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Robotic manipulators are widely used for precise operation in the medical field. Vibration
suppression control of robotic manipulators has become a key issue affecting work
stability and safety. In this paper an optimal trajectory planning control method to suppress
the vibration of a variable-stiffness flexible manipulator considering the rigid-flexible
coupling is proposed. Through analyzing the elastic deformation of the variable-
stiffness flexible manipulator, a distributed dynamic physical model of the flexible
manipulator is constructed based on the Hamilton theory. Based on the mathematical
model of the system, the design of the vibration damping controller of the flexible
manipulator is proposed, and the control system with nonlinear input is considered for
numerical analysis. According to the boundary conditions, the vibration suppression effect
of the conventional and the variable-stiffness flexible manipulator is compared. The motion
trajectory of the variable-stiffness flexible manipulator and compare the vibration response
from different trajectories. Then, with minimum vibration displacement, minimum energy
consumption and minimum trajectory tracking deviation as performance goals, the
trajectory planning of the variable-stiffness flexible manipulator movement is carried out
based on the cloud adaptive differential evolution (CADE) optimization algorithm. The
validity of the proposed trajectory planning method is verified by numerical simulation.

Keywords: variable-stiffness flexible manipulator, control design, vibration reduction, trajectory planning, CADE
optimization algorithm

INTRODUCTION

Robotic manipulator plays an important role in medical diagnosis, due to the advantages of fast
running speed, high accuracy, and low energy consumption. The dynamic analysis and vibration
suppression control of the flexible robot manipulator system had attracted the attention to many
scholars (Pratiher and Dwivedy, 2007; H. Moharam et al., 2013; Qiu et al., 2015; Cao and Liu, 2019;
He et al., 2019; Jiang et al., 2021). The flexible manipulator is a dynamic system with strong
nonlinearity and strong rigid-flexible coupling. The robot manipulators are generally considered to
be conventional Eular-Bemolulli beams and Timoshcnko beams of equal cross-section (Timoshcnko,
1922; Benosman and Le Vey, 2004; Dwivedy and Eberhard, 2006). In the existing research on
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vibration control of flexible manipulators, Euler-Bernoulli beam
theory is mostly used for theoretical modeling (Mladenova and
Rashkov, 2004).

In recent years, scholars’ main research has focused on
homogeneous and continuum manipulator, rectangular thin
manipulator, functionally graded manipulator, and rotating
flexible manipulator with additional mass (Cai et al., 2005; Cai
and Lim, 2008; Dupont et al., 2010; Fan, 2012; Li et al., 2014; Chen
et al., 2018). Zaher and Megahed (2015) described the
deformation of the flexible manipulator using the hypothetical
modal method and established a relatively complete dynamic
model of the flexible manipulator. Macnab et al. (2004) studied
the effect of the centralized mass method in the description of
deformation, and verified through experiments that the
centralized mass method has better processed results of the
complex shape of the manipulator, but the positioning
accuracy is low. In terms of modeling theory, Moallem et al.
(2015) established a dynamic model of a flexible manipulator
with end mass using Hamilton’s principle, and verified the
effectiveness of Hamilton’s principle through numerical
simulation. Herrnstadt and Menon (2016) developed a single
degree of freedom elbow orthosis and performed a linear
modeling on the suppression system. The linear model has
been widely used to design the control technology of
homogeneous flexible manipulators (Huang and Ji, 2020).
However, less work has been done on the nonlinear modeling
of variable stiffness manipulators.

At present, there are many researches on physical
components and control optimization methods for
suppressing vibration of flexible manipulator (Diken, 2000;
Jinqiao et al., 2010; Guo et al., 2016; Wilbanks and Leamy,
2019; Chen et al., 2021; Niu et al., 2021; Zhang et al., 2021).
Korayem and Ghariblu (2004), Ghariblu and Korayem (2006),
Korayem et al. (2011), and Korayem et al. (2013) proposed an
open-loop optimal control method to generate the optimal
trajectory of a flexible mobile manipulator in point-to-point
motion, so that the robot can bear the maximum load between
two designated terminal positions. For the single-link flexible
arm mounted on the base (Abe, 2009; Abe and Komuro, 2012;
Abe, 2013), proposed a point-to-point trajectory planning
algorithm. The cycloid function is used as the benchmark of
motion trajectory interpolation, and the end residual
amplitude is minimized as the goal for optimization, and a
good vibration suppression effect is achieved. Boscariol and
Gasparetto (2013) used the finite element method to establish a
dynamic model of the planar flexible manipulator, and then
used the indirect method to plan the trajectory of the planar
flexible manipulator. Korayem et al. (2009) established an
optimization model of boundary value constraints based on
Pontryagin theory, and obtained the vibration suppression
trajectory of the point-to-point control of the flexible
manipulator. Fairs et al. (2009) used fourth-order
polynomial motion trajectory and soft motion trajectory
respectively, and took the loss energy in the motion process
as the fitness function, and used genetic algorithm to optimize
the motion trajectory of the two-link flexible manipulator to
suppress residual vibration. Heidari et al. (2013) and others

established a nonlinear finite element dynamic model of a
three-dimensional flexible manipulator, and based on
Pontryagin theory to use optimal control to obtain the
optimal trajectory with minimum energy and minimum
vibration. Boscariol and Gasparetto (2013) proposes a
point-to-point trajectory plan method of minimum actuator
jerks and vibrations. However, they did not consider the effects
of variable stiffness, amplitude, energy consumption and
trajectory approximation errors at the same time. Moreover,
there are few researches on vibration suppression of flexible
manipulators with variable stiffness rigid-flexible coupling,
which brings challenges to the design of control methods.

In this paper, the problem of vibration suppression control of a
variable-stiffness flexible manipulator in the presence of
nonlinear input is studied. There are three contributions of
this paper.

1) The PDE model of the variable-stiffness flexible
manipulator is given in the presence of nonlinear input,
which has better dynamic characteristics than the
conventional manipulator.

2) A feedback controller of a manipulators that can realize joint
angled control and suppress boundary vibration is proposed,
in which the manipulator adopts a variable stiffness design.

3) The global optimization performance of the traditional
optimization algorithm is improved by the CADE
optimization algorithm, and then the minimum vibration
displacement, the minimum energy consumption and the
minimum trajectory tracking deviation are the performance
goals, and the trajectory planning motion control of the
variable stiffness flexible manipulator is carried out.

The remainder of this article is structured as follows. The PDE
dynamic model for the variable-stiffness flexible manipulator is
presented in Dynamic Modeling of Variable-Stiffness Flexible
Manipulator section. A control method of vibration
suppression of the variable-stiffness flexible manipulator is
proposed to the nonlinear input in Control Design of the
Flexible Manipulator section. Numerical Analysis of the
flexible manipulator is carried out in Numerical Analysis of the
Flexible Manipulator section. Numerical simulation results of
optimization of vibration suppression trajectory are shown in
Optimization of Vibration Suppression Trajectory section and
conclusions are given in Conclusion section. The results show
that the trajectory planning effect of the variable-stiffness robotic
manipulator based on the differential evolution algorithm is
better. The robotic manipulator system moves under the
optimal vibration suppression trajectory and has smaller
residual vibration.

DYNAMIC MODELING OF
VARIABLE-STIFFNESS FLEXIBLE
MANIPULATOR
For the variable-stiffness flexible manipulator system driven by
the central rigid body, the analytical model is considered shown
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in Figure 1. The flexible mechanical manipulator is fixed on a
central rigid body rotating around a fixed axis in a cantilever
manner. The end load is considered as a mass m, and the
influence of the mass size of the system is ignored. When
working, the flexible manipulator is driven by the central rigid
body to rotate around the vertical axis O in the horizontal plane.

Preliminaries
In order to facilitate the subsequent analysis, we propose the
following lemmas, explanations and hypotheses for the formula
derivation of the research.

Remark 1. For clarify, the notation(p)′ � z(p)/zt, (p)″ � z(p)/zt,
(p)x � z(p)/zx, (p)xx � z2(p)/zx2, (p)xxxx � z4(p)/zx4,
(p)x′ � z2(p)/ztzx, (p)xx′ � z3(p)/ztzx2

Lemma 1. The length of the flexible manipulator is L, let φ1(x, t),
φ2(x, t) ∈ R with x ∈ [0, L] and t ∈ [0,∞]. Then the following
inequalities hold as (Rahn, 2002)

∣∣∣∣φ1(x, t)φ2(x, t)
∣∣∣∣≤ 1

δ
φ2
1(x, t) + δφ2

2(x, t) (1)

Lemma 2. Let ϕ(x, t) ∈ R be a a function defined on x ∈ [0, L]
and t ∈ [0,∞]. Then the following inequalities hold as (Rahn,
2002)

⎧⎨⎩∫L

0
ϕ2(x, t)≤ L2 ∫L

0
ϕ2
x(x, t)dx

ϕ2(x, t)≤ L∫L

0
ϕ2
x(x, t)dx

(2)

Assumption 1. In this paper, the effect of gravity is ignored in the
established physical model. Since both the rotational movement
and elastic vibration of the flexible manipulator occurs to the
horizontal plane, and the length of the mechanical manipulator is

much larger than its cross-sectional width and height, it is
assumed to be an Eider-Bernoulli beam.

Dynamics Analysis of the Flexible
Manipulator
As shown in Figure 1,X0OY0 is defined as the inertial coordinate
of the system, the coordinate system X1OY1 is a follow-up
coordinate system fixed on the flexible manipulator, and the
X1 axis is always tangent to the root of the flexible manipulator.
The offset of the flexible manipulator during the movement
isz(x, t), and the displacement of the flexible manipulator
isz(x, t) � y(x, t) + x · θ(t), where y(x, t) and θ(t) respectively
indicate the elastic deflection of the flexible manipulator and
the angular position of the flexible manipulator.

The kinetic energy Ek of the manipulator includes the
rotational kinetic energy Ek1 of the central rigid body, the
kinetic energy Ek2 of the flexible manipulator and the kinetic
energy Ek3 of the mass of the flexible manipulator. The
relationship between them can be given as
Ek � Ek1 + Ek2 + Ek3, Ek1, Ek2, Ek3 can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ek1(t) � 1
2
Ihθ′(t)2

Ek2(t) � 1
2
∫L

0
ρLA(x)z′2(x, t)dx

Ek3(t) � 1
2
mz′2(L, t) (3)

Where Ih represents the moment of inertia of the central rigid
body, ρL is the density of the flexible manipulator, A(x) is the
cross-sectional area of the flexible manipulator, which also
changes with the length x. θ(t) represents the actual rotation
angle of the flexible manipulator, and z(x, t) is the absolute
displacement of t the flexible manipulator in the X0OY0

coordinate system.

FIGURE 1 | Variable-stiffness flexible manipulator system.
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The potential energy Ep of the flexible arm system is expressed
as follows

Ep(t) � 1
2
∫L

0
ELI(x)y2

xx(x, t)dx + 1
2
TL ∫L

0
[yx(x, t)]2dx (4)

Where EL is the elastic modulus of the flexible manipulator, TL is
tension of the flexible manipulator, and I(x)is the moment of inertia
that changes with the length x. y(x, t) is the elastic vibration
displacement of the flexible arm in the X1OY1 coordinate system.

The control moment u(x,t) is added to drive the flexible
manipulator system, F(L,t) is the input torque of the mass of
the flexible manipulator, and its non-conservative force work
Wc(t) can be expressed as

Wc(t) � u(x, t) · θ(t) + F(L, t)z(L, t) (5)

The continuous mass distribution and continuous stiffness
distribution characteristics of the flexible manipulator are
considered. According to Hamilton’s principle Eq. 37, the
variational equation of the flexible manipulator is defined as

∫t2

t1

(δEk(t) − δEp(t) + δWc(t))dt � 0,∀(x, t) ∈ (0, L) × [0, tmax]
(6)

Combining Eqs 3, 6, the variational formula for the kinetic
energy Ek(t) of the flexible manipulator is simplified based on the
rule of integration as

∫t2

t1

δEk(t)dt � −∫t2

t1

Ihθ′′(t)δθ(t)dt

−∫t2

t1

∫L

0
ρLA(x)z′′(x, t)δz(x, t)dxdt

−∫t2

t1

mz′′(L, t)δz(L, t)dt
(7)

Combining Eqs 4, 6, the variational formula for the potential
energy Ep(t) of the flexible manipulator is simplified based on the
rule of integration as

∫t2

t1

δEp(t)dt � ∫t2

t1

[TLyx(L, t) − ELI(x)yxxx(L, t)]δy(L, t)dt
+∫t2

t1

[ELI(x)yxxx(0, t) − TLyx(0, t)]δy(0, t)dt
+ELI(x)∫t2

t1

yxx(L, t)δyx(L, t)dt

+∫t2

t1

∫L

0
[ELI(x)yxxxx(x, t) − TLyxx(x, t)]δy(x, t)dxdt

(8)

Combining Eqs 5, 6, the variational formula for the non-
conservative force work Wc(t) of the flexible manipulator is
simplified based on the rule of integration as

∫t2

t1

δWcdt � δ∫t2

t1

(u(x, t)θ(t)dt + F(x, t)z(L, t))dt (9)

Based on Eqs 6, 7, the boundary conditions of the flexible
manipulator are processed. The central rigid body is the fixed

end, and its elastic displacement and elastic angular displacement
are both zero. The end of the flexible manipulator is in a free state,
and its bending moment and shear force are both zero. Then the
boundary conditions of the flexible manipulator can be obtained as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y(0, t) � 0
yx(0, t) � 0
z′′x(0, t) � θ′′(t)
ELI(L)yxx(L, t) � 0
mz′′(L, t) + TLyx(L, t) − ELI(L)yxxx(L, t) − F(x, t) � 0

(10)

Property 1: If ∀(x, t) ∈ (0, L) × [0, tmax), the kinetic energy of the
system described by Eq. 3 is bounded, then the state z′(x, t),
z′x(x, t), z′xx(x, t), z′xxx(x, t) related to it is also bounded in the
corresponding range.
Property 2: If ∀(x, t) ∈ (0, L) × [0, tmax), the kinetic energy of the
system described by Eq. 3 is bounded, then the state yxx(x, t),
yxxx(x, t), yxxxx(x, t) related to it is also bounded in the
corresponding range.

CONTROL DESIGN OF THE FLEXIBLE
MANIPULATOR

Design of Control Method
According to the analytical model without external disturbance,
the following variable-stiffness flexible manipulator system with
governing equation as

ELI(x) · zxxxx(x, t) + ρLA(x) · y′′(x, t) � TL · yxx(x, t) (11)

Where EL is the elastic modulus of the flexible manipulator, TL is
tension of the flexible manipulator, and I(x)is the moment of
inertia that changes with the length x.

The control objective is to build a distributed control u(t) to
ensure that system state y(x, t) can track the variable reference
trajectory θd(t) without violation of desired constraint. The force
balance relationship of the boundary can be expressed as

u(t) � Ihθ′′(t) − ELIyxx(0, t) − TLy(L, t) (12)

A nonlinear boundary input is applied to the end of the
manipulator, and control is performed at the end of the
manipulator to adjust the vibration of the manipulator, so that
the system tends to stabilize faster. According to the boundary
Eq. 10, the nonlinear boundary input F(x,t) can be obtained as

F(x, t) � mz′′(L, t) + TLyx(L, t) − ELI(L)yxxx(L, t) (13)

When the kinetic energy, the potential energy of the flexible
manipulator, and the kinetic energy of the mass are the smallest,
the elastic deformation y(x, t) of the flexible manipulator is the
smallest. Through considering tracking error and tracking error
rate of change, the Lyapunov function is constructed as

V(t) � V1(t) + V2(t) + V3(t) (14)

Where V1(t) is the sum of the kinetic energy and potential
energy of the flexible manipulator, and represents an index
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for restraining the bending deformation and bending change
rate of the flexible manipulator. V2(t) represents the control
error index and the kinetic energy of the mass. V3(t) is the
cross auxiliary term. Then V1(t), V2(t) and V3(t) are defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V1(t) � (∫L

0
ρLA(x)z′2(x, t)dx + ELI(x)∫L

0
y2
xx(x, t)dx + TL ∫L

0
y2
x(x, t)dx)/2

V2(t) � (Ihe′(t)2 + k1e(t)2 +mz′2(L, t))/2
V3(t) � αA(x)∫L

0
y(x, t)z′(x, t)dx + βA(x)∫L

0
(L − x)yx(x, t)z′(x, t)dx

(15)

Where k1 is the gain related to the controller, and k1 > 0, α> 0,
β> 0. Then the vibration suppression control strategy design is
shown in Figure 2.

In the absence of external disturbances, the controller u(t) is
designed to suppress vibration and track the trajectory θd(t).
Combining the control equations, boundary conditions and
candidate Lyapunov function, through calculation and
deduction, the controller of the variable-stiffness flexible
manipulator system is designed as

u(t) � −k1(θ(t) − θd(t)) − k2(θ′(t) − θ′d(t)) − k3y(L, t) (16)

Where k2 is the gain related to the controller, and k2 > 0, k3 > 0.

Analysis of System Stability and
Boundedness
Lemma 3. The boundedness of the Lyapunov function Eq. 15 is
given as

0≤ λ1(V1(t) + V2(t))≤V(t)≤ λ2(V1(t) + V2(t)) (17)

where λ1, λ2 > 0.

Proof. For the cross-phase Eq. 15, the following inequality can be
obtained as

|V3(t)|≤ αA(x)(∫L

0
y2(x, t)dx + ∫L

0
z′2(x, t)dx) + βA(x)L(∫L

0
y2
x(x, t)dx + ∫L

0
z′2(x, t)dx)

≤ (αA(x)L2 + βA(x)L) ∫L

0
y2
x(x, t)dx + (αA(x) + βA(x)L) ∫L

0
z′2(x, t)dx

≤ ξ1V1(t)
(18)

Where ξ1 � max{αL2+βLTL
, α+βLρ }.

Then V3(t) can be obtained as

0≤ (1 − ξ1)V1(t) + V2(t)≤V(t)≤ (1 + ξ1)V1(t) + V2(t) (19)

Therefore, V(t) can be obtained as

0≤ λ1(V1(t) + V2(t))≤V(t)≤ λ2(V1(t) + V2(t)) (20)

Where λ1 � min(1 − ξ1, 1) and λ2 � max(1 + ξ2, 1) are two
positive constants.

Lemma 4. The time derivative of the Lyapunov function Eq. 14 is
proved to be bounded as

V(t)≤ − λV(t) (21)

Proof. Differentiating Eq. 14 with respect to time, V′(t) is
obtained as

V′(t) � V′1(t) + V′2(t) + V′3(t) (22)

The error information e(t), e′(t), e″(t) of the angle can be
obtained as

⎧⎪⎨⎪⎩
e(t) � θ(t) − θd(t)
e′(t) � θ′(t) − θ′d(t)
e″(t) � θ″(t) − θ″d(t)

(23)

Substituting boundary condition Eqs 10–15 into Eq. 22,V′1(t)
can be obtained as

V′1(t) � −ELI′(x)z′(L, t)yxxx(L, t) − ELI′(x)yxx(0, t)θ′(t)
+TL ∫L

0
θ′(t)xyxx(x, t)dx

(24)

Then V′2(t) can be obtained as

V′2(t) � e′(t)[Ihe′′(t) + k1e(t)] + z′(L, t)mz′′(L, t) (25)

Then V′3(t) can be obtained as

FIGURE 2 | Block diagram of control with trajectory planning for the flexible manipulator.
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V’3(t) � αA′(x)∫L

0
[y′(x, t)z′(x, t) + y(x, t)z′′(x, t)]dx

+ βA′(x)∫L

0
(L − x)[y′x(x, t)z′(x, t)

+ yx(x, t)z′′(x, t)]dx (26)

Combining Eqs 12, 16, 22, 24–26, based on Lemma 1 and
Lemma 2, V′(t) can be obtained as

V′(t)≤ − c1 ∫L

0
z′2(x, t)dx − c2 ∫L

0
y2
xx(x, t)dx − k1e

2(t)

− c3e′
2(t) − c4y

2
xx(0, t) − c5 ∫L

0
y2
x(x, t)dx (27)

Where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1 � −β/2 − βLσ5 − Lβσ6 − α − αL/σ7

c2 � EI(x)α/ρ − TLL
3/σ1 − (T − k3)L3/σ4 − 3βELI(x)/2ρ

c3 � k2 − Tσ1 − ELI(x)/σ2 − βL/σ5 − αL2σ7

c4 � βELI(x)L/2ρ − ELI(x)/σ3 − αELI(x)σ2
c5 � α/ρ − βT/2ρ

(28)
The parameters are chosen appropriately to make sure that

σn > 0, n � 1–6.
Then combining Lemma 3 and Eq. 27,V′(t) can be obtained as

V′(t)≤ − λ3[V1(t) + V2(t)]≤ − λV(t) (29)

where λ3 � min{2c1
ρ ,

2c2
ELI(L),

2k1
k1+k2}, and λ � λ3/λ2 > 0.

With Lyapunov direct method and based on Lemmas 1 and 2,
the stability of the system with the proposed control law is
analyzed. According to the analysis result, it can be found that
the control system is a closed loop system and the system is stable.
When the appropriate control gain parameters are selected, the
system vibration state and angle tracking error will eventually
converge. So as to achieve the purpose of restraining the elastic
vibration during the movement towards the system and driving
the arm of a predetermined angle.

NUMERICAL ANALYSIS OF THE FLEXIBLE
MANIPULATOR

In order to investigate the reliability of the control model, a
specimen with variable stiffness was designed for dynamic testing.

The dynamic tests were carried out on specimens of the shape
shown in Figure 3.

The material of the variable-stiffness flexible manipulator is
aluminum alloy, and the central rigid body is driven by a private
motor. The material properties of the variable-stiffness flexible
manipulator system are given in Table 1. It is assumed that the
joints of the flexible manipulator system completely track the
trajectory during the movement, the whole movement process of
the flexible manipulator is numerically simulated.

Numerical Analysis of Flexible Manipulators
Control
In order to explore the superiority in the variable-stiffness
manipulator, the control effects of two different rigid-flexible
coupling manipulator models can be compared. The flexible
robotic manipulators connected with a cantilever manner on
the central rigid body include a uniform-stiffness robotic
manipulator and a variable-stiffness flexible manipulator.
The length and quality of the manipulator remains equal.
The cross-section height H of the uniform-stiffness flexible
manipulator is 2.5 × 10−3 m and the width B is 5 × 10−2 m. The
elastic displacement changes of the middle and end of the
uniform and variable-stiffness flexible manipulator are shown
in Figure 4.

With the same controller and the same material properties of
the manipulator, the maximum amplitude of the end of the
variable-stiffness manipulator is 0.058 m, while the maximum
amplitude of the end of the uniform-stiffness manipulator is
0.065 m. It can be found that the maximum elastic displacement
of the variable stiffness manipulator is smaller.

FIGURE 3 | Numerical simulation structural drawing.

TABLE 1 | Parameters of the variable-stiffness flexible manipulator.

Parameters Description Value

L Length of the flexible manipulator 0.6 m
m Mass of the end payload 6.7 kg
T Tension of the flexible manipulator 5 N
E Elastic Modulus of the flexible manipulator 6.9 × 1010N/m2

ρ Density of the flexible manipulator 2.767 × 103kg/m3

B1 Width of the cross section in the flexible
manipulator

6 × 10−2 m
B2 4 × 10−2 m
H1 Height of the cross section in the flexible

manipulator
3 × 10−3 m

H2 2 × 10−3 m
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Design of Motion Trajectory
According to the dynamic model of the variable-stiffness flexible
manipulator system, it can be seen that the elastic vibration of the
flexible manipulator is related to the joint angular displacement,
angular velocity and angular acceleration. The trajectory
planning of the flexible manipulator is the process of moving
from the initial state to the target state within a certain period of
time. According to the dynamic equation of the flexible
manipulator system, the relationship between elastic vibration
and motion trajectory is established. Therefore, the vibration
suppression control of the flexible manipulator system can be
performed by the method of joint trajectory planning, and the
residual vibration of the system can be reduced.

In order to avoid excessive elastic vibration during the
movement towards the flexible manipulator system, not only
the trajectory of the system is required to be continuous, but also

the first and second derivatives of the trajectory function are also
continuous. When trajectory planning is carried out, the
following three conditions must be met on the premise of

FIGURE 4 | Elastic deformation of different flexible manipulators (A)
x � L. (B) x � L/2.

FIGURE 5 | Comparison of different designed trajectories. (A) Joint
angular displacement. (B) Joint angular velocity. (C) Joint angular
acceleration.
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meeting the specified time for the starting position on the target
position:

1) The trajectory is smooth and continuous and maintains a
monotonous increase or decrease.

2) The track speed and acceleration are smooth and continuous,
and do not exceed the maximum limit value.

3) The following constraints need to be met:

{ θ(t0) � θ0, θ′(t0) � 0, θ′′(t0) � 0
θ(tb) � θb, θ′(tb) � 0, θ′′(tb) � 0

(30)

Where t0and tb are the starting time and ending time respectively,
θ0and θb are the starting position and ending position of the joint
respectively, θ′ and θ′′ are the joint angular velocity and
acceleration respectively.

At present, the common motion trajectory curves that meet
the above constraints mainly include polynomial of degree five,
cycloid and exponential functions (Biagiotti and Melchiorri,
2009). The polynomial of degree five, cycloid and exponential

functions were taken as the motion trajectory, and compare the
elastic vibration generated by the flexible manipulator under
different motion trajectories.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(t) � (θb − θ0)[6( t

TE
)5

− 15( t

TE
)4

+ 10( t

TE
)3] + θ0

θ2(t) � (θb − θ0)[ t

TE
− 1
2π

sin(2πt
TE

)] + θ0

θ3(t) � (θb − θ0)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣12 + vc ∫τ

0
e
−σ·

sin2 πτ

|cos πτ|λ dτ
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + θ0

(31)

Where TE is the trajectory movement time, σ and λ are free
parameters, and τ � ( t

TE
−0.5) .

It is assumed that tb � 20s, TE � 5s, θ0 � 0, and θb � 0.5, the
joint angular displacement, angular velocity and angular

FIGURE 6 | Movement without trajectory planning: (A) Elastic
deformation. (B) Rate of change of elastic deformation.

FIGURE 7 | Trajectory tracking: (A) Angle. (B) Angular speed.
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acceleration of the flexible manipulator under different
trajectories can be obtained. As shown in Figure 5, the
designed trajectory meets the above constraints.

Numerical Analysis of Control Based on
Different Design Trajectories
Since there is no design movement trajectory, as shown in
Figure 6, it can be found that the variable-stiffness flexible
manipulator system obviously has greater vibration, where the
deflection of the variable-stiffness flexible manipulator system
reaches to 0.058 m. The system reached a steady state after
about 10 s.

The central rigid body joint performs trajectory tracking based
on the designed controller according to the trajectory Eq. 31, and
the corresponding joint angle and acceleration changes can be
obtained. As shown in Figure 7, the greater the maximum
acceleration of the motion trajectory, the greater the
fluctuation of the joint angle. The smaller the acceleration
when near the target position, the faster the system will stabilize.

The elastic displacement changes of the middle and end of the
variable-stiffness flexible manipulator under the designed
trajectory are shown in Figure 8. The flexible manipulator has
large elastic vibrations in the process of following the trajectory,
and there is still a certain degree of residual vibration after the
movement. Under different motion trajectories, the elastic
vibration changes of the flexible mechanical manipulator are
different. The greater the maximum acceleration of the motion
trajectory, the greater the maximum elastic displacement
generated. The smaller the acceleration when near the target
position, the smaller the residual vibration displacement. When
there is no trajectory planning, a large elastic displacement will be
produced during the movement, and vibration will be produced
during the movement, especially after the movement, the
vibration takes a long time to recover to a stable state. This
situation not only reduces the stability of the system, but also
shortens the service life of the flexible manipulator. According to
the comparison results, the maximum elastic displacement of the
end under the fifth-order polynomial motion trajectory, cycloid

FIGURE 8 | Elastic deformation with the trajectory planning (A) x � L. (B)
x � L/2.

FIGURE 9 | Movement with the polynomial of degree five trajectory
(x � L) (A) Elastic deflection. (B) Elastic deflection rate.
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motion trajectory and exponential motion is 0.040, 0.044 and
0.056 m. It can be found that the maximum elastic displacement
of the flexible manipulator is the smallest when the movement is
planned according to the polynomial of degree five trajectory.

As shown in Figure 9, the distributed elastic deformation and
change rate of the manipulator after the polynomial of degree five
trajectory movement can be obtained. It can be found that the
vibration of the variable-stiffness flexible manipulator system is
obviously reduced, where the maximum deflection rate of the
variable-stiffness flexible manipulator system reaches to 0.028 m.
The system reached a steady state after about 5 s.

OPTIMIZATION OF VIBRATION
SUPPRESSION TRAJECTORY

According to the vibration suppression results after trajectory
planning, it can be found that vibration at the end of the variable-
stiffness flexible manipulator after joint angular motion is still
large. In order to make the mechanical arm system have a small
residual vibration during movement and reduce it to zero in a
short time, and make the end of the system reach the target
position quickly and accurately, the above ideal trajectory needs
to be optimized.

Optimization Target of Vibration Reduction
In view of the characteristics of the flexible manipulator system,
considering the conservation of energy, the non-conservative
force is used to express the total energy consumed by the
system during the movement. In order to measure the amount
of elastic vibration of the flexible manipulator during the
movement and after the movement, a suppression indexed
including the elastic displacement of the end during the
movement and the residual vibration displacement of the end
after the movement is proposed. Therefore, the objective function
can be obtained as

J � r1 ∫4TE

0

∣∣∣∣u(x, t)θ′(t) + F(x, t)z′(L, t)∣∣∣∣dt
+ r2 ∫4TE

0
yT(lL, t)y(lL, t)dt + r3 ∫4TE

0
|dis(t)|dt (32)

Where y(lL, t) is the elastic displacement of the end of the flexible
manipulator, r1, r2 and r3 are the weighting factors of the three
terms in the formula, and r1 + r2 + r3 � 1. u(x,t) is the control
input signal, and dis(t) is the distance between the actual
trajectory and the ideal trajectory. When trajectory planning is
performed to ensure that y(lL, t) is minimum, the purpose of
vibration suppression of the flexible manipulator system can be
achieved through trajectory planning.

Trajectory Optimization Based on CADE
Algorithm
The differential evolution (DE) optimization algorithm is a bionic
intelligent algorithm that simulates the biological evolution
mechanism of nature. The realization mechanism is to

randomly reorganize the temporary individuals generated by
the individual differences in the population to complete the
population evolution. However, the mutated individuals are
selected randomly, which increases the randomness of the
algorithm, which leads to randomness in the optimization
direction, and reduces the convergence speed. The cloud
adaptive differential evolution (CADE) optimization algorithm
uses cloudmutation operation, and new individuals are generated
near the best individuals produced by the previous generation,
which not only improves the convergence speed, but also
maintains the characteristics of the best individuals. To ensure
the randomness of basic mutation operations and the stable
tendency of cloud mutation operations, the two methods are
combined to perform mutation operations. The optimization
algorithm has stronger robustness and convergence, and has a
good effect on solving numerical optimization problems. The
CADE algorithm flow chart is shown in Figure 10.

In order to obtain the optimal trajectory, the ideal trajectory
(polynomial of degree five) is optimized to minimize the objective
function Eq. 32 based on the CADE optimization algorithm. The
algorithm introduces a cloud model that can generate cloud
droplets with a stable tendency. During the evolution process,
it can target the optimal individual, perform adaptive positioning

FIGURE 10 | CADE algorithm calculation flow chart.
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of the global optimal solution, and improve the convergence
speed. The mutation operation of the CADE algorithm is
completed by the normal cloud generator, and the mutation
factor and crossover factor are adaptively adjusted during the
evolution process to ensure the diversity of new individuals in the
early stage and the convergence in the later stage.

After the ideal trajectory is optimized by the CADE algorithm,
a set of best deviations can be obtained, and then the best discrete
trajectory is obtained as

θop � [θop,0, θop,0, ..., θop,2n−1, θop,2n] (33)

In order to obtain the continuous optimal trajectory, the cubic
spline interpolation method is used to interpolate the discrete
trajectory. The interpolation condition can be defined as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θop(0) � θop,0 � θ0
θop(TE) � θop,2n � θd
θ′op(0) � θ′0 � 0
θ′op(TE) � θ’d � 0

(34)

Where the interpolation node is

θop(tj) � θop,j, tj � j

2n
TE, j � 1, 2, ..., 2n − 1 (35)

The continuous function obtained by interpolation is used
as the optimal trajectory of the joint. The designed controller
Eq. 16 is used to track the optimal trajectory. As shown in
Figure 11, the optimal vibration suppression trajectory curve
and its speed curve can be obtained through optimization.
Through comparing with the ideal trajectory, it can be seen
that the optimized trajectory and its speed after optimization
meet the boundary constraints, so the optimized trajectory
meets the vibration suppression requirements. By comparing
with the ideal motion trajectory, it can be seen that the
maximum speed of the optimized vibration suppression trajectory
are less than that of the ideal trajectory (polynomial of
degree five).

Then the effect of trajectory vibration suppression after
unverified optimization can be obtained. As shown in
Figure 12, it can be seen that the maximum elastic
displacement of the end of the flexible manipulator under the

FIGURE 11 | Comparison of ideal trajectory and optimized trajectory (A)
Angle (B) Angle speed.

FIGURE 12 | Movement with the optimized trajectory (x � L) (A) Elastic
deflection. (B) Elastic deflection rate.
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optimized vibration suppression trajectory is 0.033 m, the
maximum elastic deflection stabilizes after 4 s.

The vibration suppression effect after the optimized trajectory
and the ideal trajectory are compared. As shown in Figure 13, it
can be seen that he flexible manipulator moves under the
optimized trajectory, and the elastic displacement of the end is
smaller than the ideal trajectory during the movement, and the
maximum elastic displacement ratio between the optimal
trajectory and the ideal trajectory is 0.8:1. Compared with the
elastic vibration during themovement of the flexible manipulator,
the vibration at the end of the flexible manipulator is suppressed
to a greater extent of the optimal vibration suppression trajectory.
After the movement is completed, the flexible manipulator can

quickly return to stable state, which is 1 s faster than the ideal
trajectory.

CONCLUSION

In this work, the vibration control problem of a variable-stiffness
flexible manipulator with boundary input is studied. Taking into
account the coupling characteristics between the central rigid
body and the robot manipulator, using Hamilton’s principle, the
PDE dynamic model of the flexible system is derived. It is worth
mentioning that all analyses are based on the original PDEmodel.
Simulation studies shows that the elastic deflection of the
variable-stiffness flexible manipulator after trajectory planning
is significantly reduced, and the system stabilizes in a short period
of time. Then the ideal trajectory is optimized based on the CADE
algorithm. The variable stiffness manipulator system under the
optimized trajectory tends to stabilize and converge after 5 s. The
proposed trajectory planning method not only improves the
stability and positioning accuracy of the variable stiffness
robot manipulator system, but also has a better vibration
reduction effect. This study did not consider the influence of
materials on the elastic deformation of the manipulator. In the
future, the controller design for the variable-stiffness robotic
flexible manipulator in the presence of different disturbances
will be studied.
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