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Most common genetic risk variants associated with neuropsychiatric disease are noncoding and are thought to exert their

effects by disrupting the function of cis regulatory elements (CREs), including promoters and enhancers. Within each cell,

chromatin is arranged in specific patterns to expose the repertoire of CREs required for optimal spatiotemporal regulation

of gene expression. To further understand the complex mechanisms thatmodulate transcription in the brain, we used frozen

postmortem samples to generate the largest human brain and cell-type–specific open chromatin data set to date. Using the

Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq), we created maps of chromatin accessi-

bility in two cell types (neurons and non-neurons) across 14 distinct brain regions of five individuals. Chromatin structure

varies markedly by cell type, with neuronal chromatin displaying higher regional variability than that of non-neurons.

Among our findings is an open chromatin region (OCR) specific to neurons of the striatum. When placed in the mouse,

a human sequence derived from this OCR recapitulates the cell type and regional expression pattern predicted by our

ATAC-seq experiments. Furthermore, differentially accessible chromatin overlaps with the genetic architecture of neuro-

psychiatric traits and identifies differences in molecular pathways and biological functions. By leveraging transcription fac-

tor binding analysis, we identify protein-coding and long noncoding RNAs (lncRNAs) with cell-type and brain region

specificity. Our data provide a valuable resource to the research community and we provide this human brain chromatin

accessibility atlas as an online database “Brain Open Chromatin Atlas (BOCA)” to facilitate interpretation.

[Supplemental material is available for this article.]

Within the human brain, combinational binding of transcription
factors at chromatin accessible cis regulatory elements (CREs),
such as promoters and enhancers, orchestrates gene expression in
different cell types and brain regions. Understanding the role of
CREs in the human brain is of great interest, because the majority
of common genetic risk variants associated with neuropsychiatric
disease affect transcriptional regulatory mechanisms as opposed
to protein structure and function (Maurano et al. 2012; Gusev et
al. 2014; Roussos et al. 2014; Roadmap Epigenomics Consortium
2015; Fullard et al. 2017). Previous efforts to map CREs in human
brain were limited either by their use of homogenate tissue, con-
sisting of a mixture of markedly different cell types (Maurano et al.
2012; Andersson et al. 2014; Roadmap Epigenomics Consortium
2015) or focused on a single cortical region (Fullard et al. 2017).

To further understand the role of CREs in human brain func-
tion, we sought to generate a comprehensivemap of open chroma-
tin regions (OCRs). We applied ATAC-seq to postmortem nuclei
extracted from two broad cell types—neuronal (NeuN+) and

non-neuronal (NeuN−)—isolated from 14 discrete brain regions
of five adult individuals. Chromatin accessibility varies enormous-
ly between neurons and non-neurons, and both show enrichment
with known cell type markers. Although the pattern of open chro-
matin in non-neurons is largely invariable, significant variability
in neuronal chromatin structure is observed across different brain
regions with the most extensive differences seen between neurons
of the cortical regions, hippocampus, thalamus, and striatum. We
identify numerous cell-type– and region-specific OCRs. Transcrip-
tion factor (TF) footprinting analysis infers cell type differences in
the regulation of gene expression and identifies protein-coding
and long noncoding RNAs (lncRNA) with cell type and brain re-
gion specificity. Moreover, cell- and region-specific differentially
accessible OCRs are enriched for genetic variants associated with
neuropsychiatric traits.

Overall, our findings emphasize the importance of conduct-
ing cell-type– and region-specific epigenetic studies to elucidate
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regulatory and disease-associated mechanisms in the human
brain.Our data provide a valuable resource to the research commu-
nity, andwe provide our raw data and genome browser tracks to fa-
cilitate further studies of gene regulation in the human brain.

Results

Maps of chromatin accessibility in neuronal and non-neuronal

nuclei across 14 brain regions

Tomap chromatin accessibility in neuronal and non-neuronal nu-
clei across 14 brain regions (Fig. 1; Supplemental Fig. S1), we com-
bined fluorescence-activated nuclear sorting (FANS) followed by
ATAC-seq on 122 nuclear preparations obtained from 14 brain re-
gions of five control subjects (Supplemental Table S1). We pro-
cessed these data bioinformatically (Supplemental Fig. S2), and
multiple metrics, including genotype concordance, gender, and
evaluation of cell types, did not indicate sample mislabeling or
contamination (Supplemental Fig. S3). Quality control (QC) met-
rics (confirmed by visual inspection of the mapped reads) led to
the exclusion of seven libraries, leaving a final total of 115 libraries
(Supplemental Table S2; Supplemental Fig. S3A). Overall, we ob-
tained 4.3 billion (average of 37.8 million) uniquely mapped reads
after removing duplicate reads (mean 24%) and those aligning to
the mitochondrial genome (mean 1%) (Supplemental Table S3).
Samples within the same brain region and cell type were very
strongly correlated (Pearson correlation, r = 0.913), indicating
high reproducibility among the samples (Supplemental Fig. S4).
To assess the quality of our data, we compared it to five publicly

available data sets generated using more optimal starting material,
such as fresh tissue and cell lines (Supplemental Fig. S5; Qu et al.
2015; Corces et al. 2016, 2017; Novakovic et al. 2016; Banovich
et al. 2018). Our data compared favorably and showed the lowest
fraction ofmitochondrial reads and the highest amount of unique-
ly mapped, nonduplicated, paired-end reads.

We detected an average of 73,350 and 42,942 OCRs for neu-
ronal and non-neuronal libraries, accounting for 1.05% and
0.709% of the genome, respectively (Supplemental Fig. S6A).
Analysis of knownneuronal andnon-neuronal-specific genes indi-
cate that our data identify OCRs in a cell-type–specific manner
(Fig. 2A,B). The neuronal OCRs were more distal to transcription
start sites (TSSs) compared to non-neuronal OCRs (Fig. 2C; Supple-
mental Fig. S6B). Further, there was a high overlap of OCRs within
the neuronal and non-neuronal samples across the different brain
regions, with >56.6% and 67.7% of OCRs found in two or more
neuronal and non-neuronal samples, respectively. In general,
promoter OCRs and non-neuronal OCRs were more frequently
identified in multiple samples (Fig. 2D; Supplemental Fig. S7).
Jointly, these findings suggest higher regional variability of
OCRs and more distal regulation of genes in neurons compared
to non-neurons.

Cell type and regional differences in chromatin accessibility

To quantitatively analyze differences among cell types and brain
regions, we generated a consensus set of 300,444 OCRs by taking
the union of peaks called in the individual cells/brain regions
(Methods). We next quantified how many reads overlapped
each. Covariate analyses (Methods) revealed that, besides cell
type and brain region, fraction of reads within peaks (FRiP) ex-
plains a large proportion of variation in our data (Supplemental
Fig. S8). After covariate correction, all variables besides cell type
and brain region explained <1% of variance. t-SNE-based cluster-
ing using the adjusted read counts clearly separated neuronal
fromnon-neuronal samples (Fig. 2E). In addition,we also observed
a more modest separation among neuronal samples into neo- and
subcortical regions (hippocampus, striatum, and thalamus), indi-
cating that regional differences are more prominent in neurons.

To further assess differences in cell type and/or brain region,
we performed pairwise comparisons among all samples and quan-
tified the level of statistical significance based on the proportion of
true tests, pi1. The pi1 (which equals to 1− pi0) is an estimate of the
fraction of OCRs that are differentially accessible between two
groups; “1” corresponds to all OCRs estimated to have differential
accessibility, whereas “0” corresponds to none of the OCRs having
differential accessibility. This yielded results comparable to the
t-SNE-based clustering: Among the pairwise comparisons, those
between neuronal and non-neuronal cells (inter-cell-type compar-
ison) showed a large pi1 (median = 0.59, SD = 0.10). For the intra-
cell-type comparisons, there was, on average, a higher pi1 among
pairs of neuronal samples thanpairs of non-neuronal samples (me-
dian = 0.27, SD = 0.19 versus median = 0.064, SD = 0.10) (Fig. 2F).
Furthermore, multidimensional scaling of the samples, based on
the pi1 estimates as the distance metric, showed a clear distinction
between neurons and non-neurons in the first dimension (Fig.
2G). Here, the neuronal samples displayed distinct clustering
among different regions of the brain in the second dimension.
Within the neocortex, the primary visual cortex has the most
unique profile. The hippocampus and amygdala clusters showed
amore similar profile with the neocortical regions when compared
to the mediodorsal thalamus and striatum (putamen and nucleus

Figure 1. Schematic outline of the study design. Dissections from 14
brain regions of five control subjects were obtained from frozen human
postmortem tissue. We combined fluorescence-activated nuclear sorting
(FANS) with ATAC-seq, followed by downstream analyses, to identify
cell-type–specific open chromatin regions. The brain regions and abbrevi-
ations are described in Supplemental Table S2.
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accumbens). These findings are in agreement with those identified
by gene expression analysis of homogenate tissue (Kang et al.
2011) and suggest a significant neuronal contribution to the
regional variability described in the previous study (Kang et al.
2011).

To define cell-type– and brain region–specific OCRs, we next
performed differential chromatin accessibility analysis. For the
brain region analysis, we only considered neuronal samples due
to the comparably minor variance seen in non-neuronal samples.
The cell type analysis identified 221,957 neuronal and 46,299
non-neuronal differential OCRs at false discovery rate (FDR)
of 5% (Supplemental Figs. S9, S10A; Supplemental Table S4).
Regional analysis identified neuronal OCRs specific to neocortex
(61,410), primary visual cortex (22,248), hippocampus (11,535),
mediodorsal thalamus (42,560), and striatum (97,707) at FDR 5%
(Supplemental Figs. S9, S10B; Supplemental Table S4). Due to
the complementary nature of the two approaches, in the following

sections we used these cell-specific (neuronal and non-neuronal)
and region-specific (neocortex, primary visual cortex, hippocam-
pus, striatum, and mediodorsal thalamus) OCRs in parallel with
all OCRs identified in each brain region and cell type.

Overlap with existing epigenomic annotations, cell/

region-specific genes, and biological processes

We compared the OCRs with existing epigenetic data from the
NIH Roadmap Epigenomics Mapping Consortium (REMC) (Ernst
and Kellis 2015; Roadmap Epigenomics Consortium 2015), con-
sidering both DNase-seq (Supplemental Fig. S11) and chromatin
states (Supplemental Fig. S12) from homogenate brain tissue,
brain-derived cells, and nonbrain tissues (referred as “Other”).
Overall, we identified a higher overlap between our OCRs and
REMC brain-related DNase-seq and active chromatin states.
Notably, we saw a comparatively higher overlap with non-
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Figure 2. Comparisons between neuronal and non-neuronal OCRs of various brain regions. Representative cell-type–specific open chromatin tracks in
the dorsolateral prefrontal cortex (DLPFC) and hippocampus at known neuron-specific (CAMK2A) (A) and non-neuron-specific (OLIG1 and OLIG2) genes
(B). (C ) Neuronal and non-neuronal OCRs show distinct distribution of genomic contexts. OCRs within 3 kb of a TSS were considered as promoter OCRs.
(D) The distribution of the number of brain regions in which a consensus OCR was found, stratified by cell type and promoter/nonpromoter OCRs. OCRs
within 3 kb of a TSS were considered as promoter OCRs. (E) Clustering of the individual samples (n = 115) using t-SNE. Brain regions are grouped in
six broad areas: (AMY) amygdala; (HIP) hippocampus; (MDT) mediodorsal thalamus; (NCX) neocortex; (PVC) primary visual cortex; (STR) striatum.
(F) Distribution of statistical dissimilarity (quantified based on the proportion of true tests, pi1) for inter- and intra-cell-type pairwise comparisons.
Larger pi1 indicates a larger fraction of OCRs estimated to be different between samples based on pairwise comparisons. (G) Multidimensional scaling
of brain regions and cell types (n = 28) using the pi1 estimates of statistical dissimilarity as distance. Same abbreviations as in E. The MDT non-neuronal
group is immediately adjacent to, and partly obscured by, the leftmost non-neuronal striatum group.
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neuronal-specific OCRs than those of neurons (Fig. 3A). This may
be an indication that many neuron-specific regulatory elements
are not captured when studying homogenate tissue due to an
abundance of non-neurons relative to neurons.

To examine the overlap with cell- and region-specific genes,
as well as genes involved in various biological processes, we next

used the approach from GREAT (Methods; McLean et al. 2010).
Using cell-type–specific genes (Zhang et al. 2014; Zeisel et al.
2015), we identified an overlap between neuronal OCRs and genes
of pyramidal cells and interneurons, whereas non-neuronal OCRs
overlapped with oligodendrocyte and astrocyte specific genes
(Supplemental Fig. S13).

A

B

Figure 3. Overlapwith other epigenomes and biological functions. (A) Overlap betweenDNase-seq OCRs and promoter/primary enhancer states of 127
epigenomes from REMC and neuronal and non-neuronal OCRs identified by ATAC-seq. Samples from REMC are split into three groups: brain tissue, brain-
derived cells, and nonbrain tissues (referred to as “Other”). The full results for the individual REMC samples are shown in Supplemental Figures S11 and S12.
(B) Overlap between cell- and region-specific open chromatin (ATAC-seq) and gene sets representing biological processes and pathways. Only those that
were within the top five most significant gene sets in one or more ATAC-seq categories are shown. Pathways were clustered by the Jaccard index using the
WardDmethod based on the overlap between the genes in the different gene sets and not the enrichments. This was done to showhowenrichments varied
by cell type and region in terms of related pathways. (#) FDR < 0.001; (·) FDR < 0.05; (Bi) BIOCARTA; (GO) gene ontology; (KG) KEGG; (Re) REACTOME. In
this analysis, the region-specific OCRs were derived from neuronal samples only.
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Similarly, we explored the overlap with genes displaying
region-specific expression profiles (Supplemental Fig. S14; Hawry-
lycz et al. 2012) and showed that region-specific OCRs overlapped
predominantly with genes expressed in the same brain region. Al-
though this analysis describes high-order enrichment of OCRs
with region-specific genes, regional and cell-type specificity of
chromatin accessibility is readily visualized at the gene level. As
representative examples, we considered genes with preferential ex-
pression in cortical regions (SATB2, GJD4, STX1A, and CALHM1),
mediodorsal thalamus (CHRNA2 and PLCD4), and striatum
(DRD2, ADORA2A, and RGS9) (Supplemental Fig. S15).

Finally, we agnostically examined the overlap with biological
processes and pathways (Fig. 3B; Supplemental Fig. S16). In this
analysis, neuron-specific OCRs overlapped ion channels and a
range of brain-related functions, whereas non-neuronal OCRs
overlapped with terms relating, among others, to the NOTCH
pathway, gliogenesis, and ensheathment of neurons.

Overlap of open chromatin with neuropsychiatric traits

We used an LD-score partitioned heritability approach (Finucane
et al. 2015) to assess the overlap of OCRs with genetic variants as-
sociated with 15 neuropsychiatric and unrelated traits. We found
significant enrichment only for neuropsychiatric traits (Fig. 4A;
Supplemental Fig. S17; Supplemental Table S5). For the cell- and
region-specific OCRs, for example, neuronal- and striatal-specific
OCRs were enriched for schizophrenia-associated variants, where-
as neocortical- and striatal-specific OCRs were enriched for vari-
ants correlated with educational attainment. Further exploration
of OCRs identified in each brain region and cell type showed
that neuronal OCRs in hippocampus, nucleus accumbens, and su-
perior temporal cortex provide the most significant enrichment
with schizophrenia risk variants (Fig. 4B). These findings are in

agreement with a recent study highlighting striatal medium spiny
neurons and hippocampal C1A pyramidal neurons in schizophre-
nia (Skene et al. 2018) andDRD2, an antipsychotic drug target, be-
ing highly expressed in medium spiny neurons (Schizophrenia
Working Group of the Psychiatric Genomics Consortium 2014;
Skene et al. 2018). By applying the LD-score partitioned heritabil-
ity approach to OCRs from homogenate brain or other tissues, we
observed the strongest enrichment of schizophrenia risk variants
with neuronal ATAC-seq and homogenate fetal brain OCRs
(Supplemental Fig. S18; Supplemental Table S5), which is consis-
tent with the neurodevelopmental hypothesis of schizophrenia
(Rapoport et al. 2012).

Classifying brain sample epigenomes using machine learning

We applied a support vector machine approach to identify OCR
signatures that predict cell type and brain region in ATAC-seq sam-
ples of unknown origin (Supplemental Table S6). For accurate clas-
sification of cell type (neuron versus non-neuron) alone, cell type
and cortical/subcortical regions, and cell type and five different
brain regions defined based on the differential chromatin accessi-
bility analysis, signatures of 3, 115, and 252OCRs were needed, re-
spectively (Supplemental Figs. S19A–D, S20; Supplemental Tables
S7, S8). To corroborate our finding, we tested our models on inde-
pendent ATAC-seq data sets (Egervari et al. 2017; Fullard et al.
2017). Here, the cell type classifier (3 OCR signature) achieved per-
fect accuracy in distinguishing neuronal and non-neuronal sam-
ples (Supplemental Fig. S19E; Supplemental Table S7). The cell
type and cortical/subcortical classifier (115 OCR signature) at-
tained an overall accuracy of 90% (Supplemental Fig. S19F;
Supplemental Table S7). However, the classification of non-neuro-
nal samples into cortical and subcortical groups seemedmore chal-
lenging, yielding an accuracy of 86% versus an accuracy of 96%

A B

Figure 4. Overlap between genetic variants associated with various complex traits and identified OCRs assayed using LD-score partitioned heritability.
(A) Overlap between cell-type– and region-specific OCRs and genetic risk variants of various traits. The region-specific OCRs are based only on neuronal
samples. (B) Overlap between all OCRs identified in 14 brain regions by two cell types and schizophrenia genetic risk variants. OCRswere in all cases padded
with 1000 bp to also capture adjacent genetic variants. (Chronotype) whether one is a morning or an evening person; (·) nominally significant; (#) sig-
nificant after FDR correction of multiple testing across all traits and OCRs sets.
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obtained for neurons. This difference was also evident using the
cell-type and five-brain-region model (252 OCR signature).
Although overall accuracy using the validation data set attained
85% (Supplemental Fig. S19F; Supplemental Table S7), neuronal
and non-neuronal subgroups were classified with accuracies of
92% and 79%, respectively. The difficulties in classifying the brain
region of non-neuronal samples mirror the previously observed
small inter-region differences in MDS clustering and pi1 estimates
and provide evidence for lesser regional variability among non-
neuronal cells.

Regulatory effects of transcription factor binding

on gene expression

To explore gene regulation in the brain, weperformed footprinting
analysis using PIQ (Sherwood et al. 2014) to infer transcription fac-
tor (TF) bindingwithin theOCRs for cell type and region, indepen-
dently. This approach utilized 431 TF binding motifs representing
807TFs aggregated fromameta-database (Methods;Weirauch et al.
2014).We estimated a regulatory score for the impact of each TF on
gene expression by weighing each TF binding site by the probabil-
ity of that site being bound and the distance to the TSS. We found
the overall regulatory score of a gene (sum of regulatory scores
across all TFs for a given gene) to correlate markedly with gene ex-
pression (range of Spearman’s rho: 0.318–0.523) (Supplemental
Fig. S21), which is greater than thenull (estimated basedonpermu-
tation analysis: mean =−1.1 × 10−4, 95% CI range =−2 × 10−4;
−1.5 × 10−5). The correlation is higher for brain-derived expression
compared towhole blood, and this difference ismoreprominent in
neuronal ATAC-seq libraries (Supplemental Fig. S21A).

We next explored cell type (neuronal and non-neuronal) and
brain region (cortical and subcortical) regulatory differences
among samples at the gene level (protein-coding, lncRNA, and
miRNA) by using a regulatory divergence score. This score takes
into account both the difference in regulatory burden between
samples and the regulatory divergence (defined as one minus the
correlation of the gene regulation) (Methods; Qu et al. 2015).

For protein-coding genes, this approach highlighted, among
others, HOOK1 and KCNB2 for neuronal cells and SOX8 and HES1
for non-neuronal cells (Fig. 5A). The top 500 most neuronal and
top 500 most non-neuronal genes were enriched in biologically
relevant pathways. Similar analysis identified multiple protein-
coding genes, including PPP1R1B, DRD2, and CACNG4 for sub-
cortical neurons, and NRN1 and SERTM1 for cortical neurons
(Fig. 5A). PPP1R1B had the twelfth highest subcortical regulatory
divergence score. OCRs in the promoter and upstream enhancer
region of PPP1R1B are only present in neurons of the striatum
(Fig. 5B). PPP1R1B (also known as DARPP-32; dopamine and
cAMP-regulated phosphoprotein) shows high expression in the
dopaminoceptive medium spiny projection neurons (MSNs) of
the striatum. Although frequently used as a marker of MSNs,
PPP1R1B is actually widely active throughout the forebrain and
in the Purkinje cells of the cerebellum (Ouimet et al. 1984; Brené
et al. 1994). To validate the function of the PPP1R1B regulatory el-
ements identified by ATAC-seq, we constructed a vector extending
from 4.5 kb upstream of the TSS through the 5′ end of Exon 2
(Supplemental Fig. S22) engineered to express EGFP downstream
from an Internal Ribosomal Entry Site (IRES). Pronuclear injection
of this transgenic vector into mice yielded nine transgene-positive
animals. Histological examination of the brain at 2 mo of age
showed that seven of nine expressed EGFP in themajority of dorsal
and ventralMSNs, and in the piriform cortex, a site of endogenous

PPP1R1B (DARPP-32) expression (Fig. 5C–G). None showed ex-
pression outside of these regions, including in other regions with
endogenous PPP1R1B expression.

We performed similar regulatory divergence analysis using a
recent lncRNA gene assembly (Hon et al. 2017) and identified po-
tential differentially regulated lncRNAs with cell type (neuronal
and non-neuronal) and brain region (cortical and subcortical) spe-
cificity (Fig. 6A).We applied the same data used to create the afore-
mentioned assembly and confirmed the cell type and brain region
specificity of identified lncRNAs in closely related tissues. For ex-
ample, non-neuronal and subcortical lncRNAs are more abundant
in expression profiles derived from white matter (Neuron Projec-
tion Bundle in Fig. 6A) and striatum, respectively. Furthermore,
cell type and regional specificity was validated by qPCR gene ex-
pression studies for two lncRNAs from each group (neuronal,
non-neuronal, cortical, and subcortical) (Fig. 6B; Supplemental Ta-
ble S9). Finally, we examined the regulation of microRNA genes in
a similar manner (Supplemental Fig. S23). This analysis identified
a number of differentially expressed miRNAs, includingmir-124-1
for neurons, let-7a-3 for non-neurons, mir-148a for subcortical
neurons, and mir-3139 for cortical neurons.

Transcription factors underlying cell and regional differences

To infer TFs that underlie the regulatory differences between cell
types and brain regions, we calculated the fold-change enrichment
in the corresponding peaks compared to the background of all
peaks (Fig. 7; Supplemental Fig. S24). Because TFs within a given
TF family share bindingmotifs (Weirauch et al. 2014), it is difficult
to determine those family members that are biologically relevant
in a given context. We note, however, that a number of studies
support our findings: basic helix-loop-helix (bHLH) TFs in neurons
(Lee 1997); RFX1 in neurons and the hippocampus (Ma et al.
2006), and the RORA/RORBnuclear receptor TFs in the dorsal thal-
amus (Ino 2004). In addition, a recent study has shown that neo-
cortical expression of the bHLH TFs, TWIST1, and TWIST2may be
unique to primates, and both genes have human-specific expres-
sions in the neocortex compared to macaque and chimpanzee
(Sousa et al. 2017). Together with our finding of enriched exposure
of TWIST1 and TWIST2 binding sites in the humanneocortex, this
implicates these sites in the regulation of primate and human-spe-
cific neocortical genes.

Discussion

The generation of a cell-type– and brain region–specific atlas of
open chromatin enabled exploration of gene regulation in the
adult human brain with previously unattained detail. Differential
accessibility analyses andmachine learning inferred cell-type– and
brain region–specific signatures of open chromatin. Compared to
non-neuronal populations, open chromatin regions in neurons
were found to be more extensive, to be more distal to TSS, to
show a smaller overlap with previously reported OCRs from bulk
brain tissue, to show greater regional variability, and to show sig-
nificant enrichment in generic risk variants of various neuropsy-
chiatric traits. Enrichment analysis highlighted an overlap of
open chromatin with previously reported genes showing cell-
type– and region-specific expression and further implicated cell-
and region-specific molecular pathways.

Weutilized theopenchromatinpatterns to infer transcription
factor binding and to impute downstream gene regulation and ex-
pression. Despite limitations in predicting transcription factor
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Figure 5. Identification of cell- and region-specific regulation of protein-coding genes. (A) Ranking of protein-coding genes based on their regulatory
divergence score averaged across all neuronal versus all non-neuronal samples (left) and cortical neuronal samples versus subcortical neuronal samples
(right). The regulatory divergence score is a combined measure for the difference in the regulatory burden for each gene, multiplied by how different
the regulatory landscape is surrounding the gene (Methods). A gene set enrichment analysis using general gene sets and the top 500 most specific genes
for either cell type/region using a one-sided Fisher’s exact test was performed—the top three gene sets with P-values corrected for multiple testing using
FDR are indicated. SOX8, AC009041.2, and LMF1 are all located in the same genetic locus. (B) Regional plot in the PPP1R1B locus showing OCRs. The pro-
moter OCR and putative proximal enhancer OCRs are highlighted (dashed box). (C) The identified human PPP1R1B upstream OCR along with Exon 1,
Intron 1, and the 5′ end of Exon 2 were used to direct expression of EGFP in transgenic mice. Expression identified with anti-PPP1R1B and DAB is restricted
to the dorsal (dStr) and ventral striatum (vStr) (dorsal > ventral) and their projections (globus pallidus [gp] and substantia nigra [sn]) and the piriform cortex
(pc). The black box indicates the region shown at higher magnification using immunofluorescence in D–G: (D) anti-EGFP (green); (E) anti-PPP1R1B
(DARPP-32) (red); (F) DAPI (blue); (G) a merged image. EGFP is expressed exclusively in PPP1R1B positive neurons.
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binding, and ambiguity in subsequently
linking its OCR to the gene(s) it regulates
(Sherwood et al. 2014; Dixon et al. 2015;
Maurano et al. 2015), we found a con-
vincing correlation with gene expression
studies. Using this regulatory analysis,
we predicted cell- and region-specific
protein-coding genes, lncRNAs, and
microRNAs. As an example, we identi-
fied, and functionally validated, regulato-
ry elements of the striatal, neuronal gene
PPP1R1B. In addition, we predicted and
experimentally validated cell type and re-
gional patterns of lncRNA expression.
Finally, we identified cell- and region-
specific TFs based on the enrichment of
their cognatebindingmotifs,whichover-
lap with previous literature.We acknowl-
edge, however, that footprinting analysis
based on ATAC-seq data is limited due to
the widespread sharing of recognition
motifs between TFs (Weirauch et al.
2014), and future studies using other ap-
proaches such as ChIP-seq for specific
TFs can complement our observations.

Themost distinct brain region based
on the neuronal OCRs was the striatum
(putamen and nucleus accumbens). An
explanation for this could be that, in
contrast to the other assayed brain re-
gions, the majority of neurons here
are GABAergic medium spiny neurons

BA

Figure 6. Identification of cell- and region-specific regulation of lncRNA. (A) Top ranking of lncRNA genes based on their regulatory divergence score
averaged across all neuronal versus all non-neuronal samples (left) and cortical neuronal samples versus subcortical neuronal samples (right). The regulatory
divergence score is a combined measure of the difference in the regulatory burden for each gene multiplied by how different the regulatory landscape is
surrounding that gene (Methods). lncRNA genes were obtained from the FANTOM CAT Robust category, from which only genes from the category “far
from protein-coding genes” were retained. Genes with coding status “uncertain” were excluded. (Bottom) Heatmaps of whether gene expression (CAGE)
identified genes associated with the given anatomical structure. “Neuron Projection Bundle” includes samples from the corpus callosum and the optic
nerve, which are depleted in neuronal nuclei. Red indicates a high gene density, and blue indicates a low gene density. Numbers in parentheses indicate
the number of lncRNAs associated with the ontology. (B) qPCR validation of cell-type–specific (left) and brain region–specific (right) lncRNA identified by a
regulatory divergence analysis based on ATAC-seq data. Shown are fold differences in expression for neuronal (positive values) to non-neuronal (negative
values) gene expression (left) and cortical (positive values) to subcortical (negative values) (right). Error bars indicate standard deviation. (PFC) prefrontal
cortex; (STR) striatum; (∗) P < 0.05; (∗∗) P < 0.01; (∗∗∗) P < 0.005.

Figure 7. The top 10 transcription factor binding motifs showing the highest fold enrichment of foot-
printed binding sites within peaks specific to a given cell type or brain region compared to all peaks. The
region-specific TFs are based only on neuronal samples. TF binding motifs are grouped by TF family, and
line width indicates the log2-transformed fold enrichment. All shown enrichments were statistically sig-
nificant after correcting for multiple testing in a one-sided binomial test. Similar plots of TF binding motif
enrichments stratified by genomic context are shown in Supplemental Figure S24.
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(Kemp and Powell 1971). All experiments were performed on nu-
clei extracted from frozen postmortem brain specimens. Following
thawing of the samples, the cell membrane is lost and, with it,
many cell-type–specific antigens that would facilitate separation
of different cell types by FANS. Future studies targeting additional
neuronal subtypes using single-cell approaches or by cytometric
separation into secondary cell subtypes could further elucidate
gene regulation across the brain.

In conclusion, our findings indicate the utility of our open
chromatin atlas in studying the regulation of gene expression in
the brain and the impact of neuropsychiatric disease risk variants.
We provide to the research community an atlas of chromatin ac-
cessibility in human brain as an online database “Brain Open
Chromatin Atlas (BOCA)” to facilitate interpretation and future
studies.

Methods

Brain tissue specimens from 14 brain regions of five controls with
no history of psychiatric disorder and drug use were processed us-
ing a FACSAria flow cytometer to neuronal (NeuN+) and non-neu-
ronal (NeuN−) nuclei. The Assay for Transposase Accessible
Chromatin followed by sequencing (ATAC-seq) was performed us-
ing an established protocol (Buenrostro et al. 2013) and sequenced
on HiSeq 2500 (Illumina) obtaining 2 × 50 paired-end reads. Reads
from each samplewere aligned on hg19 (GRCh37; see Supplemen-
talMethods for a note about reference assembly) reference genome
using the STAR aligner (Dobin et al. 2013) (v2.5.0). We excluded
reads that (1) mapped to more than one locus using SAMtools
(Li et al. 2009); (2) were duplicated using PICARD (v2.2.4); and
(3) mapped to the mitochondrial genome. We merged the BAM
files of samples from the same brain region and cell type and
subsampled to a uniform depth. We subsequently called peaks
using the model-based Analysis of ChIP-seq (MACS, v2.1)
(Zhang et al. 2008) and created a joint set of peaks requiring
each peak to be called in at least one of the merged BAM files.
After removing peaks overlapping the blacklisted genomic regions,
300,444 peaks remained. We subsequently quantified read counts
of all the individual nonmerged samples within these peaks using
the featureCounts function in RSubread (v.1.15.0) (Liao et al.
2014).

We used the voomWithQualityWeights function from the
limma package (Liu et al. 2015) to model the normalized read
counts, including fraction of reads within peaks as covariates.
We performed differential chromatin accessibility analysis by fit-
ting weighted least-squares linear regression models for the effect
of cell type (neuronal and non-neuronal) and/or brain region.
P-values were adjusted for multiple hypothesis testing using false
discovery rate (FDR) ≤5%. The protein interaction quantitation
(PIQ) framework (Sherwood et al. 2014) was used to predict
transcription factor binding sites from the genome sequence. To
integrate functional annotations and GWAS results, we used the
LD-score partitioned heritability (Finucane et al. 2015) approach.
More details are described in the Supplemental Material.

Data access

The data from this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE96949. We further provide the
online database “Brain Open Chromatin Atlas (BOCA)” as UCSC
tracks and download links at our webpage (http://icahn.mssm.
edu/boca).
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