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Abstract:  Entomopathogenic nematodes including Steinernema spp. play an increasingly important role as 7 
biological alternatives to chemical pesticides. The infective juveniles of these worms use nictation – a 8 
behavior in which animals stand on their tails – as a host-seeking strategy. The developmentally-equivalent 9 
dauer larvae of the free-living nematode Caenorhabditis elegans also nictate, but as a means of phoresy 10 
or ”hitching a ride” to a new food source. Advanced genetic and experimental tools have been developed for 11 
C. elegans, but time-consuming manual scoring of nictation slows efforts to understand this behavior, and 12 
the textured substrates required for nictation can frustrate traditional machine vision segmentation algorithms. 13 
Here we present a Mask R-CNN-based tracker capable of segmenting C. elegans dauers and 14 
S. carpocapsae infective juveniles on a textured background suitable for nictation, and a machine learning 15 
pipeline that scores nictation behavior. We use our system to show that the nictation propensity of C. elegans 16 
from high-density liquid cultures largely mirrors their development into dauers, and to quantify nictation in 17 
S. carpocapsae infective juveniles in the presence of a potential host. This system is an improvement upon 18 
existing intensity-based tracking algorithms and human scoring which can facilitate large-scale studies of 19 
nictation and potentially other nematode behaviors. 20 
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1. Introduction 25 

Under conditions of crowding or limited food, nematodes of many species can develop into a developmental 26 
stage that is physically and behaviorally specialized for dispersal [1,2]. Such animals are usually called 27 
infective juveniles (IJs) or dauer juveniles in entomopathogenic nematodes (EPNs) like Steinernema 28 
carpocapsae [3], and dauers or dauer larvae in free-living nematodes like Caenorhabditis elegans [2,4]. 29 

Nictation is a dispersal behavior common to both IJs and free-living dauers. Nictating worms stand on their 30 
tails, sometimes waving back and forth, which facilitates attaching to [5], and possibly jumping onto [6] a 31 
nearby larger animal. Once attached, EPN species may infect this animal [7], and free-living species may 32 
use it as a means of transport to a new food source (phoresis) [8]. Hence, understanding nictation is of 33 
interest for both the development of biocontrol agents [9] as well as understanding the ecology and biology 34 
of dispersal [10]. 35 

Nictation cannot be studied on the smooth agar surfaces commonly used in nematode research because 36 
worms require a textured substrate to begin nictating [7,11,12]. Instead, natural or naturalistic substrates 37 
such as soil [13], sand [7], or gauze [14] have historically been used in nictation studies, but these can be 38 
difficult to replicate exactly and are not conducive to recording useful videos amenable to automated tracking 39 
analysis (i.e. videos in which the animals stay in the focal plane and easily distinguishable from the 40 
background). A decade ago, the development of microdirt arenas consisting of a rectilinear array of cylindrical 41 
posts on a planar molded agar surface provided a substrate for nictation studies that is both reproducible and 42 
amenable to video recording of both C. elegans and S. carpocapsae [5,14,15]. Since then, a number of genes 43 
and pathways that regulate nictation have been identified, including insulin and TGF-β signaling [16], piRNAs 44 
[17], and several neuropeptides [15,16,18]. However, scoring nictation is still done by a human observer, 45 
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often in real time. Therefore the throughput as well as the ability to further analyze more subtle phenotypes 46 
could be improved by recording the behavior and automating the scoring process. 47 

A major hurdle in automating the scoring of nictation is reliably tracking the worms. Videos of worms on 48 
textured substrates pose a challenge to classical worm trackers because the intensity-based segmentation 49 
algorithms [e.g. [19,20]], used in all but a few published worm trackers [see [21,22] for notable exceptions] 50 
are designed to detect worms recorded against a smooth, uncluttered background. Meanwhile, state-of-the- 51 
art object detection algorithms have improved dramatically in the past decade on benchmark tasks [23]. 52 
Recent work in the area of regions with convolutional neural network features (R-CNNs) have repopularized 53 
convolutional neuronal networks and developed them from image classification [24,25] to object detection 54 
[26] and segmentation. One particularly successful deep learning model, Mask R-CNN, can detect and 55 
segment a variety of objects against a heterogeneous, cluttered background [27]. 56 

In this report, we overcome the challenges of tracking animals on a textured substrate by training a Mask R- 57 
CNN to reliably detect and segment C. elegans dauers and S. carpocapsae IJs freely behaving on a microdirt 58 
arena. We further refine these segmentations by using a simple ridgeline-based algorithm, or, where 59 
necessary, a deformable model to find the centerline coordinates of each tracked worm in each frame. From 60 
these video and postural data, we compute a set of quantitative features useful for detecting nictation. Using 61 
a human-scored subset of our data, we train a neural network machine learning classifier to use these 62 
features to recognize nictation with accuracy similar to that of other human scorers. Utilizing our system, we 63 
show how the nictation behavior of C. elegans increases as the animals become dauers, and then remains 64 
relatively constant for weeks. We then show the effect of the presence of potential host cues on 65 
S. carpocapsae nictation metrics. Our pipeline, which is written in Python and can be run using a click-through 66 
GUI, can facilitate large-scale nictation studies which otherwise would require a prohibitively large amount of 67 
labor. 68 

 69 

2. Materials and Methods 70 

2.1 Buffer recipes. 71 

Phosphate-buffered saline (PBS): 154 mM NaCl, 7.8 mM Na2HPO4, 1.6 mM NaH2PO4 (adjusted to pH 7.4) 72 

S-basal: 5.7 mM KH2PO4, 44.1 mM K2HPO4 , 100 mM NaCl (autoclaved) 73 

S-complete:  5.2 mM KH2PO4, 40.1 mM K2HPO4, 90.9 mM NaCl, 9.1 mM K citrate, 27.3 mM CaCl2, 27.3 mM 74 
MgSO4, 4.5 mg/L cholesterol, 0.09% ethanol (cholesterol vehicle), 0.48X penicillin-streptomycin-neomycin 75 
(Gibco 15640055), 48 units / L Nystatin (Sigma N1638), 20.1 μM Na2EDTA, 9.0 μM FeSO4, 3.7 μM MnCl2, 76 
3.7 μM ZnSO4, 0.6 μM CuSO4 S-basal: 5.7 mM KH2PO4, 44.1 mM K2HPO4 , 100 mM NaCl (autoclaved) 77 

 78 

2.2 C. elegans strains and maintenance. 79 

We used Bristol N2 maintained at 20°C according to established protocols [12]. For general maintenance 80 
and experiments, we reared C. elegans on 90 mm Petri dishes containing Nematode Growth Medium (NGM) 81 
agar seeded with E. coli OP50 bacteria for food. Our formulation of NGM is the same as described [12], 82 
except we use 5.0 g/L bacto-peptone. 83 

 84 

2.3 Synchronized C. elegans liquid culture. 85 

To generate synchronized dauer cultures, we picked five gravid adults onto each of twelve 90 mm OP50- 86 
seeded NGM dishes and incubated them at 20°C for four days. Then we used S-basal to wash the worms 87 
into a 15 mL conical tube and isolated their eggs using hypochlorite treatment [12] and incubated them 88 
overnight at 20 °C on a rotating stand to prevent settling. After 19 h, we measured the density of L1s by 89 
counting the number of worms in three 20 µL drops and adjusted the volume so that about 38750 (25 worm/µL 90 
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final concentration) or 1550 (1 worm/ µL final concentration) worms remained in the tube. We pelleted these 91 
and reduced the supernatant to 50 µL. We next resuspended the L1s in 1.5 mL S-complete supplemented 92 
with E. coli HB101 at an OD600 of 1.95 and incubated them at 20°C on a rotating stand until needed. For 93 
nictation experiments, dauers were drawn serially from the same cultures, and for SDS resistance assays, 94 
one culture was used per assay. 95 

 96 

2.4 S. carpocapsae strains and maintenance. 97 

We used S. carpocapsae strain All, obtained from Johnathan Dalzell (Queen’s University, Belfast). To 98 
generate IJs for experiments, we pipetted IJs from a previous White trap [28] onto PBS-moistened filter paper 99 
in a 60 mm Petri dish. We also transferred five to ten live Galleria mellonella larvae onto the filter paper, and 100 
parafilmed and incubated the Petri dish at 23 °C for two to four days. After incubation, we transferred infected 101 
cadavers to a White trap. This consisted of PBS-moistened filter paper covering the upper surface of the lid 102 
of a 90 mm Petri dish, which was itself situated inside another 150 mm Petri dish partially filled with PBS 103 
such that the lid formed an island. After 14 to 21 days, IJs emerged and entered the PBS. 104 

 105 

2.5 Imaging setup. 106 

The imaging system comprised a grayscale machine vision camera (Imaging Source DMK27AUP031), 50 107 
mm lens (Kowa LM50JC10M), and clear acrylic stage with brightfield illumination provided by a square array 108 
of white LEDs (Rosco LitePad CCT) covered with a layer of diffusing paper. The incidence angle of 109 
illuminating light was constrained with a 22 mm inner diameter lens tube and two perpendicular layers of light 110 
film (Edmund Optics 52-385) taped to the underside of the stage. The field of view was approximately 5.0 x 111 
3.7 mm with a resolution of 2560 x 1920 pixels. We rescaled the videos to 1280 x 690 pixels to avoid memory 112 
limitations during processing. 113 

 114 

2.6 Design and fabrication of microdirt arenas. 115 

The microdirt arenas have been described previously [5,14]. Each arena consists of an approximately 3 mm 116 
thick slab of molded agar with a rectilinear grid of cylindrical posts of 50 µm diameter and 25 µm height 117 
spaced 75 µm apart, center to center, covering the top surface. We cut the arenas into 15 mm squares for 118 
use in experiments. 119 

To make the arena mold, first a positive mold was created by photolithography of a layer of photoresist (SU- 120 
8 2008, Microchem) on a 4 inch silicon wafer [29]. We then poured polydimethylsiloxane (PDMS) (Silgard 121 
184, Dow-Corning) onto this positive mold, degassed the PDMS under vacuum, and baked the PDMS at 122 
65 °C for 1 h to create a negative mold. We used the negative mold to create the microdirt arenas. Several 123 
hours prior to an experiment, we autoclaved a 4% solution of agar in RO water and poured it onto the negative 124 
mold to the desired thickness. Immediately after pouring, we used the edge of a glass slide to remove air 125 
bubbles from the post holes on the negative mold. 126 

 127 

2.7 Nictation assays. 128 

We performed all nictation assays in a climate-controlled room (set at 20 – 21 °C for C. elegans and 23 – 129 
24 °C for S. carpocapsae and 30 – 45 % relative humidity for both). For C. elegans, we pipetted 75 µL of 130 
liquid culture suspension into a 1.5 mL microcentrifuge tube and allowed the worms to settle for 5 min. 131 
Meanwhile, we applied a thin layer of Tween 20 to the inside of the lid of a 90 mm Petri dish to prevent 132 
fogging during imaging, and placed a 15 x 15 mm arena inside. After 5 min, 10 µL of the settled worm 133 
suspension was pipetted onto the four corners of the arena. The pipette tip used had about 3 mm snipped 134 
off to allow the worms to flow freely during pipetting. We allowed the arena with worms to dry for 10 min with 135 
the lid off. After drying, we added two pieces of laboratory wipes moistened with RO water alongside, but not 136 
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touching, the arena, and parafilmed the Petri dish to minimize drying and shrinking of the arena during 137 
imaging. We transferred the Petri dish to the imaging rig. In keeping with previous, manual assays wherein 138 
only animals that had begun to move were scored [5,14,30,31], we positioned the arena so that the field of 139 
view was roughly centered and only animals that had moved inward from the corners could be recorded. We 140 
loaded S. carpocapsae IJs the same way except that a variable volume of culture (100-170 µL), chosen to 141 
contain about 350 IJs, was used in the settling step. We recorded videos at 5 fps starting immediately after 142 
loading was complete unless otherwise specified. 143 

 144 

2.8 Evaluation of segmentation by intensity and Mask R-CNN. 145 

We wrote custom image processing scripts in Python. We initially segmented worms based on intensity or 146 
using a Mask R-CNN [27]. For intensity-based segmentation, we subtracted the max-merge background from 147 
each frame, smoothed it with a Gaussian filter of 0  ≤ σ ≤ 39 μm (1 μm increments converted into pixel units), 148 
binarized it at a grayscale threshold of 5 ≤ t ≤ 124 (increments of 1), and kept all above-threshold pixels. For 149 
Mask R-CNN-based segmentation, we used the PyTorch library [32] to fine tune a Mask R-CNN with a 150 
ResNet-50 backbone [33] on a training set consisting of 45 frames containing 1313 manually-segmented 151 
worms on a microdirt arena using a PC with a GPU (Nvidia GeForce RTX 2060). We applied the fine-tuned 152 
Mask R-CNNs to individual video frames and used max-merge to combine the masks of objects detected 153 
with a confidence of at least 0.7. We segmented the resulting grayscale image in a manner identical to 154 
intensity-based segmentation of a background-subtracted frame, except we tested Gaussian smoothing of 0 155 
≤ σ ≤ 69 μm and a grayscale thresholds of 25 ≤ t ≤ 249. For evaluation, we compared these segmentations 156 
to manual annotations. We used detection (yes or no), IoU, number of gaps in the segmentation, and 157 
centerline RMSD as evaluation criteria. A worm was considered detected if any part of any ROI overlapped 158 
any manually-annotated pixel of that worm. The IoU was calculated between manually-annotated worms and 159 
all overlapping ROIs. If it was detected, the number of gaps in a manually annotated worm was equal to one 160 
less than the number of overlapping ROIs. The centerline RMSD was calculated by calculating the RMSD of 161 
the manually-drawn centerline and centerlines calculated from all overlapping ROIs (see centerline finding) 162 
in both possible orientations and taking the minimum value. 163 

 164 

2.9 Tracking. 165 

Tracking consisted of three steps, segmentation, centerline determination, and frame stitching, described 166 
below. 167 

 168 

2.10 Segmentation. 169 

We used a Mask R-CNN, described above, to detect C. elegans dauers. For S. carpocapsae IJs, we used a 170 
similar Mask R-CNN fine-tuned on a training set consisting of 35 frames containing 653 manually-segmented 171 
IJs. For C. elegans, we used a smoothing σ = 6.4 μm and a grayscale threshold of 100. We excluded ROIs 172 
whose area was not between 3674 and 16533 μm2, the typical area range of ROIs representing individual 173 
dauers. For S. carpocapsae, we used a grayscale threshold of 100 without smoothing and kept ROIs between 174 
4000 and 22000 μm2. For both species, we excluded ROIs that touched the edge of the video frame. 175 

 176 

2.11 Centerline determination. 177 

First, we found the nose and tail tip (endpoints) of each ROI by finding two minima of the interior curvature 178 
of the ROI outline. Next, we took the distance transform of the ROI and found points that were local maxima 179 
in both the horizontal and vertical directions (ridge points). We determined the centerline by fitting a spline to 180 
the endpoints and ridge points and dividing it into 50 equally-spaced points. This produced erroneous 181 
centerlines for worms in certain configurations such as omega turns. Centerlines of length > 750 μm, or 182 
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containing angles sharper than 45 degrees, or that intersected themselves were flagged for fixing using a 183 
deformable model. 184 

The deformable model consisted of nine centerline points initially positioned along the nearest (in time) non- 185 
flagged centerline from the same worm track (see frame stitching). These points are used to draw a binary 186 
moving ROI of area equal to the ROI whose centerline was flagged (target ROI). The moving ROI was 187 
adjusted to better overlap the target ROI in an iterative fitting process. In each iteration, an overlap of the 188 
moving and target ROIs is generated and an attractive “force” is calculated between each point and any non- 189 
overlapped pixels of the target ROI. These “forces” are applied separately to each model point to update its 190 
positions, and also combined to calculate a net force and “torque” to translate and rotate the entire model. 191 
Fitting was considered complete after 50 iterations if IoU > 0.6 and improvement had plateaued (no net 192 
improvement in fit over the previous 50 iterations), or if 300 iterations had elapsed. Worm frames in which 193 
the centerline still met flagging criteria after this process were excluded from analysis. 194 

 195 

2.12 Frame stitching. 196 

We stitched worms detected in adjacent frames into worm tracks based on centroid proximity, matching the 197 
closest centroids first. We excluded any matches where the centroids in adjacent frames were more than 429 198 
μm apart for C. elegans or more than 300 μm apart for S. carpocapsae to reduce identity switching within 199 
worm tracks. We used endpoint proximity to align centerlines from frame to frame. Worms tracks of duration 200 
less than an arbitrary threshold of 10 s were excluded from further analysis. 201 

 202 

2.13 Manual scoring of nictation. 203 

Human scorers used a GUI that allowed them to play, pause, reverse, or step frame by frame through videos 204 
of single tracked worms. Worms were scored as nictating if at least 1/5 of their total length was lifted off the 205 
substrate, otherwise they were considered to be recumbent. Worms were also scored as active or quiescent, 206 
but this distinction was not used in further analysis. Worm-frames in which behavior could not be scored for 207 
any reason, including tracking errors, were scored as censored. 208 

 209 

2.14 Automated scoring of nictation. 210 

For C. elegans, the training set consisted of 516 worm tracks from a single video from which 69312 manually- 211 
scored worm frames were used, of which 35198 were scored as recumbent and 34114 were scored as 212 
nictating by the trainer. Frames scored as censored or containing flagged centerlines that could not be fixed 213 
using the deformable model were excluded, as were any other frames within two frames of these. The testing 214 
set consisted of 374 worm tracks from the same video with 68708 worm-frames, of which 39533 were scored 215 
as recumbent, 28831 were scored as nictating, and 344 were censored. Flagged centerlines that could not 216 
be fixed were excluded as in the training set, but censored frames were left in to better simulate performance 217 
on data that had not been manually-scored. We calculated the features shown in figure 3A based on the 218 
tracking output. Min-max scaling of features, a neural network model, and Gaussian smoothing of the model 219 
output probabilities prior to extracting the final score for each worm frame were used based on performance 220 
in the model and scaling evaluation shown in figure S3. Prior to scoring the rest of the C. elegans dataset, 221 
we trained the model on both trainer-scored videos, excluding censored frames from the testing set. 222 

We used a similar method for S. carpocapsae, except that the training set consisted of 175 worms tracks 223 
containing 32354 and 7898 worm frames scores as recumbent and nictating, respectively, and the test set 224 
consisted of 170 worms tracks containing 37676, 9662, and 69 scored as recumbent, nictating, and censored, 225 
respectively. Five-fold cross-validation was used to calculate the Gaussian smoothing sigma only, and a 226 
neural network model was trained on both videos before using it to score the remaining videos in the dataset. 227 

 228 
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2.15 Smoothing model scores. 229 

We evaluated four methods to eliminate behavioral scoring noise in the raw model output. For all four 230 
methods, we tried a series of parameter values that changed the degree by which noise was reduced. We 231 
compared these methods by applying them to the models and datasets used in five-fold cross-validation of 232 
the neural network model. 233 

Gaussian smoothing: We applied Gaussian smoothing in time, varying σ from 0 to 1 s, to the behavior 234 
probabilities output by the model. Frames were given the score of the most probable behavior after smoothing. 235 

Removing short bouts: Proceeding through each worm track frame by frame, any bout of behavior whose 236 
duration was less than the minimum bout length was merged into the surrounding bout, regardless of 237 
behavior type. While we always proceeded from beginning to end, this procedure can yield slightly different 238 
results if implemented in reverse, for example when there is rapid switching between behavioral states at the 239 
end of a longer bout of behavior. 240 

Viterbi state-based: We treated the raw model scores as observations in a hidden Markov model with 241 
emission probabilities based on typical model accuracy. This performed poorly when using state transition 242 
probabilities calculated from manual scores, so we instead varied the transition probabilities, keeping the 243 
transition matrix bisymmetric. We varied the probability of remaining in the same state (what we call the 244 
persistence probability, PP) between 0.45 and 1.00, with a complimentary probability of changing states, PC. 245 
Initial behavior probabilities were based on the ratio of behavior observed in the manual scores of the training 246 
date, and reflected the NR. We then used the Viterbi algorithm to find the most likely sequence of behavioral 247 
scores based on the raw model scores and the parameters described above. 248 

Viterbi probability-based: Instead of using the raw model observations, we used the model probabilities 249 
directly as the emission probabilities observations in a hidden Markov model and ran a modified version of 250 
the Viterbi algorithm to find the most likely sequence of behavior. As before, we varied the persistence 251 
probability to modulate the denoising effect. 252 

 253 

2.16 Statistics and plotting. 254 

Statistical tests and significance cutoffs are described in the figure captions and Results. Bonferroni 255 
corrections were used for multiple comparisons and non-parametric tests were used when the data did not 256 
follow a normal distribution according to the Anderson-Darling test. A cutoff of α = 0.05 was used for statistical 257 
significance throughout the manuscript. 258 

 259 

3. Results 260 

3.1 Mask R-CNN can reliably detect and segment C. elegans on a heterogeneous background. 261 

We used recordings of C. elegans dauers freely behaving on a microdirt arena to develop our tracking and 262 
scoring pipeline. First, we tried using classical intensity-based thresholding to detect and segment the animals. 263 
We used background subtraction to enhance the contrast of the worms and eliminate the appearance of the 264 
microdirt posts [19], but the posts remained visible due to slight movements in the background over time 265 
(Figure 1A, top). We applied image stabilization to the video frames to correct for these movements, but 266 
gaps remained in the animals where they overlap the posts’ dark edges (Figure 1A, bottom). 267 

 268 
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 269 

Figure 1. Comparison of classical intensity-based segmentation and Mask R-CNN-based segmentation of C. elegans 270 
dauers on a microdirt chip. (A) Effect of video stabilization on background-subtracted images. Original image (left), max- 271 
merge background (center), and background-subtracted image (right) without (top) and with (bottom) video stabilization. 272 
Arrow indicates one of many locations where the contrast of a post is reduced following image stabilization. (B) Overlay 273 
of machine vision segmentations (green) on a manual segmentation (white) of the dauer from panel A: intensity 274 
segmentation with parameters chosen to maximize IoU (top), intensity segmentation with parameters chosen to 275 
maximize IoU while eliminating gaps (middle), Mask R-CNN segmentation with parameters chosen to maximize IoU 276 
(bottom). (C) Colormap showing combinations of smoothing and grayscale threshold parameter values that result in 277 
100% detection without gaps (red); 100% detection without gaps and > 0.5 IoU (yellow); 100% detection without gaps 278 
and < 10 µm centerline RMSD (magenta); or 100% detection without gaps, > 0.5 IoU, and < 10 µm centerline RMSD 279 
(white) of 40 manually-segmented worms. Other combinations of criteria did not occur in the parameter set tested. 280 
Results for intensity (top) and Mask R-CNN (bottom) are scaled equally. There were 106 and 1561 parameter value 281 
combinations meeting all three criteria for intensity- and Mask R-CNN-based segmentation, respectively. (D) Intensity- 282 
based and Mask R-CNN-based segmentation applied to a dauer that did not move during recording. In all worm images, 283 
the center to center spacing of the posts is 75 µm. 284 

 285 

To segment the worms in the contrast-enhanced images, we applied Gaussian smoothing (standard deviation 286 
σ) followed by binarization at a grayscale threshold (t) [19,34–36], keeping all resulting regions of interest 287 
(ROIs). To determine the best combination of σ and t, we performed a grid search using the intersection over 288 
union (IoU) of the ROIs against a set of 40 manually annotated worms. We achieved a mean IoU of 0.61 289 
(Figure S1A), but the gaps from the posts meant that, often, multiple ROIs pertained to one worm (Figure 290 
1B, top), complicating the process of tracking and finding worm centerlines. 291 

We tried two approaches to overcome this limitation of intensity-based segmentation. First, we eliminated 292 
gaps in the ROIs by changing σ and t, optimizing for IoU but only accepting parameter value combinations 293 
that eliminated gaps. Segmentation was successful, but the resulting ROIs were enlarged, reducing the mean 294 
IoU to 0.43 (Figure 1B, middle, Figure S1B). Second, we used an alternative, deep-learning approach to 295 
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segment the worms. We finetuned a Mask R-CNN [27] (see methods) and used it to generate grayscale 296 
images of probable worms (Figure S2). We then applied smoothing and thresholding as in intensity-based 297 
segmentation. After optimizing σ and t, the resulting mean IoU was 0.62, similar to intensity segmentation, 298 
and the ROIs did not contain gaps (Figure 1B, bottom, Figure S1A-B). 299 

Because ROIs are the basis for obtaining descriptions of worm posture and ultimately behavior, we weighed 300 
several additional arguments to decide whether to rely on intensity or Mask R-CNN segmentation for the 301 
remainder of our work. For one, a segmented worm is used to calculate a centerline, a powerful means to 302 
describe nematode posture [37]. Even though ROI quality clearly differs between (gapless) intensity-based 303 
and Mask R-CNN methods, when σ and t were optimized for the accuracy of centerlines drawn from the 304 
resulting segmentations, the two methods performed similarly, with a slight advantage for intensity [root- 305 
mean-square deviation (RMSD) of 4.13 μm for intensity, 5.06 μm for Mask R-CNN] (Figure S1C). 306 

However, there are some disadvantages of intensity-based segmentation that do not outweigh the slight 307 
centerline advantage, especially for our application. For instance, successful segmentation often requires a 308 
careful selection of parameters that have to be adjusted for minor changes in imaging conditions. To compare 309 
the stringency of choice of σ and t in the two methods, we decided on a set of three quality benchmarks that 310 
must be surpassed simultaneously for a segmentation to be deemed successful. Namely, (1) that all worms 311 
in the manually-annotated set should be detectedwithout gaps (Figure S1D) , (2) that the mean IoU should 312 
be at least 0.5, and (3) that the mean centerline RMSD should be less than 10 µm. Again using a grid search, 313 
we found that a 14.7x larger set of σ and t could meet these benchmarks by using a Mask R-CNN rather than 314 
intensity segmentation (Figure 1C). Other disadvantages of intensity-based segmentation are the need to 315 
stabilize the video, which could be difficult if displacements are larger than the inter-pillar distance, and its 316 
inability to segment worms that do not move out of their own footprint during the recording period. Mask R- 317 
CNN, by contrast, works directly on the non-background-subtracted, non-stabilized video frames and 318 
segments non-moving worms (Figure 1D). Considering these factors, we used Mask R-CNN for 319 
segmentation in the remainder of this study. 320 

 321 

3.2 Extracting postural information using ridgeline points and a deformable model. 322 

The locomotion of a nematode can be described by its centerline coordinates over time. To compute the 323 
centerline from a binary ROI, we took the distance transform (the distance of each point in the ROI to the 324 
nearest background point) [38] and found ridgeline points that were local maxima in both the horizontal and 325 
vertical directions. We linked these ridgeline points by proximity. Unlike commonly-used skeletonization and 326 
morphological thinning algorithms [e.g. [35,39]], the sets of ridgeline points rarely contain spurs or “split ends”, 327 
but they also terminate before reaching the endpoints of the worm. We located the endpoints by finding 328 
minima of the interior angle of the ROI perimeter [34,40]. We then fit a spline to the endpoints and ridge points 329 
to compute the centerline (Figure 2A). 330 

 331 
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 332 

Figure 2. Computing the centerline from a binary segmentation. (A) Finding the centerline of non-self-overlapping worm. 333 
The binary segmentation (left) is converted into a distance transform (center left). Warmer colors indicate larger values. 334 
Local maxima of the distance transform (center) with maxima in the vertical direction only in red, maxima in the horizontal 335 
direction only in blue, and maxima in both directions in green. (center right) Curvature of the perimeter: red regions are 336 
concave, green regions are convex, and bright green circles indicate maximally convex points. (right) The resulting 337 
centerline points (red circles) based on co-localized local maxima and convex maxima (green). (B) The same procedure 338 
applied to a self-overlapping worm resulting in an erroneous centerline. (C) Correction of the erroneous centerline using 339 
a deformable model initialized based on a correct centerline from an adjacent frame (left). Points on the deformable 340 
model are pulled toward uncovered areas of the segmentation that caused the erroneous centerline (center three 341 
panels). Red arrows represent the direction and magnitude of pull on each model point. (right) The corrected centerline. 342 

 343 

This and other simple centerline-finding procedures often fail when a worm crosses or contacts itself, for 344 
example during an omega turn (Figure 2B). We used such configurations, along with excessive length, 345 
excessive curvature, and self-intersection, to flag potentially incorrect centerlines (8.9% of our C. elegans 346 
dataset). Deformable models have proven useful for correctly ascertaining the posture of self-touching worms 347 
[41], so we designed and fit a simple deformable model to correct flagged centerlines. 348 

Our deformable model consists of nine centerline points whose positions are initialized based on a non- 349 
flagged or corrected centerline of the same worm from an adjacent frame. A binary ROI is drawn around 350 
these points and its width adjusted such that its area matches that of the target ROI. During fitting, these 351 
points move iteratively toward uncovered regions of the target image in a manner analogous to the pull of 352 
gravity, where the “force” on each point is the vector sum of the “gravitational pull” of each uncovered ROI 353 
pixel (Figure 2C). Additionally, in each iteration all points are acted upon by a net torque, rotating the 354 
deformable model as if it were a rigid body. Correcting flagged centerlines in this way improved behavioral 355 
scoring accuracy (see below). 356 

 357 

3.3 Feature-based scoring of nictation. 358 

We used supervised machine learning to score nictation. To create a ground truth dataset, a human (the 359 
trainer) manually scored the tracked animals in a training video (4.15 h of behavior) and a separate testing 360 
video (4.05 h of behavior). Each worm-frame was scored as nictating if greater than 1/5 of the animal was 361 
elevated off the substrate, recumbent if not, or censored if the behavior could not be determined, e.g. a 362 
tracking error (0.29% of the training set and 0.73% of the test set). Nictation nearly always involved elevation 363 
of the anterior portion of the worm, but occasionally the mid-section or even tail was elevated instead (Video 364 
S1). Similar to previous studies utilizing feature-based behavioral classification [42–44], we computed 17 365 
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movement, postural, and other features from each worm-frame in our dataset (Figure 3A). For each feature, 366 
we also calculated the first derivative with respect to the preceding and succeeding frames as well as five 367 
statistical features (mean, median, min, max, and variance) in a 1.0 s (5 frame) window centered on the frame 368 
in question [45]. 369 

 370 

 371 

Figure 3. Feature-based detection of nictation. (A) Cartoon schematics of the 17 features used to score nictation, each 372 
showing a recumbent worm (left) and nictating worm (right). (B) The effect of smoothing model output probabilities on 373 
the accuracy of common nictation metrics and overall transition rate. Relative error is the value calculated from the 374 
smoothed model probabilities divided by the value calculated from manual scores, minus one (equal to zero when there 375 
is no error). (C) The effect of smoothing model output probabilities on computer score accuracy on the validation data. 376 
(D) The effect of smoothing model output probabilities on the sum of the relative error of NR, IR, and SR as well as 1 - 377 
accuracy. In panels B, C, and D, the accuracies shown are averages computed from the validation set accuracies during 378 
five-fold cross validation. PC = principle component, σ = standard deviation used in smoothing model probabilities , rel. 379 
err. = relative error, NR =nictation ratio , IR = initiation rate, SR = stopping rate, TR = (overall) transition rate, c. r. err. = 380 
combined relative error. 381 

 382 

Using the Scikit Learn library [46], we performed five-fold cross-validation to evaluate the performance of 383 
several common machine learning algorithms in combination with several feature scaling methods. Although 384 
not the fastest, we achieved the highest accuracy using a neural network and min-max scaled features, with 385 
an average of 96.0% of worm-frames scored correctly in the validation data, and 94.9% of worm-frames 386 
scored correctly in the separate test video (Figure S3). Unsurprisingly, errors tended to occur where 387 
recumbence and nictation overlap in feature space (Figure S4). We also compared the accuracy of this 388 
method on the test video with and without using the deformable model method to correct flagged centerlines 389 
in the test dataset, using a neural network trained on the entire training video with corrected centerlines. In 390 
the test set, 4.4% of centerlines were flagged and fixed, improving accuracy from 89.0% to 95.1%. 391 
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Common metrics used to quantify nictation are nictation ratio (NR), the proportion of time spent nictating; 392 
initiation rate (IR), the rate at which non-nictating worms start nictating; and nictation duration, the average 393 
duration of a nictation bout [5]. Because longer nictation bouts often begin before or end after a worm track, 394 
we are likely undersampling long bouts. Therefore, we calculated stopping rate (SR), the rate at which 395 
nictating worms stop nictating, instead of nictation duration, to better describe the behavior based on worm 396 
tracks. 397 

Examination of the scored behavior shows that the neural network behavioral scores contain far more 398 
behavioral transitions (nictation initiations and terminations) than the manual scores (1868 versus 1114 399 
transitions in the test set). As a result, IR and SR calculated from the raw computer scores were substantially 400 
higher than IR and SR calculated from human scores. We tried several methods to correct these errors, 401 
including applying Gaussian smoothing to the probabilities output by the model, eliminating short behavioral 402 
bouts, using the neural network scores as observations in a hidden Markov model, and using the neural 403 
network probabilities as emission probabilities in a hidden Markov model (Figure S5). Of these, Gaussian 404 
smoothing is the simplest and resulted in the best performance overall (Figure 3B-D). Therefore, we used 405 
Gaussian smoothing for the remainder of this study to eliminate short, often erroneous bouts. Smoothing 406 
reduced both IR and SR while having a minimal effect on nictation ratio, which was slightly below the ground 407 
truth value (Figure 3B). Overall accuracy also increased from 96.00% to a maximum of 96.36% when 408 
smoothing with a σ = 0.184 s Gaussian kernel (Figure 3C). By scoring the test dataset with different subsets 409 
of features scrambled by randomly permuting them, we found that accuracy decreased from 94.1% to 47.8% 410 
if all features were scrambled, to 86.4% if only the 16 primary features were scrambled, and to 53.2% if all 411 
features derived from multiple worm-frames were scrambled, suggesting that information from multiple worm- 412 
frames is important for scoring accuracy. 413 

We noticed that slightly different smoothing amounts were optimal for IR and SR. This may arise when there 414 
is an error nictation ratio. For example, if the correct number of nictation bouts, and therefore transitions, are 415 
detected, but they are too short (NR too low), then IR will be lower than the true value, and SR higher than 416 
the true value because the denominators of those two metrics would err in the opposite direction. This is 417 
indeed what we see in our nictation dataset, for which the model NR is slightly too low: when enough 418 
smoothing is applied to correct the overall transition rate, SR is too high and IR is too low (Figure 3B).  419 

In subsequent C. elegans analyses, we applied smoothing with a Gaussian kernel of σ = 0.116 s when 420 
comparing the model to human scorers, and a Gaussian kernel of σ = 0.193 s when scoring the full C. elegans 421 
dataset. These σ values were chosen to optimize for a combination of per frame accuracy and the nictation 422 
metrics NR, IR, and SR when five-fold cross-validation was performed on just the training set or the combined 423 
training and test sets, respectively (Figure 3D, Figure S6). 424 

 425 

3.4 Machine learning model validation and comparison with human judges. 426 

 While human scoring is often considered the “gold standard” or “ground truth”, the scores of trained 427 
experts using the same rubric to score the same videos of animal behavior can differ substantially [47]. To 428 
determine whether a neural network model is more consistent with the trainer than with different humans, we 429 
trained a model on the entirety of the training video and compared its performance on the testing video to 430 
that of two human scorers, humans #2 and #3, who also scored the testing video using the same definition 431 
of nictation as the trainer. 432 

Side by side examination of the scores from the three humans and the model show broad agreement in terms 433 
of the temporal location of nictation bouts (Figure 4A). In terms of accurate nictation metric values, the 434 
smoothed model output, with smoothing optimized based on the training dataset only, outperformed the raw 435 
model output, and we refer to this output in the following summary. In terms of accuracy, the model agreed 436 
more closely with its trainer than with the other humans, agreeing with the trainer 94.7% of the time, compared 437 
to 93.5% and 89.4% agreement with humans 2 and 3, respectively (Figure 4B). For nictation ratio, the 438 
computer's value of 0.420 also came closer to the trainer's value of 0.422, while humans 2 and 3 both scored 439 
more worm frames as nictation, with NRs of 0.447 and 0.491, respectively. For the transition rates, the errors 440 
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were again in opposite directions, with the computer scoring both IR and SR too high (0.101 Hz and 0.138 441 
Hz, respectively, versus 0.073 Hz and 0.094 Hz trainer values. Meanwhile humans 2 and 3 both scored IR 442 
at 0.050 Hz and SR at 0.058 Hz and 0.049 Hz, respectively, lower than the trainer values (Figure 4B). These 443 
results demonstrate that our model can score nictation with accuracy similar to or better than a human scorer 444 
(when compared to the trainer's scores), but that behavioral transition rates may vary a lot between scorers 445 
and scorer types. 446 

 447 

 448 

Figure 4. Comparing computer model and human nictation scores. (A) Ethogram of a worm track showing behavior 449 
according the trainer (top row), raw model scores (second row), smoothed model scores (third row), human 2 (fourth 450 
row), and human 3 (bottom row). Gray is recumbence, white is nictation. (B) Scoring accuracy and common nictation 451 
metrics computed from the scores of the human trainer, the raw model scores, the smoothed computer scores, and two 452 
other human scorers. Red and blue indicate that the scored value is higher or lower than the ground truth value, 453 
respectively, and lighter shades indicate closeness to the human trainer values. (C) Violin plot of the confidence of the 454 
computer model – calculated as the difference between the probability of the behavior scored and the second highest 455 
probability – for worm frames in which all three humans agreed (n = 59743), or in which at least one human disagreed 456 
(n = 8965). The black horizontal line indicates the median and the vertical black line indicates the first and third quartiles. 457 
The groups are significantly different (p = 0.000, Wilcoxon rank-sum test). (D) Accuracy of the smoothed model scores 458 
and the scores of humans 2 and 3 near behavioral transitions scored by the trainer. Scores were compared to those of 459 
the trainer whenever the trainer scored a transition preceded and followed by at least two seconds of uninterrupted 460 
behavior. (E) The time offset of nictation initiation and termination of the model and human scorers 2 and 3 relative to 461 
the trainer. Only transitions occurring within two seconds of the trainer-scored transition are shown, and only if there 462 
was only one of the relevant type of transition scored in the that time window. ✱ denotes a median significantly different 463 
from zero (binomial test, p < 0.05 after Bonferroni correction) 464 

 465 

Previous work comparing multiple human scorers with an algorithm suggests that certain behavioral bouts 466 
are inherently more difficult to score for both a computer model and humans [47]. We reasoned that difficult- 467 
to-score bouts may be indicated by disagreement among humans and low confidence in model predictions. 468 
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To avoid complicated issues in defining individual bouts of nictation across scorers, we tested this idea on a 469 
per-worm-frame basis, using the margin of model probability for the scored behavior (probability of the scored 470 
behavior minus the probability of the second most likely behavior) as a measure of model confidence. Indeed, 471 
the model showed significantly higher confidence (p = 0.000) on frames where the three humans agreed 472 
(median probability margin = 0.999, IQR = 0.986-0.999) than when at least one did not agree with the other 473 
two (median probability margin = 0.951, IQR = 0.682-0.995) (Figure 4C). Inspection of the behavioral scores 474 
suggests that these low-confidence scores are concentrated near the initiation and termination of bouts. 475 
Indeed, humans #2 and #3 show a greater propensity for error just prior to nictation initiation or after nictation 476 
termination (Figure 4D), consistent with the tendency of humans 2 and 3 to score nictation bouts as beginning 477 
significantly earlier than the trainer, and with human 2 also scoring nictation bouts as ending significantly 478 
earlier than the trainer (p < 0.05, two-sided binomial test with Bonferroni correction) (Figure 4E). Taken 479 
together, our results demonstrate that both human scorer and our model make more errors near behavioral 480 
transitions, but that human scorers may be more prone to making systematic errors in the timing of behavioral 481 
bouts. 482 

 483 

3.5 Nictation behavior correlates with SDS resistance in liquid-cultured C. elegans. 484 

 While the formation of C. elegans dauers used in studies of nictation has usually been induced by 485 
starvation or the addition of exogenous dauer pheromone [14,16,17], high density, low food liquid culture 486 
conditions can be used to grow C. elegans dauers without added pheromone [48]. To determine how nictation 487 
behavior arises in C. elegans reared in such conditions, we recorded videos of animals on a microdirt arena 488 
at 2, 2.5, 3, 4, 6, 10, 14, 21, and 28 days after feeding arrested L1s and used our automated behavior scoring 489 
pipeline to track them and score their nictation (Figure 5A). We observed an overall trend of increasing 490 
nictation, with significant differences in NR between day 2 (the earliest timepoint assayed) and days 6 and 491 
21 (Dunn's test p < 0.05 after Bonferroni correction for 36 comparisons) (Figure 5B). We also observed a dip 492 
in NR at day 10 confirmed by manual scoring of a subset of the data (Figure S7). 493 

 494 

 495 

Figure 5. C. elegans nictation ratio depends on time in culture. (A) Nictation ratio of liquid culture dauers assayed at 496 
different times after refeeding arrested L1s. Colored crosses represent video averages and black crosses represent 497 
timepoint averages. Circles represent values calculated from individual worm tracks, with the area proportional to the 498 
duration of the worm track and separate videos indicated by color. Only 150 worm track values are shown per timepoint 499 
due to space limitations, and all circles positioned below zero (gray shaded area) represent zero. (B) Dunn's test p- 500 
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values of video average NRs from panel A after Bonferroni correction. (C) Survival after a 1 h exposure to water (cyan) 501 
or 1% SDS (black) of liquid culture C. elegans grown at 25 or 1 worm per μL and tested at various times after refeeding. 502 

 503 

Previous studies of dauer development in liquid media have found that dauer formation occurs over the 504 
course of five or six days [48,49]. A characteristic of dauers that distinguishes them from other life stages is 505 
increased resistance to SDS [2]. Our liquid culture animals increase in SDS resistance over the course of the 506 
six days after feeding (Figure 5C), while length changes little (Figure S8), staying within the reported range 507 
for C. elegans dauers [50], suggesting that the increase in nictation coincides with the transition of these 508 
animals from L2d pre-dauers to dauer larvae. These findings demonstrate our ability to automate the scoring 509 
of nictation in C. elegans dauers. 510 

 511 

3.6 Four minutes of video suffice to quantify population nictation behavior. 512 

Experimental throughput can be limited by long recording times and large datasets, so we asked how much 513 
data collection is necessary to describe how NR changes with development. NR computed from as little as 514 
the first five seconds of each video shows the same general trends over age as NR computed from the full 515 
video (Figure 6A), with slightly higher NRs due to decreasing NR over the course of the 30 min videos 516 
(Figure S9). Because undersampling can result in noisier observations, we asked when continued recording 517 
no longer decreases sampling noise. We computed the relative variance of video-wise NRs at each culture 518 
timepoint using different video time cutoffs. We saw no further decrease in relative variance after 3 min 57 s 519 
of recording (Figure 6B). This indicates that while we recorded for 30 min, for measuring NR no further 520 
benefit was achieved by recording longer than about 4 min. 521 

 522 

 523 

Figure 6. Four minutes of video suffice to describe nictation ratio (A) Nictation ratio calculated using the first 5 s, 10 s, 524 
1 min, and 5 min of data from each video. Colored crosses indicate video NRs, black indicates the average of the video 525 
values, and black vertical bars show ±SEM. (B) Relative variance (variance / mean of NR from all four videos at each 526 
timepoint) of the nictation ratios calculated using the first portion of the video. The gray area represents ±SEM (of the 527 
relative variances). The cutoff resulting in the lowest relative variance, 3:57, is indicated. 528 

 529 

3.7 Measuring Steinernema carpocapsae nictation in the absence and presence of potential hosts. 530 

To test the effectiveness of our nictation scoring pipeline on EPNs, we recorded videos of S. carpocapsae 531 
IJs on microdirt arenas. We used manually-scored ground truth data to train a second neural network model 532 
as well as to optimize Gaussian smoothing amount for this species (Figure S10). In initial testing, nictation 533 
was rarely observed. Because cues such as CO2, air movement, and the odor of potential hosts have been 534 
observed to induce nictation and other host-finding behavior in some EPN species [10,51], we recorded 15 535 
min of baseline behavior and then added three G. mellonella larvae to a small cage inside the Petri dish 536 
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containing the microdirt arena. These videos, together with controls in which we opened and resealed the 537 
Petri dish but did not add G. mellonella (sham), allowed us to use our pipeline, retrained for S. carpocapsae 538 
(see Methods), to evaluate the effect of host cues on EPN nictation behavior. 539 

Observing NR over time in animals following exposure to G. mellonella larvae suggests a small, but variable 540 
increase in nictation (Figure 7A). To test this statistically, we wanted to compare the behavior of individual 541 
worms from these videos. To do this, we limited our analysis to worm tracks that met two criteria: (1) they 542 
were at least 1 min in duration, truncated to 1 min, to provide a consistent snapshot of behavior, and (2) they 543 
were tracked at frame 3893, so we could be sure we were looking at a set of unique animals and controlling 544 
for time spent on the arena. Frame 3893 was chosen because all videos were represented by at least two 545 
tracks of sufficient duration at that frame, and because among such frames, this was the one where the 546 
greatest total number of qualifying worm tracks coincided (Figure S11). The increase in worm-wise NR did 547 
not reach statistical significance (Kruskal-Wallis test, p = 0.15). Furthermore, observation of the worm-wise 548 
data suggests trial to trial variation, with one trial containing tracks of elevated nictation in all four videos, and 549 
another showing nictation only after addition of the G. mellonella (Figure 7B). These results demonstrate the 550 
ability of our pipeline to score nictation in an EPN species, and efficiently score large amounts of data, 551 
exposing considerable trial-to-trial variation in behavior. 552 

 553 

 554 

Figure 7. Steinernema carpocapsae nictation in the presence of hosts. (A) Average nictation ratio of baseline and 555 
treatment videos over the course of the 15 min videos. (B) Nictation ratio calculated from individual worm tracks (dots), 556 
each of 60 s duration and representing a unique worm. Colors correspond to each of the five replicates. The groups 557 
were not significantly different (Kruskal-Wallis test, p = 0.15). All worm tracks include the 3893rd frame of their respective 558 
videos, and were truncated to 60 s prior to calculating NR. 559 

 560 

4. Discussion 561 

In this study we used a Mask R-CNN to detect and segment free-living and entomopathogenic nematodes 562 
on a textured background designed to promote nictation behavior. We converted these segmentations to 563 
centerline coordinates using a novel, ridgeline-based approach, or, if that failed, a deformable model. Using 564 
features mostly calculated from these coordinates and ground truth manual behavior labels, we trained a 565 
computer model to classify nematode behavior, focusing on scoring the host-finding / phoretic nictation 566 
behavior of the dispersal stage of these animals. 567 

Mask R-CNN was less sensitive to the choice of thresholding parameters than classical intensity-based 568 
segmentation, likely reducing the risk associated with reusing the same parameters across multiple videos 569 
that may differ slightly in contrast. The reason for this advantage is the relatively high contrast grayscale 570 
images output by the Mask R-CNN compared to those resulting from background subtraction in intensity 571 
segmentation (Figure S2). While we achieved similar segmentation quality using classical intensity-based 572 
segmentation, the size of the gaps in the background-subtracted worm images was constrained by the width 573 
of the post edges, so our success may not be repeatable on other textured backgrounds with larger 574 
background features. Mask R-CNN has been used to segment objects, including partially-obscured objects, 575 
on a variety of complex backgrounds [27]. Therefore, we believe the advantage of Mask R-CNN may be 576 
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greater in situations where the background is not as regular or contains larger features creating gaps that 577 
cannot be easily smoothed-over. 578 

Converting two-dimensional worm segmentations into centerline coordinates has been a longstanding 579 
problem with many imperfect solutions published. Most methods use simple morphological thinning or 580 
curvature of the perimeter (e.g. Leifer et al. 2011; Yemini et al. 2013), but problematic postures involving self- 581 
overlap and collisions have been the focus of entire research papers [38,41], including one leading to a 582 
commercial software package (WormLab®), and another utilizing crowd sourcing [52]. Our ridgeline method 583 
has the advantage of not requiring the pruning of "split ends", but does fail in some cases. While we were 584 
able to fix many of these using a deformable model, resulting in a substantial improvement in scoring 585 
accuracy, the deformable model is relatively complex and requires a temporally adjacent accurate centerline 586 
for initialization. An algorithm is under development that can take an image of a population of C. elegans and 587 
output centerline splines directly, potentially bypassing this problem in the near future [53]. While a few of our 588 
features, like blur and difference image activity, are calculated based on the segmentation and raw image 589 
rather than the centerline, the bilateral symmetry of the worm makes going from a centerline spline to a 2D 590 
mask relatively straightforward. 591 

To convert feature values into behavior labels, we tested combinations of commonly-used machine learning 592 
algorithms and scaling methods. Several of these combinations performed similarly, with accuracy around 593 
90-95%, and, with most model types, the effect of scaling was minimal. This suggests that another factor is 594 
limiting performance. For example, scoring or tracking errors in the training data could interfere with training 595 
by providing "confusing" examples to learn on, and disrupt inferencing by providing features that do not 596 
accurately reflect the true position and movement of the worm. A human, on the other hand, views the video 597 
directly and is not dependent on accurate feature calculation. The lack of a performance boost from feature 598 
scaling, which is standard practice in the field, was not entirely unexpected for some model types. Algorithms 599 
based on distance (in feature space), such as k nearest neighbors, benefit from feature scaling because they 600 
prevent features with larger values from dominating, whereas tree-based algorithms like random forest should 601 
not benefit and indeed did not in our hands. Another reason that we saw limited benefit to scaling may be the 602 
fact that, when possible, our features were calculated in real units, and our subjects were relatively uniform 603 
in size. 604 

Two things that improved accuracy were the inclusion of features calculated from multiple frames and 605 
smoothing, which blended together the behavior probabilities from nearby frames. This suggests that 606 
information from more than one frame may help to score behavior accurately in some cases. This is 607 
consistent with literature showing that even human scorers benefit from 5-7 frames worth of video in order to 608 
accurately classify human behaviors [54]. 609 

For the most part, the model in this study performed more like its trainer than two other human scorers. This 610 
is consistent with earlier findings that expert human scorers sometimes disagree when scoring behavior [47]. 611 
Mistakes tended to occur more often during behavioral transitions, which may not be as well-separated in 612 
feature space. Furthermore, worm-frames for which the three humans did not agree on a behavior are also 613 
scored less confidently by the model, as indicated by the margin of probability of the scored state. Unlike the 614 
model, however, the humans also made systematic timing errors, for example both tended to score initiations 615 
too early. Such errors could be caused by differing interpretations of the scoring instructions, or even 616 
inattentiveness and fatigue. 617 

An area where neither the model nor the human scorers were very consistent with the trainer was in scoring 618 
behavioral transition rates based on frame-by-frame scores. We tried several methods to tackle this problem 619 
of scoring "noise", but none outperformed simple Gaussian smoothing of the model output probabilities. 620 
Furthermore, error in the overall NR could cause the amount of smoothing required to optimize initiation rate 621 
and stopping rate to be different. Unfortunately, there seems to be a difference in the amount of smoothing 622 
needed to correct the transition rate in different videos, evidenced by the difference in optimal sigma when 623 
optimization was performed on only the training set or on the combined training and test sets of C. elegans, 624 
suggesting that these metrics may be highly sensitive to recording conditions. 625 
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Manual scoring of animal behavior continues to be quite common despite the rise of capable machine 626 
learning algorithms [42]. Therefore, while we do not anticipate that automated scoring will fully replace human 627 
inspection, we believe it will become increasingly important in large studies where consistency is paramount, 628 
such as genetic and pharmacological screens. Our data complement previous work showing variability 629 
between different human scorers using the exact same instructions [47], whereas a computer model should 630 
perform more consistently provided the data are also consistent. Furthermore, certain rare, unusual behaviors 631 
like, in this study, "tail wagging", may be difficult to discover except by a human observing a large amount of 632 
video. 633 

In conclusion, we have created a pipeline for deep learning image segmentation and feature-based scoring 634 
of animal behavior.  While we have demonstrated its utility for studying a specific behavior – nematode 635 
nictation – the same approach could, in principle, be used to score other nematode behaviors, or even 636 
behavior other rod-shaped animals like zebrafish and Drosophila larvae. To do this would require only 637 
retraining of the Mask R-CNN and behavior classifier using manually-annotated video frames and behavior, 638 
respectively. 639 
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 795 

Figure S1. Segmentation parameter optimization. (A) Mean IoU of manual and machine vision (computer) ROIs for a 796 
range of grayscale thresholds t and smoothing sigmas σ. All computer ROIs that overlapped the manual ROI were 797 
combined for this calculation. If no computer ROI overlapped a manual ROI, the IoU was zero. The highest values for 798 
intensity- and Mask R-CNN-based segmentations are labeled. (B) Mean number of gaps per segmentation. The number 799 
of gaps for each manual ROI was one minus the number of computer ROIs overlapping it. Only manual ROIs that 800 
overlapped with computer ROIs were included. The highest mean IoU for t and σ combinations resulting in zero gaps is 801 
shown for each segmentation method. (C) Mean centerline RMSD for centerlines calculated from computer ROIs versus 802 
manually-drawn centerlines. The best (lowest) RMSD was used in cases where multiple computer ROIs overlapped a 803 
manual ROI, and a manual ROI was excluded if no computer ROI overlapped with it. The t and σ combination resulting 804 
in the lowest centerline RMSD for each segmentation method is labeled with an "x". (D) Detection rate of manually 805 
drawn ROIs using the two machine vision methods and different combinations of t and σ. A manually-drawn ROI was 806 
considered detected if it overlapped with at least one computer-drawn ROI. 807 
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 809 

Figure S2. False color images showing contrast of a background-subtracted difference image and the Mask R-CNN 810 
output. (top) Cropped image of a C. elegans dauer after contrast enhancement by image stabilization followed by 811 
background subtraction. (bottom) Cropped image of the Mask R-CNN output of the same worm from the same frame of 812 
the unstabilized version of the video. 813 
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 815 

Figure S3. Model and feature scaling performance in five-fold cross validation. (A) Accuracy on the training, validation, 816 
and test data of different algorithm – scaling combinations. All values are means from five-fold cross validation. The 817 
training and validation sets consisted of 4/5 and 1/5 of the worm tracks from the training video (74777 worm-frames or 818 
4.15 h of manually-scored behavior - 48.4% nictating, 51.2% recumbent, 0.4% censored - divided into 516 worm tracks), 819 
and the test set consisted of all the worm tracks from a separate testing video (72702 worm-frames or 4.04 h of manually- 820 
scored behavior - 41.8% nictating, 57.5% recumbent, 0.7% censored – divided into 374 worm-tracks). (B) Training and 821 
inference times using different algorithm and scaling combinations (rows are different algorithms, columns are different 822 
feature scaling methods with training and inference times in adjacent columns). Training was done on a PC with an Intel 823 
Core i5-8265U (1.6 GHz) and 8 Gb RAM. 824 
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 826 

Figure S4. PCA plot of recumbence and nictation. Red and blue dots represent worm-frames scored as nictation and 827 
recumbence, respectively, by the model and trainer, and bright green dots represent worm frames scored differently by 828 
the model and trainer. A subset consisting of 1% of worm-frames, sampled uniformly in time, is shown for clarity. The 829 
small cluster (arrow), is the result of a single worm, not a cluster of similar behavior from different worms. 830 
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 832 

Figure S5. Alternatives to Gaussian smoothing. (A-C) Accuracy of common nictation metrics, scoring accuracy, and 833 
combined metric and scoring accuracy of model scores after removing short behavioral bouts. (D-F) Accuracy of 834 
common nictation metrics, scoring accuracy, and combined metric and scoring accuracy of model scores corrected 835 
using the Viterbi algorithm with raw model scores as observable states. (G-I) Accuracy of common nictation metrics, 836 
scoring accuracy, and combined metric and scoring accuracy of model scores corrected using the Viterbi algorithm with 837 
model probabilities as emission probabilities of the hidden Markov model. Persistence probability refers to the 838 
probabilities along the diagonal of the transition matrix in the hidden Markov model. All values are means from five-fold 839 
cross validation. The training and validation sets consisted of 4/5 and 1/5 of the worm tracks from the training video. NR 840 
= nictation ratio, IR = initiation rate, SR = stopping rate, TR = transition rate, p.p. = persistence probability, c. r. error = 841 
combined relative error. 842 
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Figure S6. Effect of Gaussian smoothing on nictation metric accuracy – combined C. elegans training and test sets. (A) 845 
The effect of smoothing model output probabilities on the accuracy of common nictation metrics and overall transition 846 
rate. Relative error is the value calculated from the smoothed model probabilities divided by the value calculated from 847 
manual scores minus one. (B) The effect of smoothing model output probabilities on computer score accuracy on the 848 
validation data. (C) The effect of smoothing model output probabilities on sum of the relative error of NR, IR, SR and 1 849 
- accuracy. In panels A, B, and C, the accuracies shown are averages computed by comparison to the trainer's scores 850 
during five-fold cross validation. 888 worm tracks from both videos were divided into five equal groups for cross 851 
validation.  852 
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Figure S7. Manual confirmation of lower nictation ratio in day 10 C. elegans. All tracked C. elegans at 0, 15, and 30 min 854 
timepoints of all four replicates at each timepoint were examined and determined to be recumbent or nictating. Colored 855 
crosses represent the nictation ratio of 10-34 worms from one video, with each color representing one of the four 856 
biological replicates. Black crosses represent the average of the four video values at each timepoint. Vertical bars 857 
represent ±SEM. Day 10 NRs are significantly lower than the combined NRs from days 6 and 14 (p = 0.027, Wilcoxon 858 
Rank-Sum test) 859 
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Figure S8. C. elegans centerline length over time. The average length of the centerlines as calculated by the tracking 862 
code, excluding manually censored frames, is shown. Dots represent video averages, horizontal bars represent 863 
timepoint averages, vertical bars represent ± SEM. 864 
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Figure S9. C. elegans nictation ratio decreases over the course of our 30 min videos. The 10 s moving average of the 867 
nictation ratios of the four videos recorded at each timepoint is shown. The Pearson's correlation coefficient of the 868 
moving average NRs and video frame number is -0.0401, p = 0.00. 869 
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Figure S10. Evaluation of Gaussian smoothing on Steinernema carpocapsae nictation videos. (A) The effect 872 
of smoothing model output probabilities on the accuracy of common nictation metrics and overall transition 873 
rate. Relative error is the value calculated from the smoothed model probabilities divided by the value 874 
calculated from manual scores, minus one (equal to zero when there is no error). (B) The effect of smoothing 875 
model output probabilities on computer score accuracy on the validation data. (C) The effect of smoothing 876 
model output probabilities on sum of the relative error of NR, IR, SR and 1 - accuracy. In panels A, B, and C, 877 
the accuracies shown are averages computed from the validation set accuracies during five-fold cross 878 
validation. For Steinernema, 175 worm tracks from the same video were divided into five groups of 35 worm 879 
tracks for cross validation. σ =  probability smoothing sigma, NR = nictation ratio, IR = initiation rate, SR = 880 
stopping rate, TR = transition rate, c. r. error = cumulative relative error. 881 
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Figure S11. Choosing worm tracks for comparison. (A) The number of worm tracks of at least 1 min duration being 884 
tracked at each frame in each video in the S. carpocapsae dataset. (B) The minimum number of worm tracks of at least 885 
1 min duration being tracked in each video at each frame in the S. carpocapsae dataset. (C) The total number of worm 886 
tracks of at least 1 min duration being tracked in all the videos at each frame in the S. carpocapsae dataset. Among 887 
frames where at least two such worm tracks occur in every video, frame 3893 has the greatest total number of them, 888 
106. 889 
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 892 

Video S1. Tail wagging. A C. elegans dauer from a liquid culture, 21 days post feeding, behaving on a microdirt arena. 893 
Frames 1-39 show normal nictation, followed by a transition period and then elevation and waving back and forth of the 894 
tail from frames 45-63. Afterward the worm turns and begins normal crawling for the remainder of the clip. The video 895 
clip is cropped from the C. elegans test video and was recorded at 5 fps. Pillars are in a 75 μm grid. 896 
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