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Oropharyngeal squamous 
cell carcinoma: radiomic 
machine‑learning classifiers 
from multiparametric MR images 
for determination of HPV infection 
status
Chong Hyun Suh1,5, Kyung Hwa Lee2,3,5, Young Jun Choi1*, Sae Rom Chung1, 
Jung Hwan Baek1, Jeong Hyun Lee1, Jihye Yun1, Sungwon Ham3 & Namkug Kim1,4*

We investigated the ability of machine‑learning classifiers on radiomics from pre‑treatment 
multiparametric magnetic resonance imaging (MRI) to accurately predict human papillomavirus 
(HPV) status in patients with oropharyngeal squamous cell carcinoma (OPSCC). This retrospective 
study collected data of 60 patients (48 HPV‑positive and 12 HPV‑negative) with newly diagnosed 
histopathologically proved OPSCC, who underwent head and neck MRIs consisting of axial T1WI, 
T2WI, CE‑T1WI, and apparent diffusion coefficient (ADC) maps from diffusion‑weighted imaging 
(DWI). The median age was 59 years (the range being 35 to 85 years), and 83.3% of patients were 
male. The imaging data were randomised into a training set (32 HPV‑positive and 8 HPV‑negative 
OPSCC) and a test set (16 HPV‑positive and 4 HPV‑negative OPSCC) in each fold. 1618 quantitative 
features were extracted from manually delineated regions‑of‑interest of primary tumour and one 
definite lymph node in each sequence. After feature selection by using the least absolute shrinkage 
and selection operator (LASSO), three different machine‑learning classifiers (logistic regression, 
random forest, and XG boost) were trained and compared in the setting of various combinations 
between four sequences. The highest diagnostic accuracies were achieved when using all sequences, 
and the difference was significant only when the combination did not include the ADC map. Using all 
sequences, logistic regression and the random forest classifier yielded higher accuracy compared with 
the that of the XG boost classifier, with mean area under curve (AUC) values of 0.77, 0.76, and 0.71, 
respectively. The machine‑learning classifier of non‑invasive and quantitative radiomics signature 
could guide the classification of the HPV status.

Human papillomavirus (HPV) status is a dependable and independent prognostic factor in patients with oro-
pharyngeal squamous cell carcinoma (OPSCC). Patients with HPV-positive OPSCC have better survival rates 
than patients with HPV-negative  OPSCC1. Because of differences in the oncogenesis, epidemiology, and prog-
nosis; the eighth edition of the American Joint Committee on Cancer (AJCC) tumour-node-metastasis staging 
system classifies OPSCC into HPV-positive and HPV-negative  tumours2. Therefore, the preoperative differentia-
tion between HPV-positive and HPV-negative OPSCC is critical for patient management as well as  prognosis3.
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The distinct oncogenesis of HPV-positive OPSCC results in characteristic  histopathology4,5, perfusion, and 
diffusion parameters, which are related to the angiogenesis and cellularity of the tumour. Several studies have 
reported diagnosis of the HPV status in patients with OPSCC using preoperative computed tomography (CT) 
or magnetic resonance (MR)  imaging6–8. HPV-positive OPSCC tends to exhibit cystic cervical lymph node 
 metastasis6–8 and primary tumours with well-defined borders and an exophytic  appearance7. Recent studies 
reported that diffusion-weighted imaging (DWI) may help predict HPV status in patients with OPSCC, as 
HPV-positive OPSCC reveals a low mean apparent diffusion coefficient (ADC) compared with HPV-negative 
 OPSCC9–11. Furthermore, a histogram analysis based on dynamic contrast-enhanced MR image showed sig-
nificantly higher  Kep kurtosis values and lower  Ve min values in patients with p16-positive  OPSCC12. Recently, 
several published studies had addressed the prediction of HPV status employing a CT-based radiomics approach; 
however, their diagnostic performance was moderate (area under the curve; AUC, 0.75–0.80)13–15. To date, no 
studies reported on the application of radiomic machine-learning classifiers on multiparametric MR images to 
predict HPV status in patients with OPSCC. Therefore, we hypothesise that pre-treatment multiparametric MR 
image combined with DWI could predict HPV status accurately employing radiomic machine-learning classi-
fiers in patients with OPSCC.

Results
Study population and imaging dataset. Of the 70 consecutive patients with OPSCC, 10 were excluded 
owing to unknown HPV status (n = 4), post-treatment MR images (n = 4), and loss of MR image data (n = 2). 
Finally, 60 consecutive patients with OPSCC were enrolled in this study (Table 1). Forty-eight patients (80%) 
were HPV-positive, and 12 patients (20%) had HPV-negative OPSCCs. The median age was 59 years (range: 35 
to 85 years), and 83.3% of the patients were male. The imaging data were randomised into a training set (40 MR 
images containing 32 HPV-positive and 8 HPV-negative OPSCC) and a test set (20 MR images containing 16 
HPV-positive and 4 HPV-negative OPSCC) in each fold.

Selected features. The study design is shown in Fig. 1. Linear regression with the least absolute shrink-
age and selection operator (LASSO) penalty was performed in each cross-validation fold. The average number 
of selected features with the best classification performance was 221, using four MR sequences, namely, the 
axial T1-weighted imaging (T1WI), fat-suppressed T2-weighted imaging (T2WI), axial fat-suppressed contrast-
enhanced T1-weighted imaging (CE-T1WI), and ADC maps from DWI. Table 2 shows the seven top-performing 
features, which were sorted based on the frequency of selection in the 60 experiments multiplied by the sum of 
the LASSO coefficients (weights) in each validation. Six out of the seven features extracted from ADC maps and 
one feature extracted from the T1WI sequence were selected. Four of these features were wavelet-transformed 
features. Supplementary Figure 1 illustrates the different ranges of the seven features for HPV-positive and HPV-

Table 1.  Baseline characteristics of the included patients. SD standard deviation. a TNM staging was based on 
AJCC 8th edition. b Five patients were T4a. c Five patents were N2b and four patients were N2c. d One patient 
was N3b.

Sequence HPV+ oropharyngeal cancer (n = 48) HPV− oropharyngeal cancer (n = 12)

Age (mean ± SD) 60.6 ± 8.6 59.4 ± 15.7

Male:female 39:9 11:1

Subsite of origin, no (%)

Tonsil 34 (71%) 6 (50%)

Base of tongue 8 (17%) 3 (25%)

Posterior pharyngeal wall 2 (4%) 3 (25%)

Soft palate 1 (2%) 0 (0%)

No evidence of primary tumor 3 (6%) 0 (0%)

T stagea, no (%)

0 3 (6%) 0 (0%)

1 7 (15%) 0 (0%)

2 20 (42%) 4 (33%)

3 3 (6%) 3 (25%)

4 15 (31%) 5b (42%)

N stagea, no (%)

0 7 (15%) 2 (17%)

1 31 (65%) 0 (0%)

2 10 (21%) 9c (75%)

3 0 (0%) 1d (8%)

M stagea, no (%)

0 47 (98%) 11 (92%)

1 1 (2%) 1 (8%)
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negative cases in the whole dataset. Six out of seven features exhibited statistically significant differences between 
the two groups. Figure 2 shows an example of the original ADC map and its wavelet-transformed images of ‘LLL’ 
and ‘HLH’, where the features with the highest values of the sum of LASSO coefficients are found. The list of the 
top five selected features from each sequence and their various combinations are described in Supplementary 
Table 1. In the additional experiment comparing features extracted from primary tumour (T) and nodal (N) 
volumes delineated on ADC maps, four out of the five top-performing features from T volumes exhibited sig-
nificant differences between the HPV-positive and HPV-negative group, whereas the features extracted from N 
volumes did not exhibit significant differences (Supplementary Figure 2).

Comparing accuracies between sequences. The overall accuracy was increased by adding another 
MR sequence regardless of the types of classifiers. Table 3 lists the mean AUCs with standard deviations of each 
sequence and their combinations obtained by three different classifiers. The highest accuracy was achieved using 
four MR sequences. Upon comparison of each combination and all sequences as a reference for each classifier, 
the inclusion of all sequences yielded a significantly superior performance to that obtained using three sequences 
or less, exclusively when the combination did not include the ADC map. There were no significant differences 

Figure 1.  Flowchart of the radiomic machine-learning classifier.

Table 2.  Top 7 features from four MR sequences. ADC  apparent diffusion coefficient, T1WI  T1-weighted 
imaging, GLCM  gray-level co-occurrence matrix. a Sum of LASSO coefficients (= weights).

Sequence Wavelets Class Variables Frequency Sum_Coef* Freqa Sum_Coef

ADC LLL GLCM_dist_2 Entropy_std 58/60 (0.96) 2.547 2.462

T1 Original GLCM_dist_1 Autocorrelation_std 52/60 (0.86) 1.494 1.295

ADC HLH GLCM_dist_2 Correlation_std 45/60 (0.75) 1.368 1.026

ADC LLH GLCM_dist_1 Homogeneity1_std 47/60 (0.78) 1.230 0.964

ADC Original GLCM_dist_3 Entropy_std 44/60 (0.73) 0.887 0.651

ADC HHH GLCM_dist_3 Correlation 40/60 (0.66) 0.950 0.633

ADC Original GLCM_dist_1 Difference variance 55/60 (0.91) 0.654 0.599
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Figure 2.  Example of the original apparent diffusion coefficient (ADC) map and its 3D wavelet-transformed 
image for each human papillomavirus (HPV)-positive and HPV-negative case. (a) Original ADC map. (b) 3D 
wavelet-transformed image of ‘LLL’. (c) 3D wavelet-transformed image of ‘HLH’.

Table 3.  Classification accuracies between various combinations of sequences. Average results ± standard 
deviations are reported. AUC  area under the curve, ADC apparent diffusion coefficient, T1WI T1-weighted 
imaging, T2WI fat-suppressed T2-weighted imaging, CE-T1WI fat-suppressed contrast-enhanced T1-weighted 
imaging.

Sequence No. of selected features

AUC 

Logistic regression P value Random forest P value XG boost P value

ADC 166 0.72 ± 0.11 .016 0.76 ± 0.11 .456 0.69 ± 0.11 .240

T1WI 160 0.42 ± 0.15  < .001 0.45 ± 0.13  < .001 0.43 ± 0.17  < .001

T2WI 156 0.47 ± 0.13  < .001 0.52 ± 0.13  < .001 0.50 ± 0.12  < .001

CE-T1WI 165 0.55 ± 0.12  < .001 0.54 ± 0.13  < .001 0.59 ± 0.15  < .001

ADC + T1WI 190 0.69 ± 0.12  < .001 0.74 ± 0.11 .165 0.71 ± 0.11 .393

ADC + T2WI 196 0.72 ± 0.11 .020 0.73 ± 0.11 .141 0.69 ± 0.11 .113

ADC + CE-T1WI 193 0.76 ± 0.11 .357 0.76 ± 0.12 .495 0.71 ± 0.14 .481

T1WI + T2WI 185 0.48 ± 0.15  < .001 0.46 ± 0.13  < .001 0.44 ± 0.16  < .001

T1WI + CE-T1WI 200 0.56 ± 0.13  < .001 0.56 ± 0.14  < .001 0.51 ± 0.14  < .001

T2WI + CE-T1WI 191 0.52 ± 0.13  < .001 0.54 ± 0.14  < .001 0.51 ± 0.14  < .001

ADC + T1WI + T2WI 210 0.69 ± 0.14 .003 0.73 ± 0.11 .167 0.69 ± 0.12 .229

ADC + T1WI + CE-
T1WI 211 0.76 ± 0.11 .316 0.74 ± 0.11 .186 0.71 ± 0.12 .482

ADC + T2WI + CE-
T1WI 212 0.75 ± 0.11 .173 0.74 ± 0.11 .181 0.70 ± 0.12 .373

T1WI + T2WI + CE-
T1WI 213 0.53 ± 0.15  < .001 0.54 ± 0.15  < .001 0.50 ± 0.14  < .001

All 221 0.77 ± 0.12 Ref 0.76 ± 0.12 Ref 0.71 ± 0.12 Ref
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between using three sequences or less while including the ADC map and using all sequences with a random 
forest and XG boost classifier.

Comparing accuracies between machine‑learning classifiers. The mean AUCs of logistic regres-
sion, random forest, and XG boost classifier were 0.77 ± 0.12 (95% confidence interval [CI] 0.50 to 0.96), 
0.76 ± 0.12 (95% CI 0.47 to 0.97), and 0.71 ± 0.12 (95% CI 0.50 to 0.93), respectively, when using selected features 
from all sequences (Fig. 3). The logistic regression classifier yielded the highest value of the mean AUC, which 
was not significantly superior to that exhibited by the random forest classifier (P value = 0.338), while demon-
strating performance superior to that of the XG boost classifier (P value = 0.009). The average sensitivity and 
specificity were 0.71 (95% CI 0.31 to 0.97) and 0.72 (95% CI 0.50 to 1.00) in the logistic regression classifier, 0.70 
(95% CI 0.33 to 0.93) and 0.72 (95% CI 0.50 to 1.00) in the random forest classifier, and 0.62 (95% CI 0.21 to 
0.90) and 0.65 (95% CI 0.25 to 1.00) in the XG boost classifier, respectively, as shown in Table 4.

Discussion
In the present study, we extracted quantitative image features from multiparametric MR sequences in OPSCC 
patients and developed machine-learning classifiers following a feature reduction to identify the HPV infec-
tion status. Our results show that the logistic regression classifier (0.77 ± 0.12) and the random forest classifier 
(0.76 ± 0.12) demonstrate higher values of the mean AUC compared with those exhibited by the XG boost clas-
sifiers (0.71 ± 0.12). The average sensitivity and specificity in the logistic regression classifier were 0.71 and 0.72, 
respectively. This radiomic signature of HPV status can be used to develop non-invasive tools for discriminating 
OPSCC patients.

Increasing evidence suggests that radiomics, a method that non-invasively extracts quantitative information 
from medical images, can be used to characterize intra-tumoral  heterogeneity16–19. Previous exploratory stud-
ies indicate a correlation between the HPV infection status and CT-based radiomic signature in head and neck 
squamous cell carcinoma (HNSCC)13–15,20. These studies reported AUC values that ranged from 0.70 to 0.86. 
Although most radiomics studies for classifying the HPV status are based on CT, Ravanelli et al. investigated the 
correlation between MR imaging texture features and HPV status in  OPSCC9. The authors developed a simple 
predictive model based on mean ADC values and smoking status that yielded an AUC of 0.944. In the present 
study, we developed a tool for classifying the HPV status using radiomic features from multiparametric MR 
images and machine-learning classifiers with an AUC of 0.77.

Recent studies have addressed whether the ADC-histogram analysis can be used to identify different histo-
pathological features in  HNSCC9,21,22. According to de Perrot et al., diffusion phenotypes based on the histogram 
analysis of ADC values reflect distinct degrees of tumour heterogeneity in HPV-positive and HPV-negative 
 HNSCCs21. It has been shown that the mean and median ADCs are significantly lower, whereas excess kurtosis 
and skewness are significantly higher in HPV-positive tumours than in HPV-negative tumours. In their study, 
HPV-positive tumours exhibit leptokurtic right-skewed histograms, which correspond to homogeneous tumours 

Figure 3.  Results of the receiver operating characteristic curve analysis of three classifiers.

Table 4.  Results of the ROC curve analysis of 3 models. Unless otherwise specified, data are averages, with 
95% confidence interval in parentheses. ROC receiver operator characteristic, AUC  area under the curve, CI 
confidence interval.

Classifiers AUC Sensitivity Specificity

Logistic regression 0.77 (0.50, 0.96) 0.71 (0.31, 0.97) 0.72 (0.50, 1.00)

Random forest 0.76 (0.47, 0.97) 0.70 (0.33, 0.93) 0.72 (0.50, 1.00)

XG boost 0.71 (0.50, 0.93) 0.62 (0.21, 0.90) 0.65 (0.25, 0.10)
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with densely packed cells, a scant stromal component, and scattered comedonecrosis. Meanwhile, HPV-negative 
tumours exhibit symmetric normally distributed ADC histograms, which correspond to heterogeneous tumours 
with variable cellularity, a high stromal component, keratin pearls, and necrosis. Meyer et al. investigated the 
correlation of ADC values with prognostically relevant histopathologic parameters, including the expression of 
Hif1-alpha, VEGF, EGFR, p53, p16, and Her  222. They found that ADC histogram reflects different histopatho-
logical features in HNSCC, and associations between ADC histogram parameters and histopathology depend on 
the p16 status. In this study, features extracted from ADC maps were attributed the highest weight after LASSO 
regression, and they were mostly included in the top-performing features.

Recent studies found that the radiomics signature from multiparametric MR images achieved higher prognos-
tic accuracies compared with a single MR  sequence23–26. In the present study, using four MR sequences yielded the 
highest classification accuracy. However, the difference between using four sequences and three or less sequences 
was significant only in cases not including ADC maps. The selected features after LASSO regression from four 
MR sequences included features from all MR sequences, whereas features from the ADC map comprised a large 
percent of top-performing features. Considering a small sample size and imbalance of HPV status in this study, 
further studies might be needed to confirm whether combining multiple MR sequences enables the detection 
of more detailed differences between HPV-positive and HPV-negative tumours.

Machine-learning models have rapidly improved in the past few years. Radiomics is an emerging field for 
machine-learning that allows the conversion of radiologic images into mineable high-dimensional  data24,27–30. 
Only few studies investigated the effect of different feature selections and machine-learning classification methods 
on radiomic  features27,30. In these studies, the random forest classifier had the highest prognostic performance 
for diagnosing cancers from benign tumours. Further, Parmar et al. observed that a generalised linear model 
exhibits a high prognostic performance in HNSCC and non-small-cell lung cancer types, whereas it shows low 
stability for  HNSCC27. The present study compared three machine-learning classifiers including the logistic 
regression, random forest, and XG boost model. The logistic regression classifier and random forest classifier 
demonstrated performance superior to that of the XG boost classifier. The most plausible reason is that the final 
selected features are highly discriminative in their classification of HPV status, which proves to be most suitable 
for the logistic regression classifier. However, considering that logistic regression models generally perform better 
for smaller data sets, compared with tree induction models, and are prone to  overfitting31,32, further validation 
with large samples might be needed.

Our study has several limitations. First, it is a retrospective study performed on a relatively small sample 
with a highly imbalanced dataset for machine-learning (n = 60). Repeated cross-validation and feature selection 
using the LASSO regression were applied to mitigate the risk of overfitting in this situation. Second, it remains 
to be validated whether our radiomics signature can be applied to different MR systems, imaging protocols, 
and software platforms. Therefore, multi-centre studies with large samples and a prospective study design are 
required to evaluate the true predictive value of the radiomics signature. Third, the regions-of-interest (ROIs) 
in the tumours were manually delineated based on ADC maps, which tend to be affected by movement artefacts 
such as breathing and swallowing, along with frequent susceptibility artefacts from the air-tissue interface. 
Furthermore, the stability analysis, i.e., assessing the robustness of the features, was not properly conducted. To 
achieve optimal feature selection, the slightly better performing feature can be selected from various kinds of 
similar features via the wavelet transform, which could lead to low reproducibility of wavelet features. Therefore, 
the stability and reproducibility of selected features must be investigated in further studies.

In conclusion, the present study developed radiomic machine-learning classifiers from multiparametric MR 
images for the determination of the HPV status in patients with OPSCC. Our results show that logistic regres-
sion and the random classifier applied subsequent to feature selection from MR images, including T1WI, T2WI, 
T1-CEWI, and ADC maps, using LASSO regression exhibit the highest classification accuracy; furthermore, 
features selected from the ADC map were crucial in classifying the HPV status. This method explores the inte-
gration of anatomical and multiparametric MRI radiomics into clinical models, which might have a significant 
impact in the MR-guided radiotherapy for head and neck cancers.

Materials and methods
This study was approved by the institutional review board of Asan Medical Center (tertiary referral center). 
The local ethics committee, institutional review board of Asan Medical Center, waived off the written informed 
consent due to the retrospective nature of the study. We reported our results according to the standards for report-
ing of diagnostic accuracy studies (STARD) 2015  guidelines33 and strengthening the reporting of observational 
studies in epidemiology (STROBE)34.

Study population. We enrolled consecutive patients with newly diagnosed histopathologically proved 
OPSCC, who were examined by head and neck MR imaging between April 2012 and November 2017. The eligi-
bility criteria were as follows: (a) patients diagnosed by histopathology with a pre-treatment OPSCC, (b) patients 
with known HPV status, (c) patients who were examined by head and neck MR imaging including DWI, and 
(d) patients that were > 20 years old. Patients who had received chemotherapy, radiation therapy, or excisional 
biopsy prior to the MR imaging were excluded.

Analysis of HPV status. All analyses of the HPV status were performed by the pathology division of our 
institution without prior knowledge of the MR imaging results. P16 immunohistochemistry or HPV DNA detec-
tion by polymerase chain reaction (PCR) was used as the reference  standard35,36. P16 immunohistochemistry 
was performed using CINtec p16 histology (anti-p16INK4a mouse monoclonal antibody and immunohistochemi-
cal detection kit; Roche MTM Laboratories, Heidelberg, Germany) and HPV DNA detection was performed by 
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PCR/DNA chip scanning (high-risk subtypes of 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, 82, and other 
lower or undetermined risk subtypes)37. HPV-positive OPSCC was diagnosed based on the positive results of 
either p16 or HPV DNA  PCR38.

MR acquisition protocol. Head and neck MR imaging was conducted using a 3-T scanner with a 64-chan-
nel coil (Skyra, Siemens Healthcare) and the MR imaging protocol as follows: To obtain CE-T1WI, an intra-
venous dose of 0.1 mmol/kg of contrast agent gadoterate meglumine (Dotarem; Guerbet, Paris, France) was 
injected into the patient. DWI MR imaging was conducted using multi-shot read-out-segmented echo-planar 
imaging in the axial plane before the injection. The detailed DWI sequence parameters were as follows: repeti-
tion time/echo time, 5450/62 ms; b values of 0 and 1000 s/mm2; section thickness of 4 mm; no gap; field of view 
of 192 × 192  mm2, and acquisition time of approximately 5 min. The ADC maps were obtained automatically 
within the manufacturer console. Imaging data were de-identified in accordance with the health insurance port-
ability and accountability act privacy rule.

Image segmentation and pre‑processing. Figure 1 depicts the overall workflow. First, 3D ROIs for 
contrast-enhanced portions were manually segmented by two neuroradiologists (with 6 and 13 years of experi-
ence in neuroradiology) on ADC maps for the primary tumour, while also considering T2WI and CE-T1WI MR 
sequences during the segmentation. One definite pathologically proven malignant lymph node was manually 
segmented on the T2WI sequence, while also considering CE-T1WI MR sequences. We employed the medical 
imaging interaction toolkit (MITK) software platform (https ://www.mitk.org, German Cancer Research Center, 
Heidelberg, Germany)39. Both the primary tumour and lymph node volumes belonged to the same patient. 
T1WI, T2WI, CE-T1WI, and ADC maps were co-registered with SPM software (https ://www.fil.ion.ucl.ac.uk/
spm/), using affine transformation with normalized mutual information as a cost function, with 12 degrees of 
freedom and tri-linear  interpolation40. The original ROIs were co-registered on the T1WI, T2WI, and CE-T1WI 
for the tumour and on the T1WI, CE-T1WI, and ADC maps for the lymph node, then manually adjusted to suit 
each sequence. All MR images were resampled into isometric voxels of size 1 × 1 × 1  mm3 as input data. Field 
inhomogeneity of MR images was corrected using the N4ITK  algorithm41. To ensure just comparison of the 
extracted features across all patients, intensity normalization was conducted for T1WI, T2WI, and CE-T1WI 
sequences.

Radiomic feature extraction. From the segmented mask, 1618 total radiomic features were extracted 
using MATLAB R2015a (MathWorks Inc., Natick, MA), using a similar approach to previous study of Yun 
et al.42 at the same institution. The range of mean ± 3 standard deviation of the entire intensity range was quan-
tized into 32 density bin levels for the texture features. The features included seven shape and volume features, 17 
first-order features, 162 texture features, and 1432 wavelet features (Supplementary Table 2). First-order features 
were derived from the intensity histograms using first-order statistics, including the intensity range, energy, 
entropy, kurtosis, maximum, mean, median, uniformity, and variance. Texture features were obtained from a 
grey-level co-occurrence matrix (GLCM) and a grey-level run-length matrix (GLRLM) using the segmented 
mask in 13 directions in 3D  space43. For the GLCM analyses, texture features were computed for varying dis-
tances of 1, 2, and 3 voxels in 13 directions. Then, a single-level directional discrete wavelet transformation was 
applied with a high-pass and a low-pass  filter44. In total, eight wavelet-decomposition images were generated 
from each MR sequence input: LLL, HLL, LHL, HHL, LLH, HLH, LHH, HHH images, where ‘L’ depicts the ‘low-
pass filter’ and ‘H’ depicts the ‘high-pass filter’. The first-order and texture features were subsequently applied 
to the wavelet-transformed images (17 first-order features + 162 texture features) multiplied by eight images, 
yielding 1432 wavelet features.

Feature selection and classification. The extracted features may be noisy or highly correlated with each 
other; therefore, feature selection is required to increase the prediction accuracy and minimise computational 
 cost45. To reduce over-fitting or any type of bias in our radiomics model, LASSO-penalized linear regression was 
applied to the training data. All radiomics features were centred and scaled to a value with a mean of zero and a 
standard deviation of one (z-score transformation before applying feature selection). With a linear combination 
of the selected features weighted by their respective coefficients, a model was used to estimate the HPV status. 
LASSO regression was implemented using Python (Python Software Foundation, version 3.5.2) with the Scikit-
learn package (https ://githu b.com/sciki t-learn /sciki t-learn )46. Features with larger contributions to the model 
were selected.

Three different machine-learning classifiers were applied: logistic regression, random  forest47 using the Scikit-
learn package, and XG  boost48 using the Xgboost package (https ://githu b.com/dmlc/xgboo st). The algorithms 
were selected based on their high performance and readiness for application. Three different models were com-
puted and compared to determine the best combination for determining the HPV status in the data set. The 
models were developed separately for each of the T1WI, T2WI, CE-T1WI, and ADC maps, as well as various 
combinations of these sequences. Classifiers were trained with a stratified threefold cross-validation procedure 
repeated 20 times, which allows repetition of experiments for each model up to 60 times. All possible combina-
tions of hyperparameters were investigated by the grid search using GridSearchCV library in the Scikit-learn 
package. (Supplementary Table 3). The feature selector and each classifier were trained with a stratified three-
fold cross-validation procedure, which was repeated 20 times. This indicates an up to 60-fold repetition of the 
experiments for each model. The procedures, including z-normalization of extracted features, followed by feature 
reduction using LASSO regression and machine learning classification were executed separately on the training 
data during each cross-validation fold.

https://www.mitk.org
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
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Statistical analysis. The Mann–Whitney U test was used to estimate the relationship between selected 
radiomic signatures and HPV status, and to compare accuracies between various combinations of MR sequences 
in a pairwise  manner49. AUCs were used to determine the diagnostic performance, with optimal thresholds of 
the imaging parameters determined by maximizing the sum of the sensitivity and 1 − specificity, i.e., the Youden 
index, values.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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