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Abstract

Differentiation between phenotypically neutral and disease-causing genetic variation

remains an open and relevant problem. Among different types of variation, non-frameshift-

ing insertions and deletions (indels) represent an understudied group with widespread

phenotypic consequences. To address this challenge, we present a machine learning

method, MutPred-Indel, that predicts pathogenicity and identifies types of functional resi-

dues impacted by non-frameshifting insertion/deletion variation. The model shows good

predictive performance as well as the ability to identify impacted structural and functional

residues including secondary structure, intrinsic disorder, metal and macromolecular bind-

ing, post-translational modifications, allosteric sites, and catalytic residues. We identify

structural and functional mechanisms impacted preferentially by germline variation from the

Human Gene Mutation Database, recurrent somatic variation from COSMIC in the context

of different cancers, as well as de novo variants from families with autism spectrum disorder.

Further, the distributions of pathogenicity prediction scores generated by MutPred-Indel are

shown to differentiate highly recurrent from non-recurrent somatic variation. Collectively, we

present a framework to facilitate the interrogation of both pathogenicity and the functional

effects of non-frameshifting insertion/deletion variants. The MutPred-Indel webserver is

available at http://mutpred.mutdb.org/.

Author summary

An individual genome contains around ten thousand missense variants, hundreds of

insertion/deletion variants, and dozens of protein truncating variants. Among them, non-

frameshifting insertion and deletion variants exhibit diverse impact on protein sequence,
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encompassing alterations from a single residue to the deletion of entire functional

domains. Although the majority of revealed insertion/deletions have unknown pheno-

typic consequences, computational variant effect prediction methods are less well-

described for such variation. To this end, we develop MutPred-Indel, a machine learning

method to predict the pathogenicity of non-frameshifting insertion/deletion variation

and, in addition, highlight structural and functional mechanisms potentially impacted by

a given variant. We identify several functionally important molecular mechanisms that

are impacted differently among germline, de novo, and somatic variation in contrast to

putatively neutral variation. MutPred-Indel is shown to have strong performance in path-

ogenicity prediction and potential to identify impacted molecular features, which collec-

tively facilitates a deeper understanding of non-frameshifting insertion/deletion variation.

This is a PLOS Computational Biology Methods paper.

Introduction

Insertion and deletion events comprise a diverse category of genetic variation that result in

a range of phenotypic and molecular effects [1, 2]. In an individual genome, the dozens of

sequence-retaining insertion, deletion and complex indel variants, referred to here collectively

as non-frameshifting insertion/deletion variants or simply “indels”, are significantly less well-

studied than single nucleotide substitutions. Non-frameshifting insertion/deletion variants

result in the gain or loss of a number of nucleotides divisible by three, such that the reading

frame of the mRNA is not disrupted. The resultant mutant protein sequence differs from the

wildtype with the addition and/or deletion of one or more amino acid residues. In this work,

three types of protein-coding insertion/deletion variants are discussed: insertions, deletions,

and complex indel variants. The less abundant complex indel variants arise from events where

both deletion and insertion events occur in tandem, and in this work comprise both deletion-

insertion and complex substitution variants.

The phenotypic effects of a non-frameshifting insertion/deletion variant arise as a conse-

quence of disrupted protein function and impact upon biological pathways. Variants affecting

residues that participate in essential molecular events such as in protein-protein interaction

interfaces or catalytic sites are more likely to be pathogenic. However, beyond pathogenicity,

characterization of phenotypically impactful variant can extend to the molecular mechanisms

by which protein function is altered. Computational methods to characterize the functional

impact of missense variants have been diverse, including protein binding, post-translational

modification, and stability [3–11]. In addition, several databases are available to support the

analysis of missense variants [12–17]. By contrast, there are limited studies that utilize compu-

tational methods to assess the impact of insertion/deletion variation on protein function.

Previously, phenotypically neutral sequence-retaining insertion/deletion variants have been

found to segregate in disordered regions [18, 19] and small indels in the coil region have been

shown to result in differences in binding affinity and gene expression [20]. Lin et al. evaluated

the functional impact of insertion/deletion variation observed in the 1000 Genomes Project

populations [21], finding enrichment in N- and C-terminal regions, coil, and disorder, as well

as depletion in helix and strand secondary structure. In addition to germline variants, somatic
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microsatellite indel hotspots have been used to discover putative cancer driver genes [22]. Fur-

ther analyses of somatic variation have identified complex indel variants in cancer genes that

were almost entirely overlooked in previous analyses [23]. Collectively, these findings illustrate

the diverse sources and implications of sequence-retaining insertion/deletion variation, partic-

ularly in cancer.

Computational methods to predict the consequences of genetic variation are well-suited to

analyze the deluge of genetic information yielded by modern sequencing technologies [24, 25].

Such predictors generally focus on the pathogenicity of individual variants, rather than molec-

ular impact or fine-grained phenotypic consequences. Computational methods to assess

somatic variation largely seek to identify driver mutations, a small subset of variants that initi-

ate or promote cancer growth. Methods to identify missense cancer driver mutations are

diverse methodologically, utilizing known and predicted structural features including solvent

accessibility, backbone flexibility, as well as helix, strand, and loop secondary structure [26–

29]. Although methods show promise in the identification of cancer driver mutations, there

are limited large-scale functional analyses of somatic variants. Previous work has found enrich-

ment for amino acid substitutions that impact phosphorylation and other post-translational

modification sites [30–32] as well as protein interfaces [33, 34] in somatic mutations compared

to neutral controls.

In addition to curated locus-specific databases, such as ClinVar [35], computational meth-

ods serve to assess the pathogenicity of uncharacterized insertion/deletion variants [35, 36].

Previously developed methods trained specifically to predict the pathogenicity of non-frame-

shifting insertion/deletion variants are summarized in Table 1 [18, 37–40]. In addition, two

alternative computational methods, CADD and PROVEAN [41, 42] generate pathogenicity

prediction scores via a general prediction method, in addition to other types protein-coding

variation. Many methods rely on the positive-unlabeled learning framework, wherein the neg-

ative class of neutral variants are a curated subset of putatively neutral variants from large-

scale sequencing projects. To cleanse potentially pathogenic variation from sequencing project

data many computational methods omit variants with low allele frequency and/or insertion/

deletion size. The shown methods predominantly utilize pathogenic variation derived from

a manually curated database of pathogenic variants, the Human Gene Mutation Database

(HGMD) [36].

In this study, we use predictive methods to assess the functional mechanisms impacted by

non-frameshifting insertion/deletion variation and highlight mechanisms that are recurrently

impacted by pathogenic and putatively neutral insertion/deletion variants. Next, we derive a

method to identify structural and functional mechanisms that are significantly impacted by an

individual non-frameshifting insertion/deletion variant compared to a background of puta-

tively neutral variation. We construct a machine-learning method to predict the pathogenicity

and functional impact of non-frameshifting insertion/deletion variation utilizing sequence-

level, evolutionary, and predicted functional features on training data designed to mitigate the

Table 1. Methods to assess the impact of non-frameshifting insertion/deletion variants.

Training Data Performance

Model Pathogenic Neutral Balanced accuracy Accuracy AUC

DDIG-in [18] SVM HGMD 1000 GP NA 0.83 0.89

KD4i [38] Inductive Logic Programming UniProtKB [43] NA 0.78 NA

Zhang et al. [39] Random Forest HGMD 1000 GP NA 0.88 NA

VEST-Indel [40] Random Forest HGMD ESP6500 0.82-0.90 NA NA

MutPred-Indel Neural network HGMD gnomAD 0.81 0.83 0.91

https://doi.org/10.1371/journal.pcbi.1007112.t001
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pervasive biases of stringent variant filtering. We show that the method exhibits robust predic-

tive performance both in cross-validation and on an independent test set of cancer driver

mutations. Finally, we highlight the structural and functional mechanisms impacted by

somatic, disease-causing germline, and putatively neutral insertion/deletion variants.

Materials and methods

Training data sets

Disease causing sequence-retaining insertion, deletion, and complex indel variants were

obtained from the Human Gene Mutation Database (HGMD), professional version 2017.1

[36]. For brevity, we will refer to the set of non-frameshifting insertion, deletion, and complex

indel variants collectively as “insertion/deletion variants” or simply “variants” for the remainder

of the text. Putatively neutral insertion/deletion variants were derived from the Genome Aggre-

gation Database (gnomAD) [44]. In the process of collecting data, variants from gnomAD with

Allele Count (AC) annotation of zero were considered to be of low quality and removed from

the training data. Variants annotated within gnomAD with AC equal to one were similarly

removed to reduce noise that may arise as a consequence of variants called in error. For each

variant, the wild-type and mutant protein sequence were determined using ANNOVAR [45].

The number of variants considered in model training are described in Table 2. In total, the

training data comprised 5606 single residue deletions, 1033 single residue insertions, 2427

multi-residue insertions, 3052 multi-residue deletions, and 1253 complex indel variants.

Somatic test sets

To assess the utility of MutPred-Indel on an alternative source of pathogenic variation, we

apply the tool to two sets of putatively damaging somatic variants. First, we extract insertion/

deletion variants from the Catalogue Of Somatic Mutations In Cancer (COSMIC) genome-

wide screen data set (v85) [46]. For analysis of the structural and functional impact of somatic

variants, the COSMIC primary histology annotations are used to retain histology types with

at least 500 variants, and exclude variants with “Other” or “Not specified” annotation. In this

work, we define recurrent somatic mutations as those which impact the same residue more

than once by either missense or non-frameshifting insertion/deletion variants in the COSMIC

dataset, a modification of the methods described in [47, 48]. Next, manually curated driver

insertion/deletion variants are derived from the DataBase of Cancer Driver InDels (dbCID)

[49]. The most confident variants from dbCID are retained for further analyses, those sup-

ported by in vivo experimental evidence. To ascertain excess of high scoring somatic variants

in known cancer genes, we select Tier 1 cancer genes described in the Cancer Gene Census to

represent the genes with high-quality documented relevance to cancer (n = 576) [50].

De novo test set

We assess the performance of MutPred-Indel on de novo non-frameshifting insertion/

deletion variants curated from 2650 families (2703 cases, 2009 controls) affected by autism

Table 2. Number of variants (proteins) in the training data set.

Disease Neutral Total

Insertion 653 (370) 1774 (946) 2427 (1307)

Deletion 3012 (1052) 5646 (2162) 8658 (3143)

Complex indel 1014 (528) 239 (209) 1253 (733)

Total 4679 (1296) 7659 (2392) 12338 (3597)

https://doi.org/10.1371/journal.pcbi.1007112.t002
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spectrum disorder (ASD) from the REACH Project [51] and the Simons Simplex Collection

(SSC) [52]. De novo genetic variants, which occur in offspring but not in parents, arise from

spontaneous mutations in either the parent’s germline or early in embryonic development.

Detecting de novo variants is challenging, as a false positive call in an offspring can appear to

be an apparent de novo variant. Without filtering, the false discovery rate for de novo vari-

ants can be as high as 80% [53]. A naive approach to filter putative de novo variants would

rely on heuristic hard filters that negatively affects sensitivity. We and others [54] have relied

on machine learning as a replacement for hard filters for de novo variant calling. Variant

calls were produced using HaplotypeCaller with variant score recalibration using GATK

v3.5. Variant calling for the REACH cohort were generated with respect to family as

described previously [51], while families from the SSC were jointly called by batch. We then

extract all de novo variants and generate exonic function annotations with ANNOVAR [45].

Variants were retained if the exonic annotation was either NFS insertion, deletion, or block

substitution. We remove variants if the derived allele was present at or above a 1% allele fre-

quency in the gnomAD database [44]. Variants with the same genomic position and alternate

allele were removed, as these are likely common variants that were mis-genotyped in the

parents. After these filters, there are 1217 candidate de novo insertion/deletion variants in

827 offspring (506 cases, 321 controls).

Filtering of de novo indels from the VCF files generated by HaplotypeCaller was performed

using a random forest classifier (pyDNM) that was trained on a combination of simulated and

validated de novo indels. The false discovery rate of the final call set based on experimental val-

idation is 3% (Lian, Sebat et al, in preparation). Applying the pyDNM classifier resulted in 183

de novo variants called as true positives in 169 offspring (98 cases, 71 controls). We generate

pathogenicity scores for the 168 variants for which ANNOVAR was able to obtain the wildtype

and mutant protein sequences.

Feature engineering

Features to describe each variant incorporated properties of the wildtype protein sequence,

consisting of evolutionary conservation, predicted structural and functional features, and gen-

eral sequence features. The general sequence features included the relative position of the vari-

ant in the protein sequence, the number of residues inserted by the variant, and number of

residues deleted by the variant. Next, we identified simple repeats and low-complexity regions

by encoding (1) the frequency of each amino acid in a ten-residue window on either side of

the variant and (2) the length of single amino acid repeat at the variant site, where length

equals 1 if the variant does not lie in a repeat.

The evolutionary features included the position-specific scoring matrix (PSSM), sequence

conservation indexes, and the number of homologs in the human and mouse genomes. The

PSSMs were generated by running PSI-BLAST with default parameters against the nr database

[55]. To derive conservation indexes, we applied AL2CO [56] on the UCSC Genome Browser

46-species alignment [57]. We calculated both normalized and unnormalized versions of the

nine available conservation indexes derived from AL2CO over three alignments: the full

46-species alignment, the mammalian alignment, and the primate-only alignment. For

deletions and complex indel variants, conservation was encoded as the maximum of these

AL2CO-derived conservation indexes over the range of amino acids deleted by the variant.

For insertions, the maximum of the AL2CO-derived indexes was taken over a window of resi-

dues starting from the first residue prior to the insertion site with window size set to be the

number of inserted residues. For each protein sequence, we calculated the homolog-based fea-

tures as the number of homologs in the human genome and homologs in the mouse genome

Pathogenicity and functional impact of non-frameshifting insertion/deletion variation
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at levels of sequence identity from 50 to 100 percent in intervals of 5 percent sequence identity,

for a total of 10 counts per organism.

Computationally predicted structural and functional features included gene-level func-

tional annotation and residue-level molecular and structural function. The gene-level

features are predicted scores for the total of 2,132 Gene Ontology (GO) terms generated by the

FANN-GO method [58]. At the residue level, we characterized the impact of the variant on

predicted structural and functional properties utilizing the nearby region in the wildtype

sequence. Predictive scores were used to count the residues within a window of the variant site

that exhibit high structural and/or functional prediction scores. In this work, the features were

encoded for window sizes of four and twenty residues to identify functional sites both in the

immediate vicinity of the variant site and the broader surrounding regions of the protein

sequence. Next, we encoded the number of residues in the entirety of the protein sequence

that are predicted to exhibit each of the structural and functional features in Table 3. For each

feature, we ascertained predicted functional residues utilizing a confident score threshold

defined for each predictive model (corresponding to 10% false positive rate).

Predictor development and evaluation

Each pathogenicity predictor was developed with the Matlab 2016b Neural Network

Toolbox as an ensemble of one hundred bagged two-layer feed-forward neural networks,

where the following training parameters were not varied between alternative models. Each net-

work had ten hidden units and employed balanced training with uniform random sampling of

the majority class. Minimal feature reduction was performed, consisting of a two-sample t-test

with a minimally restrictive 0.5 P-value threshold and principal component analysis with 99%

retained variance applied on z-score normalized data. Finally, model training utilized the resil-

ient propagation method with 25% of training data set aside for the validation set [65].

Performance of the models developed here are shown as the area under the Receiver Oper-

ating Characteristic (ROC) curve (AUC) derived from scores generated in 10-fold cross-vali-

dation. To illustrate the influence of protein-based features, we compared model performance

based upon per-protein and per-cluster cross-validation protocols in training. In per-protein

cross-validation, all variants within the same protein were either included in the test or train-

ing set partition. Per-cluster cross-validation retained variants from proteins with at least 50%

sequence identity in the same partition. The per-cluster cross-validation method estimated

performance when MutPred-Indel is applied to proteins that are dissimilar to the training set.

Table 3. Predicted structural and functional features. � indicates in-house predictors.

Property category Predicted features

Structure and dynamics Helix�, strand�, loop�, Intrinsic disorder [59], B-factor [60], Relative solvent

accessibility�, Coiled-coil region�

Signal peptide and

transmembrane�
N- and C-termini of signal peptide, signal helix, signal peptide cleavage site,

transmembrane segment, cytoplasmic and non-cytoplasmic loops

Macromolecular binding DNA�, RNA�, Protein-protein interaction (PPI)�, PPI hotspots�, Molecular

Recognition Features (MoRFs)�, Calmodulin-binding [61]

Metal-binding� Cd; Ca; Co; Cu; Fe; Mg; Mn; Ni; K; Na; Zn

Post-translational modification

(PTM) [62]

Acetylation, ADP-ribosylation, Amidation, Carboxylation, Disulfide linkage,

Farnesylation, Geranylgeranylation, Glycosylation (C, N and O-linked), GPI

anchor amidation, Hydroxylation, Methylation, Myristoylation, N-terminal

acetylation, Palmitoylation, Phosphorylation, Proteolytic cleavage, Pyrrolidone

carboxylic acid, Sulfation, SUMOylation, Ubiquitylation

Other Allosteric residues�, Catalytic residues�, Motifs [63, 64]

https://doi.org/10.1371/journal.pcbi.1007112.t003
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Next, we assessed the performance of MutPred-Indel without low frequency gnomAD variants

removed from the training data, utilizing variant frequency annotations included in the gno-

mAD database. In particular, the allele count annotation describes the number of times a par-

ticular allele has been observed in the gnomAD cohort. The alternative training set included

variants where the AC value is exactly 1, effectively allowing for cases where only a single indi-

vidual is heterozygous for the variant in the gnomAD database (n = 9,876 variants). Finally, to

compare the importance of different feature sets on the final performance of MutPred-Indel,

we estimated the performance in per-protein cross-validation of alternative models with indi-

vidual sets removed from the training data, where the training parameters are identical to

those described above.

Significance of functional impact

To identify variants with significant impact on any particular functional mechanism, we

defined an empirical P-value similar to the methodology employed in the initial MutPred pub-

lication [6]. Under this framework, for each feature listed in Table 3 the null distribution is

defined by the functional disruption scores for the neutral training set. The P-value for func-

tional impact of any particular variant is defined as the fraction of neutral variants with scores

that are at least as high as the given value.

The above method relies on assumptions that each functional mechanism is equally likely

to occur and equally likely to be disrupted in the null distribution. The assumption of equal

distribution impacts the validity of P-value ranking among different mechanisms, and so to

mitigate the effect of this assumption we adjust the P-values as

P0 ¼ ð1 � aÞ � P; ð1Þ

where P is the P-value as defined above, α represents the frequency of a particular functional

mechanism, and P0 will be referred to as the prior-corrected P-value. The P-value correction is

drawn from the definition of false discovery rate (FDR),

FDR ¼
ð1 � aÞ � FPR

a � TPRþ ð1 � aÞ � FPR
; ð2Þ

where FPR is the false positive rate and TPR is true positive rate. We consider the P-value to

approximate the false positive rate, without considering the denominator.

The functional impact score per mechanism for each insertion/deletion variant is defined

as the number of residues impacted by the variant which are confidently predicted to exhibit

the functional mechanism. Here, we defined impacted residues to include the three amino

acids on either side of the variant site, in addition to any residues that have been deleted. For

each model described in Table 3, the thresholds for confident predictions were determined

separately and correspond to a low false positive rate (10%). The null distribution of scores

was derived from the training set of gnomAD variants, which have undergone minimal filter-

ing to remove low frequency variants. The values of α for each mechanism were estimated

using the AlphaMax algorithm [66].

Enrichment of structural and functional impact

We define enrichment as a modification of the trend value described in Li et al. [31]. The

enrichment value, E, is defined as

E ¼
Fpathogenic � Fneutral

Fpathogenic þ Fneutral
; ð3Þ

Pathogenicity and functional impact of non-frameshifting insertion/deletion variation
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where Fpathogenic and Fneutral are the fraction of canonical sequence variants in which the modi-

fied residues are predicted to exhibit the mechanism of interest in HGMD and gnomAD,

respectively. Positive trend values indicate an excess of functional impact in residues impacted

by pathogenic variants as compared to putatively neutral variants, whereas negative values

indicate an excess of functional effect in the set of neutral variants. Significance is assigned

with Fisher’s exact test after Bonferroni correction.

In the comparison of variants from HGMD and gnomAD, we utilized the structural and

functional mechanisms impacted directly by the variant. For deletions and complex indel vari-

ants, we considered affected residues to be those amino acids deleted by the variant. For inser-

tion variants, we approximated the affected region of the protein to be the two residues on

either side of the insertion site.

Functional impact of germline and somatic variants

To interrogate the characteristics of disease-causing variants compared to somatic variation,

we contrasted the proportion of variants that significantly impact structural and functional

mechanisms. Specifically, for each mechanism in Table 3, we identified non-frameshifting

insertion/deletion variants that significantly impact (P< 0.05) a single residue with function

prediction score above the confident threshold (10% FPR). Variants impacting more than one

residue were not included in the functional analyses to ensure that the increased functional

impact among the minority of longer insertion/deletion variants did not distort the conclu-

sions. For functional analyses described here, each variant were considered once per individual

in the canonical isoform, to mitigate the functional bias of including similar protein isoforms.

Output format

For every variant, MutPred-Indel returns a pathogenicity prediction score between zero and

one, where variants with scores close to one are more likely to be pathogenic. Three score

thresholds can be used to classify variants as pathogenic or neutral at different values of false

positive rate (FPR): 0.546 (10% FPR), 0.672 (5% FPR, recommended), 0.85 (1% FPR). We uti-

lize the 10% FPR score threshold on the pathogenicity prediction scores determined through

cross-validation to determine the accuracy and balanced accuracy shown in Table 1. In addi-

tion, MutPred-Indel returns the top five structural and functional mechanisms that are

impacted by the variant with significant prior-corrected P-values less than 0.05.

Comparison to previously developed insertion/deletion prediction

methods

We compared the performance of MutPred-Indel against three currently available methods

to assess insertion/deletion variation: DDIG-in, VEST-Indel and CADD. As we were unable

to access source code or web implementation for the methods described by Bermejo et al.

[38] and Zhang et al. [39], these methods are excluded from further analyses. The PROVEAN

method was similarly removed from consideration, as we were unable to generate predic-

tions for the majority of the test set. To maximize the test set, and as a consequence of the

paucity of publicly available curated insertion/deletion variation, the test set was extracted

from the MutPred-Indel training data derived from HGMD and gnomAD. We removed test

set variants that were included in the training data of DDIG-in and VEST-Indel, a procedure

which could not be repeated for the CADD training data. The MutPred-Indel scores utilized

for this comparison are generated in per-protein cross-validation, which ensures that neither

the variant nor any other variants within that protein sequence are utilized in the model

underlying a given pathogenicity prediction, a constraint that has not been placed upon the
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other methods in this comparison. From this pool of variation, we randomly selected a bal-

anced test set of one thousand pathogenic variants and one thousand putatively neutral vari-

ants from gnomAD.

Results

Properties of insertion/deletion variants

Factors that differentiate disease-causing and apparently neutral variation can shed light on

the mechanisms underlying variant pathogenicity. In particular, we contrast the structural and

functional mechanisms predicted to be impacted among variants in the training data. Fig 1A

shows the number of training variants in canonical protein sequences retained for these analy-

ses, representing 35-47% of the original training data.

Mechanisms in Table 3 that exhibit relative enrichment in the training data are shown in

Fig 2. Among these, we find enrichment for mechanisms associated with protein flexibility in

neutral variants including disorder, MoRF, and B-factor, consistent with Khan et al. [19] and

Zhao et al. [18], as well as with work characterizing missense variation [67–70]. The trend

continues for surface accessible residues, which may be less likely to induce conformational

changes than internal insertion/deletion variants. Pathogenic variation shows enrichment

for impact upon critical protein functional residues such as catalytic and protein-protein

interaction sites. Structural features exhibit further differentiation, we observe enrichment for

loop regions in neutral variants whereas pathogenic variants show enrichment for helix and

strand secondary structure. Collectively, these findings indicate that predicted structural and

functional features have the potential to inform variant impact in addition to pathogenicity

prediction.

Characteristics of somatic variants from COSMIC. Under the rationale that repeatedly

impacted residues may be a signature of selection towards tumor progression, we contrast the

mechanisms frequently impacted in recurrent and non-recurrent COSMIC variants. Fig 3

highlights the proportions of variants that impact structural and functional mechanisms

among de novo and COSMIC variants compared to pathogenic germline variants from

HGMD. The HGMD variants more frequently effect all of the shown mechanisms, showing

the most profound excess in structure and dynamics and macromolecular binding compared

to the other sets. The excess of impact among HGMD variants is most likely a consequence of

expert manual curation to identify pathogenic variants, whereas the set of de novo and somatic

variant have undergone minor pre-processing and thereby include phenotypically neutral vari-

ation. By contrast, the de novo variants exhibit the greatest impact upon structure and dynam-

ics, comparable to the somatic variation from COSMIC. Among the COSMIC variants, the

non-recurrent set appears less frequently to impact PTM and signal peptide/transmembrane

regions. Fig 3 further highlights the mechanisms exhibiting increase in functional impact

among highly recurrent somatic variants including signal peptide/transmembrane regions,

metal binding, and PTMs. Collectively, these results indicate the potential for predicted molec-

ular features to identify meaningful differences in types of structural and functional features

impacted by diverse sources of genetic variation.

Next, we utilize cancer histology type to identify more detailed representation of the struc-

tural and functional impact of COSMIC variation. The proportion of function-impacting

somatic variants identified per histology type are shown in Fig 4A. The variability may reflect

mechanisms associated with particular cancer types, such as the disparity in impact upon cata-

lytic sites in malignant melanoma. The proportion of variants impacted by specific structural

and functional mechanisms are shown in Fig 4B. Consistent with previous work [30–32], we

find an excess of somatic variants that influence phosphorylation sites compared to HGMD.

Pathogenicity and functional impact of non-frameshifting insertion/deletion variation
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Conversely, a greater proportion of germline variants impact allosteric site, PPI hotspot,

MoRF, and strand secondary structure. The consistent differential impact upon functional

mechanisms between germline and somatic variation suggest the utility of predicted features

for a variety of applications.

Evaluation

Effects of manipulating the training procedures. MutPred-Indel shows strong perfor-

mance in cross-validation with the area under the ROC curve (AUC) of 0.908. Fig 5A illus-

trates the performance of an alternative version of the model wherein the rarest neutral

Fig 1. Characteristics of variants included in the functional analyses. (A) Training variants in canonical and noncanonical protein sequences. (B)

Recurrently impacted residues in COSMIC. (C) Variant size in gnomAD, HGMD, COSMIC, and recurrent variants in COSMIC (COSMIC-R). Size of

complex indels is the maximum of the number of amino acid residues inserted or deleted. (D) Variants per protein in COSMIC.

https://doi.org/10.1371/journal.pcbi.1007112.g001
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variants are retained for the training set, leading to inclusion of an additional 9876 putatively

neutral variants. Inclusion of these points can be interpreted as a decrease in the quality of

the neutral training set by the potential inclusion of rare pathogenic variants and sequencing

errors. The resultant performance exhibits only moderate decrease (AUC = 0.886). The mini-

mal exclusion of rare gnomAD variants in the training set is intended to mitigate biases caused

by the unrepresentative population structure within gnomAD and potential undersampling of

various ethnic groups. Therefore, we used theoretical justification that random class label

noise (e.g., sequencing errors and pathogenic variation) does not affect the optimality of the

classification model [71], and included rare variation into the training set of the final model.

In Fig 5A, we illustrate the differences in performance that arise due to selection of alternate

cross-validation procedure. The model trained with per-cluster cross-validation exhibits

poorer performance than MutPred-Indel, which utilizes per-protein cross-validation

(AUC = 0.850). The significantly reduced performance reflects the importance of gene-based

features, specifically for variants in alternative protein isoforms and close homologs in the

training set. The observed influence of gene-based features appear to be driven largely by alter-

native protein isoforms, as exhibited by the predicted performance of the model with only

Fig 2. Relative enrichment of mechanisms impacted by pathogenic variants from HGMD compared to gnomAD. Negative trend values correspond

to enrichment in putatively neutral variation. � indicates statistical significance after Bonferroni correction.

https://doi.org/10.1371/journal.pcbi.1007112.g002
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Fig 3. Proportion of variants predicted to impact structural and functional mechanisms among variants from single residue non-

frameshifting insertion/deletion variants. A variant was considered “predicted” if its score was as high or higher than the 95-th percentile of

the gnomAD score distribution. We contrast the functional impact of COSMIC, HGMD (n = 1556), de novo variants (n = 168). The highly

recurrent set includes variants at residues impacted by at least 25 missense and insertion/deletion variants in the COSMIC database (n = 98),

compared to recurrent variants which are impacted at least twice (n = 3622) and non-recurrent variants (n = 2417).

https://doi.org/10.1371/journal.pcbi.1007112.g003

Fig 4. Proportion of COSMIC variants per histology type that impact structural and functional mechanisms compared to HGMD variants. (A) Changes

aggregated over each class of structural and functional mechanisms and (B) Proportions for a selection of individual mechanisms.

https://doi.org/10.1371/journal.pcbi.1007112.g004
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canonical sequence variants included in the training set, which features reduced but stable per-

formance (AUC = 0.861).

Fig 5B shows the performance of MutPred-Indel on the subsets of insertions, deletions, and

complex indel variants separately. We observe that the set of complex indel variants exhibits

lower performance (AUC = 0.893) than insertions or deletions, which exhibit consistent

Fig 5. Receiver Operating Characteristic (ROC) curves and Areas Under the ROC Curves (AUC). (A) Cross-validation performance of MutPred-

Indel with per-protein and per-cluster training, as well as the performance of a model with training data that includes singleton variants in gnomAD. (B)

Cross-validation performance of MutPred-Indel on insertions, deletions, and complex indel variants separately. (C) Performance of MutPred-Indel and

MutPred2 on single amino acid insertion/deletion variants. (D) Comparison of MutPred-Indel and three existing methods.

https://doi.org/10.1371/journal.pcbi.1007112.g005
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performance (AUC = 0.911 and 0.906, respectively). If trained as three separate methods, the

performance increases for complex indel variants (0.895) and decreases for insertions (0.895)

and deletions (0.904). Given the similar performance and prohibitively small sample size for

some types of insertion/deletion variants, we selected the collective set of variants to be the

training set for MutPred-Indel. In Table 4, we further illustrate the robustness of the method

utilizing the estimated performance for a model trained without each major feature set. With

the exception of the gene-based FANN-GO predictions, the removal of each feature set does

not significantly disrupt predictive performance of the method without feature sets described.

The minimally reduced performance values listed in Table 4 justify the inclusion of these fea-

tures within MutPred-Indel, without indicating any particular dominating feature that may

bias performance.

Next, we sought to ascertain whether there is an excess of high-scoring variants in genes

with previously established role in cancer compared to the background of genes without strong

association to cancer. We used Fisher’s exact test to compare the number of variants occurring

within Tier 1 genes in the Cancer Gene Census relative to three pre-defined score thresholds

for 1%, 5% and 10% FPR. For the 10% FPR threshold, we observe that 40.9% (478/1169) of

high-scoring variants occur in known cancer genes compared to 27.4% (3135/11454) for genes

without strong association to cancer (P = 3.89 � 10−21). For the 5% FPR threshold, we observe

nearly two-fold enrichment of high-scoring variants in known cancer-associated genes com-

pared to unassociated genes (29.9% (350/1169) compared to 16.3% (1863/11454), P = 5.76 �

10−28). The pattern is not retained for the 1% FPR score thresholds, suggesting that the 5%

FPR threshold may be the optimum threshold selection for further analyses of somatic variants

utilizing MutPred-Indel. These results may be indicative of the utility of MutPred-Indel for

the identification of variant prioritization in somatic variation, in addition to previously estab-

lished insights into impacted structural and functional mechanisms.

Comparison to currently existing methods. The final MutPred-Indel model represents

an addition to the MutPred family of tools, including the recently updated missense predictor,

MutPred2 [70]. To compare the utility of MutPred-Indel against the baseline of MutPred2, we

assess the performance of the two tools on single amino acid insertion/deletion variants from

the HGMD and gnomAD training sets. MutPred2 predictions for deletions were calculated as

the maximum pathogenicity score over all possible missense variants at the residue impacted

by the deletion. That is, the deleted residue was replaced by all other residues. These 19 vari-

ants were subsequently scored and the deletion score was reported as the maximum over these

resulting scores. Similarly, MutPred2 predictions for insertions were calculated by taking the

maximum missense score over all possible variants at the site of the insertion.

For the subset of single amino acid insertion/deletion variants, MutPred2 yields an AUC of

0.797 compared to 0.903 for MutPred-Indel in cross-validation (Fig 5). Despite the moderate

Table 4. Performance of MutPred-Indel without key feature sets.

Feature AUC

Conservation indexes 0.903

FANN-GO 0.871

Amino acid composition 0.905

Functional impact (w = 4) 0.904

Functional impact (w = 20) 0.904

Functional impact (entire protein) 0.905

Homolog counts 0.904

https://doi.org/10.1371/journal.pcbi.1007112.t004
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performance of MutPred2, the superior performance and faster run time of MutPred-Indel

supports the development of a distinct method designed specifically to evaluate insertion/

deletion variants.

To enable direct comparison between MutPred-Indel and other methods designed to assess

the pathogenicity of insertion/deletion variants, we assessed performance of each method on a

random subset of 1000 pathogenic and 1000 neutral variants from the original training data,

shown in Fig 5. The set of variants has been filtered to remove the training set of the methods

with publicly available training data (VEST-Indel and DDIG-in). For this comparison, we

extract the pathogenicity predictions generated by MutPred-Indel in cross-validation,

such that neither the particular variant nor any other variant within that protein have been

considered. Despite this disadvantage, we find that MutPred-Indel has the highest perfor-

mance on this test set (AUC = 0.897), followed by VEST-Indel (AUC = 0.875) and DDIG-in

(AUC = 0.869). For the task of discriminating between pathogenic and putatively neutral vari-

ation, MutPred-Indel shows superior performance compared to currently available methods

designed to assess insertion/deletion variation.

Distribution of pathogenicity scores. Fig 6A shows the distribution of prediction scores

determined in cross-validation for the training data. The substantial overlap between distribu-

tions shows potential misclassifications in the training data, and justifies the use of alternate

pathogenicity thresholds. To ascertain the utility of pathogenicity scores in interpreting

somatic variation, Fig 6B shows the pathogenicity score distribution of recurrent somatic vari-

ation from COSMIC. In particular, we contrast the score distribution for the 5% most recur-

rent variants (COSMIC-R) against the remaining insertion/deletion variants in COSMIC. The

distribution of scores for somatic variants is visually similar to the gnomAD distribution in Fig

6A, suggesting that a large proportion of the variants may be phenotypically neutral in isola-

tion. The COSMIC-R variants tend to have higher pathogenicity scores with more uniform

distribution, reflecting a higher proportion of damaging variants among recurrent somatic

variation. Finally, we observe that the majority of dbCID cancer driver indels have pathogenic-

ity score greater than 0.7, pointing towards the utility of MutPred-Indel in the prioritization of

driver indels.

Fig 6C shows the pathogenicity score distributions for de novo insertion/deletion variants

from individuals with ASD and their unaffected siblings (Control). In contrast to previous

Fig 6. Histogram of predicted pathogenicity scores for (A) the training data using cross-validation, (B) cancer driver mutations from dbCID (yellow), highly

recurrent variants (COSMIC-R, red) compared to the background in COSMIC (blue), (C) de novo non-frameshifting insertion/deletion variants in individuals

with autism spectrum disorder (ASD, red) and de novo variation from unaffected siblings (Control, blue).

https://doi.org/10.1371/journal.pcbi.1007112.g006
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findings on loss-of-function variants in neurodevelopmental disorders [72], we do not observe

an excess of high-scoring variants in individuals with ASD compared to controls. The discrep-

ancy may suggest the reduced influence of insertion/deletion variants in this data set as a con-

sequence of low sample size, and support the importance of de novo loss-of-function variants

in neurodevelopmental disorders. Further, the spread of observed pathogenicity scores in this

set supports potential utility of MutPred-Indel in the identification of impactful de novo vari-

ants. Despite the lack of strong signal for insertion/deletion variants in ASD overall, some

high-scoring insertion/deletion variants in genes that carry additional loss-of-function muta-

tions should be noted. For example, MutPred-Indel assigned high pathogenicity score to a

likely pathogenic 3bp deletion (F1396/del) adjacent to the active site in the JmjC domain of

lysine-specific histone demethylase KDM6B. It has been shown that mutations H1390/E1392

of KDM6B abolish lysine-specific histone demethylase activity [73]. Furthermore, the KDM6B
gene carries three additional de novo loss-of-function mutations in ASD patients [74, 75], and

three de novo missense mutations (one in ASD patient and two in the patients with intellectual

disability) [76, 77], with no mutations observed in controls.

Discussion

The wealth of variation in an individual genome necessitates computational methods to priori-

tize phenotypically impactful variants. In this work, we utilized computational predictors of

structural and functional features to identify mechanisms impacted frequently among de

novo, somatic, and germline non-frameshifting insertion/deletion variants. In addition, we

developed a machine learning method to assess non-frameshifting insertion/deletion variants

based upon evolutionary conservation, sequence-level, and predicted molecular features. The

method, MutPred-Indel, predicts both variant pathogenicity and the types of structural and

functional mechanisms impacted by individual sequence-retaining insertion/deletion variants.

We show that the method has the ability to differentiate disease-causing from putatively

neutral variation, and infer functionally impacted residues among diverse sources of genetic

variation. The work serves to extend the MutPred family of tools, including previously devel-

oped variant effect predictors for missense [6, 70], splice [78], frameshifting and stop variants

[72] allowing for targeted assessment of insertion/deletion variation to facilitate precision

medicine.

A large proportion of previously developed methods to evaluate insertion/deletion variation

are based upon training data that may not appropriately reflect the variation within an individ-

ual genome due to filtering based upon global or population-specific allele frequency. Strin-

gent data cleaning procedures can result in methods that do not appropriately recognize

private neutral variation, or variants that have been called in error. Detection of insertion/dele-

tion variants is more error-prone than single nucleotide substitutions, partly due to ambiguity

of mapping in repeat regions [79]. The number of insertion/deletion variants called from an

individual genome may vary considerably between sequencing platforms, with concordance

estimated to be as low as 57% [80]. As sequencing technologies move towards longer reads, the

error rate may decrease [81]. Although both HGMD and gnomAD undergo conservative fil-

tering procedures to reduce false calls, a nontrivial number of sequencing errors may persist.

Removal of variants with low allele frequency may reduce the number of variants called in

error, yet increase the potential to learn biased properties of insertion/deletion variants in

training.

Development of MutPred-Indel may be influenced by methodological limitations. The

training data is comprised of pathogenic and putatively neutral variation. A gold standard set

of true phenotypically neutral insertion/deletion variants is not available, and the application
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of restrictive allele frequency thresholds may lead to systematic biases. Specifically, MutPred-

Indel is trained to discriminate between disease-causing variants and putatively neutral varia-

tion found in population databases. The gnomAD database excludes individuals with severe

pediatric disease and therefore the model is designed to identify variants that cause severe dis-

ease, rather than disease-associated variants. As the majority of training data impact a single

residue, the number of multi-residue variants is insufficient to ascertain the suitability of

MutPred-LOF to evaluate particularly lengthy alterations [72]. In this work, prediction follows

the traditional framework wherein predictions are generated independently for each variant,

without consideration of epistatic interactions which may substantially modify phenotypic

effects.

The analyses presented here highlight the diverse spectrum of pathogenicity and functional

impact attributable to non-frameshifting insertion/deletion variants. We contextualize the util-

ity of pathogenicity prediction by presenting the apparent observable differences in score dis-

tribution among disease-causing, de novo, and recurrent somatic variation. MutPred-Indel

shows robust predictive performance in cross-validation and has potential to identify pathoge-

nicity and functional mechanisms impacted by diverse sources of genetic variation with poten-

tial utility for a variety of precision medicine applications [82, 83].
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