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Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows
existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based
on the similarities between parasitic diseases and cancer, recent studies aimed to
investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we
selected two antihelminthic drugs (macrolides and benzimidazoles) and two
antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the
research progresses made to date on the role of these drugs in cancer. Overall, these
drugs regulate tumor growth via multiple targets, pathways, and modes of action. These
antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor
occurrence and development. In-depth studies may improve the current tumor diagnoses
and treatment regimens. However, for clinical application, current investigations are still
insufficient, warranting more comprehensive analyses.

Keywords: drug repositioning, antiparasitic drugs, macrolides, benzimidazoles, artemisinin, quinolines,
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INTRODUCTION

There exists a close connection between parasitic infections and cancer (1–3). Helminth infections
are widespread the world over, and the causative parasites are thought to be responsible for causing
cancer in humans (4). Thus far, Schistosoma haematobium, Clonorchis sinensis, and Opisthorchis
viverrini have been recognized as clear biological carcinogens (1). The specific carcinogenic
mechanism is not yet clear, and the metabolites of catechol estrogens and parasite-derived
oxysterols may play an important role (5). Unlike worms, protozoa have not been identified as
biological carcinogens; however, certain characteristics of protozoa are similar to those of cancer. In
a manner similar to the immune evasion strategies employed by cancers, Trypanosoma cruzi and
Leishmania parasites leverage the immune mechanisms to persist in the body and establish a
chronic infection (6). Although malaria is the most widespread parasitic disease in the world, it does
not seem to be carcinogenic (2). However, the incidence of malaria is positively correlated with
mortality in most cancers, with the exception of colorectal, lung, gastric, and several other types of
cancer whose mortalities exhibit an inverse correlation with malaria (7, 8). Thus, the relationship
between malaria and cancer is worth exploring.

Cancer is the second leading cause of death worldwide and is a major burden of disease (9, 10).
However, with proper treatment, many cancers can be cured. Drugs are essential in the treatment of
tumors but are often not as effective as required because of drug resistance and low specificity (11).
Despite the emergence of highly specific monoclonal antibody drugs, the drugs are unsuitable
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for a wide range of clinical applications because they have strict
requirements for the target (12). Therefore, the development
of new antitumor drugs is still urgently needed. However, owing
to the similarities between parasitic diseases and cancer as well
as the successful clinical administration of antiparasitic drugs
for years, it seems feasible to repurpose existing antiparasitic
drugs into antitumor drugs. In fact, some antiparasitic and
antitumor drugs share the same target, a variety of drugs
targeting CDKs, TGR enzyme, tubulin/microtubule system
have been confirmed to have dual effects on anti-parasites and
anti-cancer (13).

Research on the repurposing antiparasitic drugs for tumors
has gradually gained popularity. However, many studies have
reported contradictory results. We selected two well-researched
antihelminthic drugs and two antiprotozoal drugs and
summarized the corresponding research progress to provide
direction for further exploration into the repurposing of
antiparasitic drugs as antitumor drugs.
PROGRESS ON THE USE OF
MACROLIDE ANTIPARASITIC DRUGS
FOR TREATING CANCER

Macrolides are antiparasitic drugs with dual functions in vitro
and in vivo. The mechanism of macrolides is mainly to increase
the concentration of the inhibitory transmitter GABA and
enhance the permeability of the nerve membrane to chloride
Frontiers in Oncology | www.frontiersin.org 2
ions, causing neuromuscular paralysis and death (14).
Macrolides have long been used to kill nematodes and consist
of two main categories: avermectins and milbemycins. Apart
from the antiparasitic effects, macrolide drugs also show different
levels of anticancer activity (Figure 1).

Avermectins
Commonly used avermectins include avermectin (AVM),
ivermectin (IVM), doramectin (DRM), eprinomectin (EPM),
and selamectin (SLM). Although all these avermectins show
anticancer activity, studies on IVM are more comprehensive
than those on other drugs. IVM can regulate the natural
progression of tumors via multiple pathways.

Apoptosis is an important mechanism used by IVMs to kill
cancer cells. Eukaryotic translation initiation factor 4A isoform 3
(EIF4A3) is an RNA-binding protein involved in the splicing
modulation of BCL2L1/Bcl-X and is considered to be closely
associated with apoptosis. SILAC-based quantitative proteomic
analysis revealed that IVM inhibited the expression of EIF4A3
and 116 EIF4A3-binding mRNAs (15). In LA795 cells, IVM
analogs (IVM, EPM, and SLM) can significantly inhibit currents
mediated by the transmembrane member 16A (TMEM16A), an
endogenous Ca2+-activated Cl- channel closely related to
tumorigenesis, thereby inducing apoptosis (16). In addition,
IVMs utilize the well-studied pathway of mitochondrial
apoptosis to exert their anticancer activity. When acting on
HeLa cells, IVM can increase the ratio of Bax/Bcl-2 and induce
release of mitochondrial cytochrome c into the cytoplasm, thus
stimulating caspase-9/-3-mediated apoptosis (17). In chronic
FIGURE 1 | Efficacy of macrolide antiparasitic drugs in cancer. Apoptosis is the chief mechanism used by macrolide drugs to kill cancer cells. Macrolides trigger
apoptosis through the (1) mitochondrial pathway, (2) cell cycle arrest, and (3) inhibition of the current of Ca2+ ion-activated Cl- channels. Other than apoptosis, macrolides
can cause autophagic death of cancer cells by (4) degrading PAK1. When used for cancer cells, macrolides show selectivity for CSCs by (5) inhibiting stem cell genes
and inactivating PAK1. Macrolides also reverse the abnormal epigenetics of tumor cells through (6) the combination of PAH2 and SID domain. By binding to the
extracellular segment of EGFR, macrolides can (7) inhibit the transcription of P-gp, thereby reversing tumor resistance in which MDR and MASTA1 are also involved.
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myeloid leukemia and renal cell carcinoma cells, IVM can induce
apoptosis by inducing mitochondrial dysfunction (18).

Cell cycle arrest can easily lead to apoptosis. Several studies
have revealed that in cancer cells, IVM arrests the cell cycle in
different phases by regulating the expression of proteins that
control the cell cycle, thereby inducing apoptosis (19–22).
Especially in epithelial ovarian cancer, IVM induces apoptosis
through multiphasic cell cycle arrest, and exhibits KPNB1-
dependent antitumor effects (22). The cell cycle is also the
target of many chemotherapeutic drugs, and combinatorial
treatment with IVM and clinical drugs is worth investigating.
In fact, in multiple in vivo and in vitro experiments, IVM
significantly enhanced the efficacy of various drugs, including
cisplatin and tamoxifen, but this result still needs clinical
verification (20, 23).

Autophagy regulation is another important mechanism
underlying IVM action. A study on breast cancer revealed that
when IVM was applied to cancer cells, no obvious apoptosis was
observed before 24 h of treatment, but the inhibition of growth of
these cancer cells during the 24 h was evident. Later in that study,
autophagy flux increased during the first 24 h of IVM treatment,
and the anticancer effect during this period was reversed when
IVM was used to treat cancer cells Beclin 1 or Atg5 knockdown
(24). Current studies argue that IVM degrades PAK1 in cancer
cells through the ubiquitination pathway, thereby inactivating
the AKT-mTOR pathway, which is the key negative regulatory
pathway of autophagy (24, 25). Although mechanisms used by
IVM require more detailed exploration, it is encouraging that
more studies indicate that induction of autophagy may be used as
a method of synergistic treatment in clinical tumor
chemotherapy, highlighting the potential of IVM as a clinical
adjuvant drug (26, 27).

In addition to the anticancer mechanism, the selective
functional characteristics of IVMs are also noteworthy.
IVMs exhibit more pronounced toxicity toward cancer cells
than toward non-cancer cells, which may be related to
higher mitochondrial biogenesis in cancer cells (28). More
importantly, when acting on cancer cells, IVM still exhibits
different levels of cytotoxicity in different cancer cell
subgroups. The CD44+/CD24- subpopulation of breast cancer
cells have been previously reported to possess stem/progenitor
cell properties (29, 30). IVM preferentially inhibits the viability
of CD44 +/CD24- subpopulation cells (cancer stem cells (CSCs))
and reduces the expression of stemness genes (NANOG,
POU5F1, and SOX2) (31). Current research points out that
this may be related to the ability of IVMs to inactivate p21-
activated kinase (PAK1), thereby reducing the levels of pStat3
and extracellular IL-6 and inhibiting the formation of CSCs (32).
Research on the specific effect of IVM on CSCs is still limited,
and many other knowledge gaps exist that require further
research. In general, the selective nature of IVMs shows that it
is almost non-toxic to non-cancer cells but can effectively inhibit
the growth of cancer cells, demonstrating its unique potential as
an anticancer drug.

IVMs have also shown anticancer capabilities in many fields
other than these mentioned above. Although research on these
Frontiers in Oncology | www.frontiersin.org 3
aspects is rare, it has broadened the scope of exploration of
IVMs. The latest research showed that IVMs could reverse tumor
resistance. IVM at a low dose that does not produce evident
cytotoxicity can bind to the extracellular domain of EGFR, which
inhibits the activation of EGFR and its downstream signaling
cascade ERK/Akt/NF-kB, thus inhibiting the transcription factor
NF-kB and leading to reduction in P-glycoprotein (P-gp)
transcription (33). Moreover, in triple-negative breast cancer
(TNBC), the targeted disruption of the Sin3 (a master
transcriptional scaffold and corepressor that plays an essential
role in the regulation of gene transcription and maintenance of
chromatin structure) complex by introducing a Sin3 interaction
domain (SID) decoy that interferes with PAH2 binding by
sequestering SID-containing partner proteins reverted the
silencing of genes involved in cell growth and differentiation
(34–36). Interestingly, IVM and SLM can be used as small
molecule inhibitors of SID peptides that play a similar role to
that of Sin3 disruption, indicating that AVMs can also exert
anticancer effects by regulating the abnormal epigenetics of
tumors (37). Furthermore, the activation of WNT-TCF
signaling is implicated in multiple diseases, but there are no
WNT-TCF antagonists in clinical use. However, SLM and IVM
can reduce the expression of target proteins in this pathway by
mimicking dnTCF, further demonstrating the application
potential of these drugs (38).

Milbemycins
The milbemycin family comprises a series of 16-membered
macrolide antibiotics that contain a highly characteristic
spiroketal group that can be produced by several Streptomyces,
these antibiotics have strong biological activities and are used as
highly selective and potent broad-spectrum antiparasitic agents
(39–41). At present, research on milbemycins in cancer was
relatively rare, and milbemycins have been found to play an
important role in reversing tumor drug resistance. Milbemycins
can restore the sensitivity of cancer cells toward chemotherapy
drugs by reducing the expression of MDR1 or P-gp, and its
concentration has no obvious cytotoxic effect on cancer cells (42,
43). Cisplatin (DDP) is one of the most widely used
chemotherapeutic drugs and is considered the first-line
treatment for many cancers, but drug resistance limits its
therapeutic potential. A recent study found that serine/
threonine kinase 1 (MAST1) was a major driver of DDP
resistance in human cancers (44). Encouragingly, in multidrug
and cisplatin-resistant human lung adenocarcinoma (A549/
DDP) cells , a milbemycin compound isolated from
Streptomyces sp. FJS31-2, named VM48130, reduced the
expression of multiple resistance-related genes, including
MAST1, to reverse resistance, which further demonstrated the
potential of milbemycin as an adjuvant drug in clinical
chemotherapy (45). The anticancer mechanisms of these
compounds also include other aspects. For example,
moxidectin effectively inhibited the proliferation of rat C6 and
human U251 glioma cells. Mitochondria-related apoptotic
pathways, cell cycle arrest, and autophagy induced by the
AKT/mTOR signaling pathway in cancer cells are all
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considered to be involved in this process, but the specific
mechanism remains to be explored (46, 47).
PROGRESS ON THE USE OF
BENZIMIDAZOLE ANTIPARASITIC
DRUGS FOR TREATING CANCER

Benzimidazole is a broad-spectrum antiparasitic drug with a
structure similar to that of purines and is mainly used in clinics
for nematodes. Benzimidazoles include albendazole (ABZ),
flubendazole (FLU), fenbendazole (FBZ), oxibendazole (OBZ),
and febantel (FBT). In general, these drugs mainly exert their
antiparasitic effects by interfering with sugar metabolism,
affecting adenosine triphosphate (ATP) production, and
binding to tubulin to affect the cell cycle (48, 49). These
biological processes are also critical in cancer, and it seems
inevitable that such drugs are effective in tumor treatment.
Correspondingly, many studies have shown that benzimidazoles
have prominent anticancer activity (Figure 2).

Albendazole
Based on the antiparasitic mechanism, studies have found that
ABZ can inhibit glucose uptake through the GLUT1/AMPK/P53
signaling pathway, thereby disrupting sugar metabolism
in cancer cells and inducing cell apoptosis (50). ABZ,
Frontiers in Oncology | www.frontiersin.org 4
a microtubule-targeting agent (MTA), induces apoptosis by
disrupting microtubule formation and causes mitotic arrest in
tumors (51, 52). ABZ causes bundles of short microtubules to
form along the edges of cells rather than covering the entire cell,
leading to a series of biological reactions (52). MTAs are a
class of drugs currently used in chemotherapy. A synergistic
antiproliferative effect is observed upon using combinatorial
therapy involving low concentrations of ABZ, colchicine, and
ABZ plus 2-methoxyestradiol (2ME) (53). However, recent
studies have revealed an interesting mechanism underlying the
anticancer activity of ABZs, i.e., targeting the microtubules. In
K562 cells, when compared with paclitaxel and other MTAs,
ABZ treatment significantly increased the number of cells
arrested at the G2/M phase in a short time, and ABZs did not
immediately activate apoptosis. Subsequently, ABZs could
upregulate SIRT3 expression, which is believed to regulate
SOD2 activity to clear mitochondrial reactive oxygen species
(ROS). They further speculated that this ability allowed ABZs to
protect cancer cells from cytotoxicity in the short-term, but when
SIRT3 expression was further reduced, this unique ABZ
mechanism was no longer effective (54, 55).

Whether it be inhibiting the glucose metabolism pathway or
targetingmicrotubules to exert anticancer activity, triggering cancer
cell apoptosis is the common end result. In fact, ABZs can induce
apoptosis in other ways. According to a study on cutaneous
squamous cell carcinoma, ABZs increase apoptosis-related signals
FIGURE 2 | Efficacy of benzimidazole antiparasitic drugs in cancer. Benzimidazoles can cause energy metabolism disorders and reduce cancer cell tolerance to
hypoxic environments by (1) inhibiting the expression of HIF-1a and (2) inhibiting sugar intake through the GLUT/AMPK/P53 pathway. Apart from sugar metabolism,
benzimidazoles also induce apoptosis by (3) inhibiting microtubule polymerization and (4) ER stress, and (5) promoting MAPK phosphorylation. By affecting numerous
autophagy-related proteins (LC3, P62, and EVA1A) and downstream signals related to STAT3, benzimidazole can also cause (6) autophagic cancer cell death. (7)
Benzimidazoles reduce the expression of PD-1 and (8) inhibit the accumulation of MDSC in the TME to stimulate antitumor immunity.
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by inducing endoplasmic reticulum (ER) stress, and pretreatment
with the ER stress inhibitor 4-PBA attenuates ABZ-induced
apoptosis (56). Furthermore, in human leukemia U937 cells,
ABZs increase MAPK phosphorylation and upregulate TNF-a
expression, thus inducing apoptosis. The same pathway is
seemingly involved in the ABZ-induced death of HL-60 cells (57).

Moreover, most cancer cells generate ATP using accelerated
glycolysis rates, and glucose is converted to lactate instead of
being metabolized by oxidative phosphorylation, even when
oxygen is abundant (58, 59). Current research indicates that
hypoxia-inducible factor-1a (HIF-1a) plays a critical role in this
process. In general, under hypoxic conditions, HIF-1amaintains
the survival requirements of cancer cells by regulating the
expression of a series of glycolytic enzymes and can also bind
to the vascular endothelial cell growth factor (VEGF) gene
promoter to induce VEGF expression and angiogenesis (60,
61). Therefore, HIF-1a is becoming an increasingly attractive
therapeutic target in the treatment of cancer. It is encouraging
that ABZs significantly inhibited the expression of HIF-1a in
non-small cell lung cancer and ovarian cancer; however, ABZ
treatment did not affect the HIF-1amRNA level, suggesting that
other unknown regulatory pathways may be involved in this
process (62, 63).

Research institutions have already carried out phase I clinical
trials of oral ABZ to treat advanced cancer patients to detect its
maximum tolerated dose. Results from the 36 patients with
refractory solid tumors enrolled in the study showed that the
recommended dose for further study was 1,200 mg twice daily
for 14 days in a 21-day cycle, with myelosuppression being the
main dose-limiting toxicity (64). Although no patients achieved
partial or complete response according to the RECIST study’s
criteria, 4 out of 24 patients with assessable tumor markers (16%)
demonstrated a decrease in tumor markers of more than 50%. In
contrast, another patient had a significant decrease in tumor
markers and a prolonged period of stable disease. Overall, as
research continues to progress, new anticancer drugs based on
ABZ can be expected.

Flubendazole
Similar to ABZ, FLU induces monopolar spindle formation by
inhibiting tubulin polymerization, inhibiting proliferation and
migration, ultimately triggering apoptosis in a variety of cancer
cell lines (65–69). However, more distinctive is that autophagy
seems to play an important role in the anticancer activity of FLU.
Using molecular docking simulation technology to screen
numerous small molecule drugs approved by the Food and
Drug Administration (FDA), FLU was found to have the
highest antitumor activity and the ability to target autophagy-
related gene (ATG) 4 B. Molecular dynamics simulation revealed
that FLU bound with high affinity to ATG4B protein, and that it
could induce autophagy and exhibit an antiproliferative effect on
TNBC cancer cells (70). The latest research, however, has
proposed another possible mechanism for FLU’s anticancer
activity on TNBC cells. FLU treatment promotes autophagy by
upregulating the expression of Eva-1 homolog A (EVA1A), a
protein involved in autophagy and apoptosis-induced cell death
(71). EVA1A knockdown, results in the partial inhibition of LC3
Frontiers in Oncology | www.frontiersin.org 5
puncta accumulation, p62 degradation, and LC3 lipidation in
TNBC cells (72). FLU also promotes autophagy in other
malignant cell lines, such as A549 and H460 (73), through the
regulation of the signal transducer and activator of transcription 3
(STAT3)-related pathway to induce apoptosis in human colorectal
cancer cells, but the specific mechanism remains unclear (74).

Moreover, FLU has clinical value because it is potentially
involved in tumor immunotherapy and molecular targeted drug
resistance. Programmed cell death protein-1 (PD-1) and
programmed cell death-ligand 1 (PD-L1) are immune system
regulators that play a role in dampening the immune response
to cancer cells, and PD-1 inhibitors have already changed the
paradigm of cancer treatment in many cancers (75, 76). However,
all available PD-1/PD-L1 treatments are antibodies that require
intravenous infusion, resulting in exorbitant costs. PD-1/PD-L1
treatments can also have unpredictable and/or poor response in
second-line treatment; therefore, finding a small molecule
inhibitor is more convenient (77). A study on melanoma
showed that FLU could inhibit the expression of PD-1 in cancer
cells and the accumulation of myeloid-derived suppressor cells
(MDSCs) in the tumor microenvironment, indicating its ability to
elicit the host’s antitumor immunity, but the specific mechanism
remains to be explored (78). In general, this suggests huge potential
application of FLU in tumor immunotherapy. Apart from this,
trastuzumab provides significant clinical benefit for HER2-positive
breast cancers, but nearly 70% of patients experience primary or
acquired resistance, which dramatically limits the therapeutic effect
(79). Encouragingly, FLU significantly reduced p95HER2
expression and the phosphorylation level of HER2, HER3, and
AKT, preventing the hetero-dimerization of HER2/HER3 in
trastuzumab-resistant cells (80), which play an important role in
trastuzumab resistance (81–83). Combination therapy with FLU
seems to be a possible solution to improve the efficacy
of trastuzumab.
PROGRESS ON THE USE OF
ARTEMISININ AND ITS DERIVATIVES
FOR TREATING CANCER

Artemisinin (ARS) is a 1,2,-trioxane from the Chinese medicinal
plant Sweet Wormwood, and since its antimalarial effect was
discovered, research on ARS has been continuously focused on.
A variety of ARS and its derivatives (ARTs), including
dihydroartemisinin (DHA), artemether (ARM), artesunate
(ART), and artemisitene (ATT), have emerged because of the
advancements of drug modification and synthesis technology.
ARS-based combination therapies are established standard
treatments for malaria worldwide (84–87). It is currently
considered that the heme-irons released by Plasmodium-
attacking red blood cells can cleave the endoperoxide bridge of
ARS via a Fe (II) Fenton-type reaction, and that free radical
intermediates kill the Plasmodia (88, 89). Other pathways are
also involved in ARTs antimalarial response (90, 91), but
comprehensive research on antimalarial mechanisms remains
necessary. Interestingly, as with other natural products,
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antimalarial properties are not the only benefits of ARTs, and
ARTs have shown application value in many diseases, including
cancer (Figure 3).

Long-term studies on the anticancer mechanism of ARTs
have shown that the endoperoxide moiety is essential for its
biological activity, and ARTs without the endoperoxide moiety
were inactive (92, 93). In general, ARTs mainly exert anticancer
effects in three ways with the endoperoxide moiety. (i) The
cleavage of the endoperoxide moiety leads to the formation of
ROS and oxidative stress in the tumor. Excessive production of
ROS causes death by damaging cellular components, including
DNA, proteins, and lipids (94); a notable feature of ARTs is that
they can spontaneously generate a large amount of ROS in a
heme-dependent manner (95–97). Many studies have indicated
that ARTs increase the expression of cleaved caspase-3 and
PARP in a variety of cancer cells by producing excessive
amounts of ROS, thus inducing apoptosis in cancer cells (98–
100). Further, excessive amounts of ROS may trigger an ER stress
response in cancer cells (99), but the specific mechanism is not
clear. Interestingly, increasing the concentration of ferrous ions
and oxygen in the tumor environment to further increase the
concentration of ROS has been shown to enhance the anticancer
activity of ARTs (101, 102), which provides a possible strategy
for the development of new anticancer drugs based on ARTs.

(ii) ARTs rely on excessive amounts of ROS to cause DNA
damage in cancer cells. In the alkaline comet assay, both ARS and
ART caused significant DNA damage, and the fold changes of
OTM and tail DNA significantly increased (103). In addition,
molecular docking indicated that various ARTs might induce
Frontiers in Oncology | www.frontiersin.org 6
DNA damage in cancer cells by inhibiting topoisomerase 1 (104),
an enzyme that resolves the topological stress in genomic DNA by
preventing double-stranded breaks in the DNA during cell
proliferation (105). Subsequent studies involved in-depth
exploration of the specific mechanism of ARTs. ATT can
increase the expression of E3 ligase NEDD4, resulting in the
destabilization of c-Myc protein, thereby inhibiting the expression
of DNA topoisomerases. Importantly, neither a decrease in the
concentration of NEDD4 protein nor DNA damage has been
observed in non-cancer cells (106). DNA damage inducers such
as cisplatin and doxorubicin have become the first-line cancer
treatment (107, 108). However, these drugs lack strict selectivity,
and are toxic to non-cancer cells. The high selectivity of ATT as a
DNA damage inducer suggests that ARTs may be a potential
alternative to cisplatin and doxorubicin.

(iii) ARTs induce cycle arrest to trigger cancer cell death. This
anticancer effect of ARTs is closely related to excessive amounts
of ROS and oxidative DNA lesions that affect cell integrity,
leading to perturbations in DNA replication and cell division
mechanisms. More specifically, CDK4 encodes a cyclin-
dependent serine-threonine kinase in response to mitogenic or
proliferation-promoting stimuli and interacts with cyclin D1 to
phosphorylate the tumor suppressor protein Rb (109, 110). DHA
can regulate the cyclin D1-CDK4-Rb pathway by inhibiting the
expression of CDK4 to trigger cycle arrest (111). In cisplatin-
resistant human breast carcinoma cells, ARS exerts anticancer
activity by targeting multiple key cell cycle-related proteins,
including cyclin-B1, cyclin D1, and cyclin E, to trigger cycle
block (112). In general, with the help of the endoperoxide
FIGURE 3 | Efficacy of ARTs in cancer. With the help of endogenous peroxides, ARTs can cause oxidative stress by (1) increasing the concentration of ROS, (2)
DNA damage, and (3) cell cycle arrest to cause cancer cell death. In addition to the common types of cell death, ARTs increase the concentration of unstable iron
ions in cancer cells by (4) regulating a variety of iron-related proteins and IRP1/IRP2, thereby triggering ferroptosis. ARTs strengthen the cancer-killing effect of NK
cells by (5) enhancing their degranulation ability and increasing the connection between NK cells and cancer cells. ARTs (6) reduce negative regulation factors (Treg
cells and MDSCs) and increase IL-4 and IFN-g in TME to stimulate T cell immune response.
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moiety, ARTs can kill cancer cells in a variety of ways. Moreover,
these pathways are closely interconnected.

Ferroptosis, a new type of programmed cell death that is iron-
dependent and differs from apoptosis, cell necrosis, and
autophagy, has recently become a research hotspot in cancer
(113–115). Interestingly, ART anticancer activity is also based on
ferroptosis. Current research shows two main mechanisms of
ferroptosis. In the first mechanism, the expression of the core
enzyme GPX4 in the antioxidant system is reduced or
inactivated, depending on the level of intracellular GSH (116).
In the second mechanism, unstable iron ions accumulate in
cancer cells (100). The accumulation of unstable iron ions may
be the main mechanism by which ART-induced ferroptosis. The
anticancer effects of ARTs are related to many iron-related
proteins, including transferrin (TF), transferrin receptors 1 and
2 (TFRC, TFR2), ceruloplasmin (CP), and lactoferrin (LTF)
(117). Furthermore, in DHA-induced ferroptosis, intracellular
GSH levels are not affected. However, when DHA is combined
with deferoxamine (DFO), an iron chelator, DHA-induced
ferroptosis is completely inhibited. Further, DHA may inhibit
the translation activity of a series of ferritin-related genes by
maintaining the binding of iron regulatory protein-1 (IRP1) and
IRP2 to iron-responsive element sequences, thus greatly
increasing the concentration of unstable iron ions in cancer
cells (118). However, counterintuitively, ARTs also strangely
induce a negative feedback pathway in ferroptosis. ARTs can
significantly increase the expression of GRP78, an antiferroptosis
glucose-regulated protein, and knockdown of GRP78-enhanced
ART-induced ferroptosis in AsPC-1 and PaTU8988 cells (119).
DHA increases the expression of HSPA5, a negative regulator of
DHA-induced ferroptosis, by activating GPX4 in glioma cells
(120). It is worth considering that the induction of ferroptosis
activity by ARTs could be enhanced by inhibiting the negative
feedback pathway. In summary, the specific mechanism by
Frontiers in Oncology | www.frontiersin.org 7
which ARTs induce ferroptosis is still unclear, and more
research is warranted. In addition, except for ferroptosis, other
types of programmed cell death modes, such as apoptosis and
autophagy, are also important for ARTs to kill cancer cells, and
many excellent research results have been published (Table 1).

The regulation of the immune system seems to be one of the
antitumor mechanisms of ARTs. This idea was first supported
when ARS was directly applied to natural killer (NK) cells, and the
degranulation ability of NK cells was enhanced to effectively kill
cancer cells. Combination treatment with the degranulation
inhibitor concanamycin A completely reversed these effects of
ARS. ARS does not change the expression of activated receptors on
the surface of NK cells to enhance their degranulation ability, but it
could induce the activation of downstream signaling molecules
(134). Subsequently, ARS can also increase the coupling between
tumor and NK cells, but the expression of the main ligands of NK
receptors is not affected; the specific mechanism needs to be
further explored (135). Moreover, except for the innate immune
system, ARTs can also regulate specific immune systems. For
example, ARM can reduce Treg cells and increase IL-4 and IFN-g
in the tumor microenvironment (136). More directly, treatment
with ARS in a 4T1 breast cancer model significantly reduced the
number of MDSCs and Treg cells in mice and significantly
increased CD4+ IFN-g+ T cells and cytotoxic T lymphocytes
(CTLs) (137). Although obvious immune regulation can be
observed, few studies have investigated immune system
regulation by ARTs, and the exact underlying mechanism
remains unclear; however, it is still a promising research direction.

As studies on ARTs in cancer have increased, so too have the
number of case reports and related clinical trials that support the
potential role of ARTs in cancer treatment. There were two uveal
melanoma cases in which compassionate treatment with ART
was administered after ineffective standard chemotherapy (138).
One patient received fotemustine plus ART and reached a
TABLE 1 | Non- ferroptosis cancer cell death induced by ARTs.

Cell death Cell line Drug Effect Reference

apoptosis C4, C4-2 and C4-2B prostate Ca DHA miR-34a↑, miR-7↑, Axl↓ Paccez et al. (121)
Apoptosis HL-60 and KG1a leukemia ART cleaved caspase3↑, Bax/Bcl-2↑ Chen et al. (122)
Apoptosis A549/TAX lung Ca ART Inhibit lysosome function and the clearance of dysfunctional

mitochondria
Li et al. (123)

Apoptosis 4T1 and MCF-7 breast Ca ART HSP70↓, Bcl-2↓, cleaved caspase-9↑ Pirali et al. (124)
Autophagy-related
apoptosis

RT4, RT112, T24, and TCCSup
bladder Ca

ART DNA damage↑, LC3B-I↓, LC3B-II↑ Zhao et al. (125)

Apoptosis HCT116 and DLD-1 colorectal Ca ART, DHA P53↑, DR5↑, caspase-3/7↑, cleaved PARP-1↑ Zhou et al. (126)
Apoptosis MM.1S and MM.1R multiple

myeloma
ARS, DHA ROS↑, cytochrome C translocation↑ Chen et al. (98)

Apoptosis HT-29 and HCT-116 colorectal Ca DHA endoplasmic reticulum stress Elhassanny et al. (99)
Autophagy-dependent
apoptosis

T24 and EJ bladder Ca ART ROS↑, pAMPK↑, pmTOR↓, pULK1↑ Zhou et al. (127)

Apoptosis EGFR-mutant and KRAS -mutant
lung Ca

DHA pSTAT3↓, Mcl-1↓, Survivin↓, Bcl-2↓ Yan et al. (128)

Apoptosis 18 types of B-cell lymphoma ART endoplasmic reticulum stress Våtsveen et al. (129)
Apoptosis CNE-2Z Nasopharyngeal Ca DHA CLC-3 chloride channel protein↑, cleaved caspase-3↑ Zhou et al. (130)
Autophagy A549 lung Ca DHA-37 HMGB1↑, pMAPK↑, LC3-II/LC3-I↑ Liu et al. (131)
Apoptosis HCT116 colorectal Ca ART Inhibit the NF-kB pathway, ROS↑, Bax/Bcl-2↑ Chen et al. (132)
Apoptosis PC3, 22RV1 and LNCaP prostate

Ca
ART Induce oxidative stress, survivin↓, cleaved PARP↑ Nunes et al. (133)
April 2021 | Volum
e 11 | Article 670804

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Antiparasitic Drugs in Cancer
temporary response, although the tumor progressed under prior
fotemustine therapy alone, and the patient died 23 months after
being diagnosed with stage 4 disease. The second patient reached
disease stabilization after administration of dacarbazine and
ART, and the survival time of the patient greatly exceeded that
of the median survival time for patients with uveal melanoma,
which is 2 to 5 months. Furthermore, the results of a phase I
clinical study on intravenous ART in patients with advanced
solid tumor malignancies were recently published (139).
Nineteen patients were enrolled in the study and had various
cancers. In the study, dose-limiting toxicities were observed in
one of six patients at dose levels of 12 mg/kg (neutropenic fever)
and 18 mg/kg (grade 3 hypersensitivity reaction on C1D1); both
patients treated with 25 mg/kg experienced dose-limiting
toxicities (one patient had grade 3 nausea/vomiting, and the
other experienced neutropenic infection, grade 3 ALT elevation,
and grade 4 ALT elevation). They also observed a disease control
rate of 27% (4 out of 16). In summary, although there are issues
to be resolved, ARTs have great potential as anticancer drugs.
PROGRESS ON THE USE OF QUINOLINE
ANTIPARASITIC DRUGS FOR
TREATING CANCER

Similar to ARTs, the design and synthesis of quinoline drugs,
which are characterized by a quinoline ring, has been researched
for application as antimalarial drugs. Quinolines exert their
Frontiers in Oncology | www.frontiersin.org 8
antimalarial effects during the blood or liver stages of the life
cycle of the parasite (140), but different drugs have different
mechanisms (141, 142). With the progress in research, an
increasing number of quinoline drugs have shown therapeutic
effects in other diseases, including cancer (Figure 4).

Chloroquine
Chloroquine (CQ), a 4-aminoquinoline, has been used as an
antimalarial drug for many years and is often recommended to be
co-administered with primaquine to prevent recurrence of
Plasmodium vivax (143). CQ is currently considered a
protonated, weakly basic drug that increases the pH and
accumulates in the food vacuole of parasites, thereby interfering
with the degradation of host red blood cell hemoglobin, and
preventing the growth of malaria parasite (144). The exact
mechanism requires further investigation. Similar to other
antiparasitic drugs, CQ has also shown potential in the
treatment of cancers and other diseases (145, 146).

As lysosomotropic agents, CQ increases the pH of the lysosome
from 4.5 to 6, such a change in pH is not conducive for the activity
of lysosomal enzymes. This mode of action is known as a
lysosomotropic effect (147, 148). Therefore, CQ can affect
various biological processes by acting on receptors, enzymes,
and transcriptional factors, which would determine the
therapeutic effects in cancer (149) (1). Inhibit autophagy to
induce anticancer effects. As an autophagy inhibitor approved
by the FDA. At present, this particular function has been studied
quite thoroughly. CQ blocks the final step of the autophagy
process by impeding the degradation of autophagic proteins
FIGURE 4 | Efficacy of quinoline antiparasitic drugs in cancer. Lysosomes are an important target of quinoline drugs, and quinolines increase the pH of the
lysosome, thereby triggering a variety of cascade reactions. Quinolines can (1) inhibit the degradation of autophagy proteins to block autophagy and (2) stimulate
antitumor immune responses by increasing tumor antigens. Mitochondria are also a target for quinolines. Quinolines increase the oxygen concentration in cancer
cells by (3) inhibiting the related processes of mitochondrial complex III and cause apoptosis by (4) inducing oxidative stress with the change in mitochondrial
membrane potential, (5) inhibiting the phosphorylation level of STAT3 in mitochondria, and (6) introducing double-strand breaks in DNA in cancer cells. (7) Quinolines
inhibit the drug delivery mediated by P-gp and BRCP.
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such as light chain 3B-II (LC3B-II) (150, 151). Thus, CQ prevents
the production and recycling of important nutrients and
metabolites, causing tumor cell damage and death. Further, the
inhibition of the final stage of autophagy increases cytotoxic effects
in cancer cells by promoting cell apoptosis and cell cycle arrest
(152) (2). Regulate immunity to prevent tumor cells from
escaping. Successive studies have shown that when ultra-low
concentrations of chemotherapeutics are used on tumor cells,
the expression of some genes related to inflammation, immunity,
and tumor antigens in the cell increases, thereby increasing the
cell’s ability to use CTLs to induce immunogenic death of tumor
cells (153–157). A recent study reported for the first time the effect
of low concentrations of CQ on the immunogenicity of tumor
cells (158). In that study, when HCT-116 colon cancer cells were
treated with CQ and 5-fluorouracil in combination, their cell
lysates significantly induced the maturation of dendritic cells, and
the expression of surface markers, including CD80 and CD86, was
significantly increased. Additionally, dendritic cells increased the
production of CTLs and triggered tumor cell death. Subsequently,
they detected an increase in tumor-associated carcinoembryonic
antigen family gene expression in the treated cancer cells, but the
specific mechanism still needs to be explored, which may be
related to the inhibition of autophagy by CQ. CQ has also been
found to directly affect the function and differentiation of various
immune cells by altering the pH of the lysosome and has been
described in detail in this review (149).

CQ also has multiple functions in tumors by regulating a
variety of key signaling molecules. Platinum drugs are recognized
as the mainstay drugs for the treatment of epithelial ovarian
cancer (159). However, drug-resistant cancer cells can survive
the DNA damage induced by anticancer drugs through DNA
repair pathways or bypassing cell cycle checkpoints (160, 161);
however, CQ can upregulate the expression of p21WAF1/CIP1 to
prevent this phenomenon and reverse the drug resistance of
cancer cells. This function seems to depend on autophagy
inhibition, but the connection is not yet clear (162). Many
other functions of CQ depend on its inhibitory effect on
autophagy. However, CQ can reduce the expression of CXC
chemokine receptor 4 (CXCR4) by inhibiting STAT3 expression,
thereby reducing the stemness of esophageal squamous cell
carcinoma cells. This process is independent of autophagy, and
the expression of key molecules, ATG7 and BECN1, in the
autophagy pathway does not change (163), suggesting that CQ
has other effects that do not depend on autophagy inhibition, but
these have not yet been elucidated. In addition, CQ can regulate
the expression of signaling molecules, including NF-kB and p53,
to exert an anticancer effect (164).

As an autophagy inhibitor approved by the FDA, CQ has
received widespread attention, and the possibilities of its clinical
application have been extensively studied. To date, many clinical
trials using CQ alone or in combination to treat cancer have been
conducted (165, 166). Most findings indicate that the
combination of CQ with other drugs was well tolerated, and
the maximum tolerated dose increases compared with using CQ
alone. However, in these trials, no significant differences between
the treatment and control group and no significant improvement
Frontiers in Oncology | www.frontiersin.org 9
in overall survival were observed. This may also be related to the
small sample size used in the phase I clinical trials; thus, the
efficacy of CQ should be further evaluated and explored in a
larger sample.

Atovaquone
Atovaquone (ATV), a hydroxy 1,4-naphthoquinoline, is a
homolog of coenzyme Q. Current research shows that ATV’s
antimalarial site is the mitochondrial complex III (141).
Compared with non-cancer cells, cancer cells rely more heavily
on mitochondrial functions to generate ATP for growth and
survival (167, 168). Naturally, respiratory energy metabolism,
especially oxidative phosphorylation, has become a focus of
research. ATV, an inhibitor of the mitochondrial complex III,
can significantly reduce the oxygen consumption rate and
increase the concentration of oxygen in cancer cells (169). In
clinical practice, hypoxia is a major problem in cancer treatment
(170). The current novel photodynamic therapy technology
mainly relies on ROS to kill cancer cells, but the hypoxic
tumor environment limits its therapeutic value (171, 172);
thus, combinations with ATV may be a solution. Many studies
have also revealed that ATV can indeed improve the efficacy of
radiotherapy, chemotherapy, and immunotherapy by reducing
the rate of oxygen consumption (173, 174).

The reduction in mitochondrial function greatly inhibits
the proliferation of CSCs, which mainly rely on mitochondrial
respiration rather than glycolysis. The decrease in mitochondrial
membrane potential and the increase in ROS levels lead
to apoptosis in CSCs; thus, ATV selectively acts on CSCs
(175). More specifically, ATV can inhibit the phosphorylation
of mitochondrial STAT3 but not of nuclear STAT3. The
inhibition of STAT3 phosphorylation is not accompanied by
changes in JAK, Src, or MEK, indicating that this function of
ATV is independent of JAK/Src/MEK (176). ATV can also
reduce the expression of a variety of STAT3 target genes,
thereby exerting anticancer effects in tumors (177, 178). There
is still much to be discovered regarding mitochondria and related
functions, an aspect that has received much attention in the
context of cancer treatment (179).

Mitochondrial respiratory function is not the only target of
ATVs. ATVs can degrade HER2 and b-catenin in a proteasome-
dependent manner, thereby inhibiting the activation of HER2/b-
catenin and triggering apoptosis in cancer cells; however,
application of the proteasome inhibitor MG-132 eliminates this
effect of ATV (180). In addition, ATV can also introduce double-
stranded breaks in DNA, thereby upregulating phosphorylated
ATM and p53 to trigger cycle arrest and apoptosis in cancer cells
(181). ATV is also an inhibitor of BRCP and P-gp-mediated drug
delivery (182), indicating the broader application value of ATV,
but its specific mechanism remains to be elucidated.
FUTURE DIRECTIONS

People are increasingly aware of the value of drug repositioning
with the urgent clinical situation that large number of new
April 2021 | Volume 11 | Article 670804
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anticancer drugs have appeared unignorable drug resistance after
short-term clinical use (183, 184). Encouragingly, numerous
clinically approved non-cancer drugs have shown antitumor
activity in vitro, in vivo, and even clinically, and antiparasitic
drugs account for a large portion of these repurposed
drugs (185).

Based on the current research, the application of antiparasitic
drugs in anticancer therapy is multitargeted and multimodal
(Table 2). Macrolide drugs induce cell cycle arrest, apoptosis,
and autophagic death in cancer cells by regulating multiple targets
and multiple signaling pathways, including WNT-TCF and
PAK1-AKT-mTOR, and also play a role in reversing tumor
resistance. Benzimidazole drugs induce cancer cell death by
inhibiting sugar metabolism and interfering with the formation
of microtubules. In particular, benzimidazoles can also inhibit the
expression of HIF-1a protein to inhibit the stress behavior of
cancer cells under hypoxic environments, and by changing the
tumor microenvironment to stimulate the host’s antitumor
immunity, benzimidazoles may also exert anticancer effects.
Endoperoxide is very important for the anticancer activity of
ARTs. Specifically, an endoperoxide moiety can produce a large
amount of ROS in tumor cells and trigger a series of biological
processes that are lethal to cancer cells. Interestingly, ARTs
increase the concentration of unstable iron ions in cancer cells
by regulating various ferritin and related pathways to induce
ferroptosis, a new programmed cell death mode (115, 186), which
may be worthwhile to study further. Similar to clinical
antimalarial drugs, quinoline drugs also exert anticancer effects.
CQ, a lysosomotropic agent, affects various biological pathways in
cancer cells by changing the pH of lysosomes. Autophagy is
Frontiers in Oncology | www.frontiersin.org 10
currently studied more thoroughly than other mechanisms, but
CQ also increases the immunogenicity of cancer cells. In addition,
as a competitive inhibitor of the mitochondrial complex III, ATV
can significantly affect the oxidative phosphorylation of cancer
cells to change the hypoxic environment of tumor cells and
greatly improve the efficacy of various clinical treatment
methods. At present, the application of antiparasitic drugs in
tumor treatment is not only at the stage of theoretical
experimentation, but several clinical trials have already been
carried out to analyzed the feasibility of specific drugs.

In summary, antiparasitic drugs are involved in almost all
aspects of tumors, including cell cycle, apoptosis, autophagy,
ferroptosis, stress, energy homeostasis, immunity, and drug
resistance. Besides, when used in combination with existing
clinical tumor drugs, many antiparasitic drugs show significant
synergistic effects (187–189). However, according to current
research results, antiparasitic drugs are still far from being
repurposed into antitumor drugs that can be widely used in
clinical practice. The current research on the anticancer
mechanisms of antiparasitic drugs is still not comprehensive
enough, and more thorough research is needed. In addition,
antiparasitic and tumor therapy have two different application
environments, and many problems remain to be solved. The
first problem is drug delivery; the external microenvironment
of the parasite-infected foci is relatively normal, whereas
the growth of tumors mainly depends on glycolysis, which
leads to an acidic external microenvironment. Whether this
microenvironment affects the delivery of drugs needs further
exploration. The second problem is drug concentration.
Different drug concentrations cause different dominant effects.
TABLE 2 | Antitumor mechanism of antiparasitic drugs.

Category Drug Drug action Effect

Macrolides Avermectins Apoptosis Inhibit Cl-Channel, Mitochondrial related pathways
Cell cycle Cycle-related protein, KPNB1-dependent
Autophagy Ubiquitination pathway, PAK1↓, Inactivate AKT-mTOR
Cell stemness Inhibit stemness genes, Inactivate PAK1, pStat3↓, IL-6↓

Milbemycins Drug resistance MDR1↓, P-gp↓, MAST1↓
Benzimidazoles Albendazole Energy homeostasis Inhibition GLUT1/AMPK/P53, HIF-1a↓

Cell cycle Inhibit microtubule formation
Apoptosis ER stress, pMAPK↑, TNF-a↑

Flubendazole Cell cycle Inhibiting tubulin polymerization
Autophagy EVA1A↑, LC3 puncta↓, p62 degradation↓, and LC3 lipidation↓, STAT3 related pathways
Immunity PD-1↓, accumulation of MDSCs↓

Artemisinin and derivatives Artemisinin DNA damage ROS↑, topoisomerase 1↓
Cell cycle Cycle-related protein (cyclin-B1, cyclin D1, cyclin E)
Immunity Degranulation of NK cells↑, MDSCs and Treg cells↓, CD4 +IFN-g+ T and CTL↑

Artesunate DNA damage ROS↑
Artemisitene DNA damage NEDD4↑, the stability of c-Myc↓, DNA topoisomerases↓
Dihydroartemisinin Cell cycle ROS↑, CDK4↓

Ferroptosis Iron-related proteins, Binding of iron IRP1 and IRP2↑, unstable iron ions↑
Artemether Immunity Treg↓, IL-4 and IFN-g↑

Quinolines Chloroquine Autophagy Impeding the degradation of autophagic proteins
Immunity tumor-associated carcinoembryonic antigen↑, CD80 and CD86↑
Drug resistance p21WAF1/CIP1↑
Cell stemness STAT3↓, CXCR4↓

Atovaquone Energy homeostasis Inhibiting mitochondrial complex III, Oxidative phosphorylation↓
Cell stemness mitochondrial membrane potential↓, ROS↑, pSTAT3 in mitochondrial↓
Apoptosis Degrade HER2 and b-catenin, pATM and p53↑
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The concentration that has the best anticancer effect and does
not cause side effects in the human body needs to be established.
The third problem is that although antiparasitic drugs have
many advantages, we cannot rule out they might promote
tumor growth. Studies have shown that CQ-induced stress
in cancer cells can activate NF-kB, thereby conferring
transcriptional and phenotypic plasticity to cells, resulting in
the reprogramming of cells and allows tumor cells to escape cell
death induced by either drug therapy or the immune system
(190, 191). Fortunately, for the first two issues, many studies have
conducted in-depth study. Increasing evidence shows that
nanotechnology-based drug delivery methods yield better
therapeutic effects at lower concentrations and might be
clinically implemented in the near future (192–198). Successive
preclinical studies and clinical trials have clarified in detail the
therapeutic effects of different drug concentrations and various
possible side effects. However, there are very few studies have
investigated the cancer-promoting effects of antiparasitic drugs.
However, this may be very important for us to fully understand
the role of antiparasitic drugs in tumors. After understanding
these cancer-promoting effects, with the help of modern drug
modification and improvement technologies (199–202), it can
greatly accelerate the real application of antiparasitic drugs in
Frontiers in Oncology | www.frontiersin.org 11
clinical cancer treatment. More problems are likely to be
encountered as research and practice progress. Nevertheless, it
is undeniable that antiparasitic drugs indeed have great potential
for development as broad-spectrum, clinically applicable
antitumor drugs.
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