk groups with large differences in OS. Moreover, the proposed
classifier could accurately predict the survival of glioma patients
better than each single lncRNA and clinicopathological risk
factor. When stratified by these clinical features, the 10-lncRNA-
based classifier remains a robust prognostic model, providing
prognostic value that complements clinicopathological variables.
Furthermore, we built a nomogram for glioma for the first time
based on the multi-lncRNA profile and clinical features, which
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FIGURE 6 | Effect of adjuvant chemotherapy in different subgroups. (A–D) Kaplan-Meier survival analysis for patients in different subgroups, which were stratified by

the receipt of chemotherapy. (E) Effect of adjuvant chemotherapy on OS in different subgroups.
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FIGURE 7 | Pathway profile across the training set. Rows represents biological pathways, and columns represent patients with glioma. Each grid represents a score

of pathway activity calculated by GSVA. The upper horizontal bar marked the information related to patients, including the risk scores and risk groups.

achieved more accurate prediction than clinicopathological
features or the classifier alone for 3 and 5 year OS.

One of the advantages of the 10-lncRNA-based classifier over
other classifiers is the identification of glioma patients who could
benefit from adjuvant chemotherapy. Previous studies indicated
that some patients with glioma were resistant to chemotherapy
(29, 30). Thus, the key point is to identify patients at high risk
who are most likely to benefit from adjuvant chemotherapy.
However, we showed that chemotherapy could not improve
survival in the clinical high-risk group (glioma patients with any
poor prognostic features).We found that adjuvant chemotherapy
provides a survival benefit to patients who were classified into
the high-risk group by the classifier. Using the classifier might
allow for better identification of patients with glioma who are
most likely to benefit from chemotherapy. Thus, this classifier
provides predictive and prognostic value because patients in the
high-risk group have both a worse OS and a clear benefit from
adjuvant chemotherapy.

Another advantage of the 10-lncRNA-based classifier is
that the 10-lncRNAs were screened from high-dimension gene
expression data via LASSO Cox, which results in a robust
prognosis value and low correlation among data to prevent
overfitting. However, many signatures or classifiers did not use
the dimensionality reduction tools to select the genes, which
could lead to overfitting (31, 32).

The classification of gene expression data is challenging
because the number of genes is large relative to the number of
samples. In general, a large number of genes are either irrelevant
or redundant and therefore cannot provide classification
information. Therefore, reducing the number of genes is of
great significance for improving the accuracy of classification.
Recently, many studies used machine learning to analyze

gene expression data or DNA methylation data to further
classify glioma more accurately (33–35). Based on the gene
expression data of glioma, Abusamra et al. compared the
classification efficiency of three different classification methods,
namely support vector machine, k-nearest neighbor, and random
forest, and eight different feature selection methods, namely
information gain, the twoing rule, sum minority, max minority,
the Gini index, sum of variances, t-statistics, and one-dimension
support vector machine (36). Recently, LASSO has been
extensively applied to Cox proportional hazard regressionmodels
for survival analysis of high-dimensional gene expression data
(17, 18, 37–40). It can also be used for the optimal selection
of variables in high-dimensional gene expression data with a
robust prognostic value and low correlation among data to
avoid overfitting.

Previous studies have identified prognostic lncRNAs or
lncRNA signatures for glioblastoma or low-grade gliomas (9, 31,
32, 41–45). However, these studies have been limited by small
sample sizes, small numbers of lncRNAs screened, a lack of
independent validation, and the use of unstable statistical models.
In this study, using a LASSO Cox regression model allowed us to
incorporate multiple lncRNAs into one tool for higher prognostic
precision. A total of 1,094 glioma samples were included in this
study. In addition, one internal testing test and two independent
validation sets were used to validate the classifier.

The biological functions of the 10-lncRNAs used in our
study have been investigated in previous studies. LINC00645
is significantly upregulated in malignant endometrial cancer
compared to normal endometrium (46). LINC00339 could
promote gastric cancer progression by increasing DCP1A
expression level via inhibiting miR-377-3p (47). LINC00339
also promoted glioma vasculogenic mimicry formation via
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FIGURE 8 | The developed nomogram to predict 3 and 5 year OS probability in glioma. (A) The nomogram was constructed in the training set, with the

10-lncRNA-based classifier, age, radiotherapy, chemotherapy, and glioma grade incorporated. (B) Calibration curve of the model in terms of agreement between

(Continued)
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FIGURE 8 | predicted and observed 3 and 5 year outcomes in the training set. Close-ended vertical lines represent 95% CI. The x-axis indicates predicted OS

probability, and the y-axis indicates the actual OS. The 45-degree line represents perfect prediction. (C,D) Time-dependent ROC curves based on the nomogram for

3 and 5 year OS probability in the training set and the internal testing set. Not all of the clinical factors constituting the nomogram could be obtained in Independent

validation sets I and II. (E) Decision curve analysis (DCA) for assessment of the clinical utility of the nomogram. The x-axis indicates the percentage of threshold

probability, and the y-axis represents the net benefit.

regulating the miR-539-5p/TWIST1/MMPs axis (48). HOXD-
AS2 promoted glioma progression, and the expression levels
of HOXD-AS2 were associated with glioma grade and poor
prognosis (49). RHPN1-AS1 could promote uveal melanoma
progression and serve as a prognostic biomarker (50). FOXD2-
AS1 acted as a sponge of miR-185-5p and influenced the
PI3K/Akt signaling pathway by regulating HMGA2, thereby
promoting glioma progression (51). A previous study revealed
that HAR1A was a prognosic biomarker for diffuse gliomas (52).
Low expression and deletion of EPB41L4A-AS1 were found in
various human cancers and were associated with poor prognosis
(53). Therefore, our 10-lncRNA-based classifier could potentially
be used as a predictive tool in personalized therapy and might
provide therapeutic targets in the clinical management of glioma.

Moreover, based on the classifier and several clinical features,
we constructed a nomogram to predict the 3 and 5 year OS of
glioma patients. Despite the fact that such a method normally
uses traditional prognostic factors, for instance, age and glioma
grade, we propose that including our 10-lncRNA-based classifier
could reflect the biological heterogeneity of these gliomas. The
nomogram could help clinicians in judging the survival time of
glioma patients in the future.

The GSVA results were shown in Figure 7. The epithelial–
mesenchymal transition process is crucial in the development of
gliomas. The mesenchymal (MES) subtype, one of the glioma
molecular subtypes, which expresses mesenchymal biomarkers,
has the worst prognosis of the subtypes (54). Moreover, the
prognosis of undifferentiated tumors is worse than that of
well-differentiated tumors. Our previous study showed that
angiogenesis is more common inMES subtype glioma comparing
to other subtypes (55).

Our study had several limitations. First, this study is
retrospective, and our outcomes need further validation via
a prospective study in multicenter clinical trials. Second,
lncRNAs reannotated in this study cannot represent the whole
lncRNA populations involved in glioma pathogenesis. Lastly, the
mechanisms of the 10-lncRNAs were not fully revealed in this
study, and further investigations on these lncRNAs are needed to
provide in-depth information on their roles in glioma.

This study showed that our 10-lncRNA-based classifier
is accurate in categorizing glioma patients into low- and
high-risk groups, thus providing a prognostic tool that
is complementary to the current clinicopathological risk
factors. Furthermore, our study showed that the 10-
lncRNA-based classifier can be applied in identifying
patients who may benefit from adjuvant chemotherapy.
A 10-lncRNA-based classifier nomogram might help
clinicians in predicting 3 or 5 year OS probability and
in making choices on personalized treatment options for
glioma patients.
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Figure S1 | Determination of the optimum cut-off value for the 10-lncRNA-based

classifier. (A) The Pearson correlations of expression levels between the

10-lncRNAs in the classifier were generally weak. (B–D) The optimum cut-off

value for the 10-lncRNA-based risk scores was determined using the X-tile

program in the training set. The colors shown in the plot represent the strength of

the association at each division. Red represents an inverse association between

the risk score and OS and green represents a direct association.

Figure S2 | Univariate analysis based on the 10-lncRNA-based classifier and

clinical risk factors in the training, internal testing, and two independent validation

sets. (A) Training set. (B) Internal testing set. (C) Independent validation set I. (D)

Independent validation set II. Solid and black squares represent the HR of death.

Close-ended horizontal lines represent 95% CI. We calculated p-values using Cox

regression hazard analysis.
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Figure S3 | Validation of the 10-lncRNA-based classifier in the entire CGGA

dataset. (A) Risk score by the 10-lncRNA-based classifier, patient survival status

and time, time-dependent ROC curves, and Kaplan-Meier survival in the entire

CGGA dataset. (B,C) Univariate and multivariate analysis based on the

10-lncRNA-based classifier and clinical risk factors in the entire CGGA dataset.

Figure S4 | Kaplan-Meier survival analysis for patients according to the

10-lncRNA-based classifier stratified by clinicopathological risk factors. (A) Internal

testing set. (B) Independent validation set I. (C) Independent validation set II.

Figure S5 | X-tile plots of the 10 selected lncRNAs in the training set. Coloration

of the plot represents the strength of the association at each division, ranging from

low (dark, black) to high (bright red or green). Red represents an inverse

association between the risk score and OS and green represents a

direct association.

Figure S6 | Calibration curve of the nomogram to predict OS probability at 3 and

5 years in the internal testing set.

Table S1 | Detailed description of the lncRNAs constituting the

10-lncRNA-based classifier.

Table S2 | Clinical characteristics of the 1,094 glioma patients involved in

the study.
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