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THE BIGGER PICTURE Our article introduces a new method, FAUST, which combines novel algorithms for
clustering, cluster matching, variable selection, and feature selection. While these algorithms were devel-
oped for application to high-dimensional single-cell data—and our article validates this application area
with multiple case studies—they are general purpose and can be applied to any collection of related
real-valued matrices one wishes to partition.
Some useful features of these algorithms to the broader data science community include the following: they
estimate the number of clusters across a dataset, they can be applied independently to eachmatrix in the set
of matrices one wishes to cluster, they match clusters across matrices on the basis of data-driven annota-
tions, and the annotations are interpretable in relation to the initial measurement variables. We provide an
open-source implementation of our method, https://github.com/RGLab/FAUST, targeting data structures
optimized for use in cytometry data analysis.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We introduce a new method for single-cell cytometry studies, FAUST, which performs unbiased cell popula-
tion discovery and annotation. FAUST processes experimental data on a per-sample basis and returns bio-
logically interpretable cell phenotypes, making it well suited for the analysis of complex datasets. We provide
simulation studies that compare FAUST with existing methodology, exemplifying its strength. We apply
FAUST to data from a Merkel cell carcinoma anti-PD-1 trial and discover pre-treatment effector memory
T cell correlates of outcome co-expressing PD-1, HLA-DR, and CD28. Using FAUST, we then validate these
correlates in cryopreserved peripheral blood mononuclear cell samples from the same study, as well as an
independent CyTOF dataset from a publishedmetastaticmelanoma trial. Finally, we show how FAUST’s phe-
notypes can be used to perform cross-study data integration in the presence of diverse staining panels.
Together, these results establish FAUST as a powerful new approach for unbiased discovery in single-cell
cytometry.
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INTRODUCTION

Cytometry is used throughout the biological sciences to interro-

gate the state of an individual’s immune system at the single-cell

level. Modern instruments can measure approximately 30 (via

fluorescence) or 40 (via mass) protein markers per individual

cell,1,2 and increasing throughput can quantify millions of cells

per sample. In typical clinical trials, multiple biological samples

are measured per subject in longitudinal designs. Consequently,

a single clinical trial can produce hundreds of high-dimensional

samples that together contain measurements on many millions

of cells.

To analyze these data, cell subpopulations of interest must be

identified within each sample. The manual process of identifying

cell subpopulations is called ‘‘gating.’’ In modern high-dimen-

sional panels, gating inevitably introduces bias into cytometry

data analysis, since manual gating strategies will only identify

cell subpopulations deemed important a priori by the investi-

gator. As the number of possible populations grows exponen-

tially with the number of measured protein markers, manual

identification cannot be used to perform unbiased discovery

and analysis: there are too many combinations of markers to

consider.

Researchers have developed numerous computational

methods to address these limitations,3–7 helping scientists inter-

rogate the immune system in a variety of clinical settings.8,9

Despite successes, computational gating methods face signifi-

cant challenges when applied to large experimental datasets.

Similar to manual gating, methods often require investigators

to bound or pre-specify the number of clusters (i.e., cell subpop-

ulations) expected in a sample,6,10 or to know the relevant clus-

ters in advance.11 Such information is often not available. One

proposed solution is to partition a dataset into a very large num-

ber of clusters in order to capture its main structure.12 However,

when methods make strong assumptions about the distribution

of protein measurements,13,14 the structure captured by over-

partitioning can reflect a method’s assumptions rather than bio-

logical signal.15

Another challenge for many methods is that biologically equiv-

alent clusters are given arbitrary numeric labels when samples

are analyzed independently. In such cases, methods must pro-

vide a way to match biologically comparable clusters across

samples. One matching approach is to quantify cluster similar-

ities across samples with a user-specified metric.16,17 As the

dimensionality of the data increases, choosing an appropriate

metric becomes more difficult due to sparsity.12 An alternative

approach is to concatenate samples together and then cluster

the combined data.4,18,19 However, this approach can mask

biological signal in the presence of batch effects or large

sample-to-sample variation in protein expression. It also intro-

duces the risk that a method will fail to identify small but biolog-

ically interesting clusters, since computational considerations

can lead authors to recommend subsampling cells from each

sample before combining the samples for analysis.5

To address these challenges, we have created an interpret-

able machine-learning method that discovers and annotates

cell populations across cytometry experiments, named Full

Annotation Using Shaped-constrained Trees (FAUST, Figure 1).

FAUST solves these issues by combining novel algorithms for
2 Patterns 2, 100372, December 10, 2021
variable selection, clustering, cluster matching, and feature se-

lection. The key assumption underpinning FAUST is that biolog-

ically relevant clusters of cells separate into homogeneous

modal groups along the markers measured in a panel. Building

off this assumption, the FAUST method systematically uses

one-dimensional non-parametric tools to discover and annotate

cellular phenotypes.

FAUST is interpretable in that its final product is an annotated

matrix of counts for an experiment, with rows corresponding to

samples and columns to annotated selected features. FAUST

features are defined by their annotations: for a given marker

panel, they are the set of cells in each sample that fall within

the region of marker co-expression asserted by the annotation.

These features are interpretable, since the co-expression pat-

terns in the annotation can be used directly to map features

onto known immunological populations, such as B cells and

T cells. Examples of this mapping process are given throughout

this paper (e.g., the last four subsections of the results). Binding

feature definitions to their phenotypic annotations within each

sample distinguishes FAUST both from clustering methods

that return numeric cluster labels and biologically interpretable

analysis approaches that rely on pre-specifying reference sub-

sets across an experiment to which biological annotations are

subsequently assigned20 or which have biological interpretation

due to their pre-specification strategy.21

At least one marker in a dataset must exhibit multimodality to

use FAUST: we have observed this condition usually holds in

high-throughput samples stained with high-dimensional panels.

When the assumption is met, FAUST can discover clusters with

phenotypic labels sample-by-sample, match clusters across

samples using these phenotypes, and gate out a subset of phe-

notypes that are consistently discovered across the experiment.

Unlike manual gating, FAUST is unbiased because it estimates

the number of phenotypes in a data-driven fashion. In contrast

to many existing methods, FAUST’s ability to discover subsets

on a per-sample basis and then match subsets by their label al-

lows FAUST to analyze large cytometry experiments without

concatenating the entire dataset.

FAUST facilitates biological discovery and validation: any

phenotype discovered by FAUST found to be significantly asso-

ciated with an outcome of interest in downstream modeling can

be targeted in independent datasets for validation. We demon-

strate this workflow by applying FAUST to data from a Merkel

cell carcinoma (MCC) anti-PD-1 trial, and identifying several

effector memory T cell phenotypes whose presence in blood at

baseline (pre-treatment) are significantly associated with sub-

jects’ positive response to therapy. We then use FAUST to vali-

date these associations by targeting the comparable effector

memory T cell phenotypes in baseline anti-PD-1 data from a pre-

viously published metastatic melanoma trial, as well as cryopre-

served peripheral blood mononuclear cells (PBMCs) from the

same study, and demonstrate that the same positive associa-

tions hold in both datasets.

In addition to targeted hypothesis testing, FAUST enables a

multivariate approach to hypothesis testing we call ‘‘Phenotypic

and Functional Differential Abundance’’ (PFDA), inspired by

techniques used in gene set enrichment analysis.22 PFDA fits a

multivariate model to all FAUST cell subpopulations whose phe-

notypes are consistent with a pre-specifiedmarker combination,



Figure 1. FAUST overview

(A) Samples with markers M1 to M8 are grouped into experimental units (EUs) that are concatenated for analysis.

(B) FAUST exhaustively explores the space of ‘‘reasonable’’ 3-marker gating strategies for each EU to compute an annotation forest.

(legend continued on next page)
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then uses the estimated model coefficients to conduct tests of

differential abundance. We contrast PFDA with targeted hypoth-

esis testing by applying FAUST to myeloid and T cell datasets

from three independent cancer immunotherapy trials, then use

both approaches to test hypotheses concerning simple pheno-

types. We demonstrate that both approaches offer useful ways

to perform cross-study analysis and also show that PFDA can

detect signals missed by the targeted approach if the targeted

phenotype is mis-specified.

In total, we apply FAUST to seven cytometry datasets gener-

ated from five independent studies. We demonstrate how

FAUST can be used to discover candidate biomarkers associ-

ated with treatment outcome, validate these associations on

independent data, and perform cross-study analyses in the

presence of heterogeneous marker panels.

RESULTS

The FAUST method
Intuitively, FAUST consists of two main phases. The first phase

consists of deriving a standardized set of thresholds for informa-

tive markers in the cytometry experiment (Figures 1A–1C).

FAUST uses the standardized thresholds to define biologically

interpretable features with phenotypic labels. These labels are

later used to match features across experimental samples.

FAUST can estimate thresholds on a per-sample basis, and

uses information about the modal structure of marginal and con-

ditional densities in each sample to make its estimate. The

reason standardization is required is because FAUST can oper-

ate sample by sample: if a cellular population is either absent

from or only present in a minority of experimental samples, the

modal structure in that subset will be different from the majority

of the experiment. This structural difference must be resolved in

order to match phenotypic features across the experimental

samples, since FAUST ultimately defines features relative to

the set of thresholds for a given sample. This requirement moti-

vates the first phase of FAUST.

The second phase of FAUST consists of discovering and

down-selecting phenotypes in terms of the informative markers

(Figures 1D–1G). As with the thresholds, phenotypes can be

discovered on a sample-by-sample basis. This is done by

growing numerous trees whose leaves correspond to candidate

phenotypes and then selecting a subset of leaves across trees

that jointly partition the sample. The intuition behind this proced-

ure is that since the trees are generated using one-dimensional

density estimates, we expect that any given tree will mostly

have leaves arrived at from suboptimal partitioning strategies.

This is because the strategies are not directly capturing the

higher-dimensional structure of the data at any step. However,
(C) Using this, FAUST scores each marker in each EU and selects consistent

Thresholds are standardized across EUs for selected markers: if a selected mark

the standard, thresholds are either removed (M1, EU2) or imputed (M2, EU2; M7, E

the red arrows).

(D) Discovery forests are then grown for each EU. Each leaf of each tree corresp

phenotypes are selected (leaf nodes without a red3; starred nodes subsequently

nodes with red 3).

(E) Selected phenotypes are annotated using the standardized thresholds from (

(F) Phenotypes are down-selected based on frequency of occurrence across EU

(G) A per-sample count matrix is derived for down-selected phenotypes.
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we further intuit that by exploring complex strategies enabled

by the high-dimensional nature of the data, in some trees a few

leaves will be produced by relatively optimal strategies that iden-

tify homogeneous collections of cells. Thus, by growing a very

large number of trees and selecting leaves across them, the

procedure attempts to produce a partition of each sample con-

sisting solely of high-quality leaves. Once partitioned, FAUST

identifies the phenotype of each selected leaf by determining

where its marginal expression distributions fall relative to its

sample’s standardized thresholds. This generates a list of phe-

notypes discovered in each sample. FAUST then down-selects

to the set of phenotypes that frequently occurs across experi-

mental samples based on the hypothesis that the phenotypes

in this set represent actual structure (rather than being method-

ological artifacts), since they are discovered independently

across samples. FAUST concludes by constructing a matrix of

counts for these down-selected phenotypes. The remainder of

this section provides additional details about the components

of each phase.

To apply FAUST to a cytometry dataset, an analyst first sets

several parameters describing the experimental design to the

method. These parameters include specifying the starting popu-

lation of cells to analyze in each sample (if pre-gating of the data

is available) and specifying which markers to use in the analysis.

The key parameter to set is the experimental unit, which deter-

mines whether any groups of samples should be concatenated

prior to discovery and annotation of phenotypes (Figure 1A).

By default, the experimental unit is set to individual samples.

However, in longitudinal experiments where samples from a sin-

gle subject are exposed to multiple stimulations at multiple time

points, concatenating samples from a single subject across

stimulation conditions may be desirable (‘‘FAUST method: tun-

ing parameters’’ discusses additional tuning parameters one

can set in the FAUST method).

Once parameters have been set, FAUST grows an annotation

forest for each experimental unit (Figure 1B). FAUST defines the

annotation forest as the exhaustive collection of all ‘‘reasonable’’

3-marker gating strategies in an experimental unit. FAUST’s

operative definition of ‘‘reasonable’’ is those combinations of

markers for which the null hypothesis of unimodality according

to the dip test23 is rejected (‘‘FAUST method: growing the anno-

tation forest’’ gives a complete description). Once grown, FAUST

computes a depth score for each marker that quantifies how

consistently amarker separates into subpopulations in the anno-

tation forest (see ‘‘FAUST method: depth score computation’’).

FAUST uses the depth score to select a subset of markers in

the panel that are consistently high-scoring across experimental

units, then estimates a standard number of sample-specific

annotation thresholds for each selected marker (Figure 1C).
ly high-scoring markers for continued analysis (M5, M6 are removed here).

er has EUs in which the number of estimated thresholds does not agree with

U1; M8, EU3) using information from EUs adhering to the standard (denoted by

onds to a phenotype. All phenotypes are scored across forests, high-scoring

survive down-selection in F), and low-scoring phenotypes are discarded (leaf

C).

s.



Figure 2. Simulation studies

(A) Left: median estimated number of clusters by method, 5 simulation iterations for each truth value, multivariate Gaussian setting. Right: median adjusted Rand

index (ARI) by method, 5 simulation iterations for each truth value, multivariate Gaussian setting.

(legend continued on next page)
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FAUST standardizes the number of thresholds for each selected

marker in order to create a common system of annotation for

each experimental unit. This annotation system is ultimately

used by FAUST to define its clusters and match them across

experimental units.

After marker selection and threshold standardization, FAUST

grows multiple discovery forests for each experimental unit (Fig-

ure 1D). Unlike the trees in the annotation forest, these trees are

not depth constrained. Consequently, each tree in the forest is a

proposed clustering of the experimental unit, and each leaf

within a tree corresponds to a unique phenotype. FAUST scores

all leaves of all trees in the discovery forests, and selects a sub-

set of high-scoring leaves across multiple trees (see ‘‘FAUST

method: phenotype discovery and cluster annotation’’). The sub-

set of selected leaves jointly partition the experimental unit and

are annotated using the experimental unit’s standardized thresh-

olds (Figure 1E). As mentioned previously, these phenotypic an-

notations are then used to match clusters across experimental

units. Phenotypes are further down-selected according to how

frequently FAUST discovers them across the experimental units

(Figure 1F and ‘‘FAUST method: tuning parameters’’ provide de-

tails about the down-selection procedure). FAUST concludes

by constructing a sample-by-phenotype count matrix for the

down-selected phenotypes (Figure 1G). This count matrix is

the primary output of the FAUST analysis and can be used in

downstreammodeling to test discovered phenotypes for associ-

ation with outcomes of interest.

Because of down-selection, the phenotypes in the count

matrix do not account for every cell in the experiment: they

comprise a subset of consistently detected cell subsets

discovered and selected by FAUST. Filtering to return consis-

tently detected features is a desirable aspect of the method,

since it increases the power to detect significant correlates in

downstream modeling. That said, FAUST does produce a

phenotypic label for every cell in every sample according to

the cell’s position relative to the standardized annotation

thresholds. We developed a novel visualization of the cytometry

data based off these annotations, which we illustrate in

‘‘FAUST identifies and visualizes baseline T cells in blood asso-

ciated with outcome in CITN-09, a Merkel cell carcinoma

anti-PD-1 trial.’’ First, however, here we present data from

simulation studies showing that the consistently detected fea-

tures returned by FAUST correspond well to components in

high-dimensional mixture models.

FAUST resolves high-dimensional structure in
simulation studies
We performed simulation studies in two settings: a ‘‘control’’

setting in which we generated samples from multivariate

Gaussian mixtures, and a ‘‘stimulation’’ setting in which we

transformed the data so their margins were no longer Gaussian.

We viewed the Gaussian setting as a ‘‘control’’ because implicit

Gaussian assumptions are encountered in widely used

methods.24,25 We expected most methods to perform well in
(B) Left: cross-validated AUC of the top cluster for each of 25 iterations, multivaria

between a method’s top cluster and the simulated true predictor, 10 iterations p

(C and D) All panels report results from applied methods to simulated datasets tran

Left: same as (B, left). Right: same as (B, right). Horizontal dashed red line at 0.9
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this setting. Our goal was to assess each method’s performance

at the following tasks: recovering the true number of clusters;

correctly assigning abundances to each cluster; and discovering

the specific cluster that predicts a simulated outcome.

We first generated 10 samples frommultivariate Gaussian mix-

tures, identifyingmixture components as clusters (a 2-component

mixture has been discussed previously).26 We varied the number

of components from 5 to 115. We applied FAUST, DEPECHE,27

flowMeans,10,28 FlowSOM,6,29 k-means, PARC,30 and Pheno-

Graph31,32 to the simulated datasets (supplemental experimental

proceduresA.7 shows an example of the simulated data).Wepro-

vided k-means with the true number of clusters in each simulation

iteration, a required parameter setting. Due to its computational

efficiency, we applied FlowSOM in different ways, both letting it

estimate the number of clusters and providing that information

(deemed ‘‘oracle’’ settings, see ‘‘simulation study: estimating the

number of clusters and partition scoring’’).

We repeated this simulation five times per setting and re-

corded the median number of clusters (for methods that esti-

mated it). For FAUST, we identified the number of down-selected

phenotypes as the number of clusters. We also recorded the

median adjusted Rand index (ARI) relative to the simulated truth

for eachmethod, both on the entire dataset and the subset of ob-

servations consisting of FAUST’s down-selected phenotypes. In

this scenario, FAUST, PARC, and PhenoGraphwere consistently

able to estimate close to the true number of clusters; these same

methods had median ARI above 0.9 across simulation settings

(Figure 2A).

To test FAUST as a discovery tool, we simulated a dataset

composed of 20 samples drawn from multivariate Gaussian

mixture models with 125 components. The weight vector of the

mixture was fixed for 10 ‘‘non-responder’’ samples. For the other

10 ‘‘responder’’ samples, the weight of a single targeted compo-

nent was doubled by proportionally decreasing weight from the

other 124 components. This simulated a perfect predictor of

responder status: samples with the elevated component were

responders; those without, non-responders.

We applied FAUST to 25 datasets simulated under these con-

ditions. Since we simulated a responder status, we also applied

citrus,5 Rclusterpp,33 and diffCyt,19,34 as well as the previous

methods (omitting flowMeans due to computational constraints).

For each method, the top cluster associated with responder sta-

tus was identified (see ‘‘simulation study: predicting simulated

responder status;’’ note that for citrus and diffCyt we attempted

to use the modeling built into those methods to identify the ‘‘top

cluster’’). We then used a logistic model to predict responder

status using the frequency of each method’s top cluster in order

to normalize across different approaches to predictive modeling.

We assessed performance using 5-fold cross-validated area un-

der the ROC curve (5cvAUC).35 We also computed the ARI of

each method’s top cluster relative to the simulated perfect pre-

dictor. We found that the top cluster from multiple methods

had median 5cvAUC above 0.9 and median ARI above 0.9

across the 25 iterations (Figure 2B).
te Gaussian setting, points jittered by a maximum of 0.0125. Right: median ARI

er expected fold change, multivariate Gaussian setting.

sformed by Gð1 + jx =4jÞ. (C) Left: same as (A, left). Right: same as (A, right). (D)

0.



(legend on next page)
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Next, we repeated the simulation studies with one change:

each column of each simulated dataset was transformed by the

map Gð1 + jx =4jÞ in order to test the performance on non-

Gaussian data. This transformation was selected to produce da-

tasets with marker distributions that visually resembled those in

CyTOF datasets with randomization applied (supplemental

experimental procedures A.7). Among the tested methods,

FAUST best estimated the number of clusters in the dataset

and had median ARI above 0.9 on the annotated subset (Fig-

ure 2Cand supplemental experimental procedures A.10 together

demonstrate that non-FAUST methods have similar median ARI

on and off the selected subset). In addition, FAUST’s top cluster

had median ARI above 0.9 across the 25 iterations (Figure 2D).

FAUST discovers predictive phenotypes in benchmark
dataset
We applied FAUST to the FlowCAP-IV challenge dataset to eval-

uate its performance relative to existing methods on a known

benchmark.36 The FlowCAP-IV dataset consists of 766 paired

PBMC samples measured by flow cytometry from 383 HIV pa-

tients, split into a training set of 382 samples from 191 patients,

and a test set of 384 samples from 192 patients. Each patient

provided two samples: an unstimulated control sample and a

sample stimulated by HIV-Gag peptides. The FlowCAP-IV chal-

lenge tasked methods with discovering cellular subsets on the

training set that could predict time to progression to AIDS on

the test set.

FloReMi,37 the best-performing approach from the original

publication, combined data pre-processing, feature extraction,

feature selection, and prediction. Method performance was

summarized using a Cox proportional hazards model, with pre-

dicted survival times on the test set as a predictor variable.

FloReMi reported a�log10ðp valueÞ of 2.699 and a concordance

index of 0.672 on the test set.

We observed that FloReMi could bemodified to use FAUST for

feature extraction and feature selection. This was only possible

because of FAUST’s phenotypic annotations: we were able to

apply FAUST to the training set, discover and annotate

phenotypes, and then subsequently use FAUST to derive counts

on the test set specifically for the phenotypes that had been

independently selected on the training set. When we used

FAUST to define predictive features in this way (see ‘‘flowCAP-

IV analysis’’), and combined these features with FloReMi’s

pre-processing and predictive framework, we observed a �
log10ðp valueÞ of 4.243 and a concordance index of 0.720 on

the test set.

FAUST identifies and visualizes baseline T cells in blood
associated with outcome in CITN-09, a Merkel cell
carcinoma anti-PD-1 trial
We used FAUST to perform phenotype discovery in cytometry

data generated from fresh, whole blood isolated from patients
Figure 3. FAUST annotations enable novel embeddings that reflect exp

UMAP embedding of the observed expressionmatrix colored by: (A) the expressio

the unit interval; (B) the associated per-cell FAUST annotation; (C) all selected FA

annotation transformed expression matrix with (E) colored as (A), (F) colored as (B

contains the four significant correlates discovered in the FAUST analysis. The ins

bounding box to show the relative placement of the four correlates on the annot
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with Merkel cell carcinoma (MCC) receiving pembrolizumab on

the Cancer Immunotherapy Trials Network (CITN) phase 2 clin-

ical trial CITN-09,38 with the goal of identifying baseline corre-

lates of response to treatment (NCT02267603, see supplemental

experimental procedures A.1). We analyzed 78 longitudinal sam-

ples stained with immunophenotyping panels to identify T cell

subsets within whole blood (see ‘‘CITN-09 T cell panel analysis’’).

We used binomial generalized linearmixedmodels (GLMMs)39 to

test each FAUST phenotype for differential abundance at the

baseline time point (prior to receiving anti-PD-1 therapy) be-

tween responders and non-responders in 27 subjects (Equa-

tion 4.2). Responders were defined as subjects who exhibited

either a complete response (CR) or partial response (PR) (as

per RECIST 1.1)40 and non-responders as subjects exhibiting

progressive disease (PD) or stable disease (SD).

At a Bonferroni-adjusted 10% level, four FAUST phenotypes

were significantly associated with response to therapy (Fig-

ure 3D). Two had a CD28+ HLA-DR+ CD8+ effector memory

phenotype, and were annotated either PD-1dim or PD-1bright,

respectively. The other two were CD4 bright: one had an HLA-

DR� CD28+ PD-1dim phenotype and the other an HLA-DR+

CD28+ PD-1dim phenotype (data for both CD4 phenotypes is

shown in supplemental experimental procedures A.6). The

observedCD28+ phenotypes agreewith published findings high-

lighting the importance of CD28 expression in CD8+ T cells in

anti-PD1 immunotherapy.41,42 Effect sizes with 95% confidence

intervals for the correlates are reported in supplemental experi-

mental procedures A.14. FAUST annotated all four correlates

as CD45RA� and CCR7�, indicating that they represented

effector memory T cells.

To visualize these data, we applied UMAP43 to the primary

flow cytometry data with ‘‘qualitative’’ parameter settings44 (Fig-

ures 3A–3D). The UMAP ‘‘islands’’ in the resulting embedding

contained relatively homogeneous expression of several

measured protein markers such as CD3 and CD4. Those same

islands contained noticeable variation in expression of other

markers such as PD-1 and HLA-DR (Figure 3A). The variability

of marker expression observed in UMAP ‘‘islands’’ was also

observed in the single-cell FAUST annotations for individual

markers (Figure 3B). Because of this variation, selected FAUST

phenotypes exhibited considerable within-island overlap when

displayed on these UMAP embeddings (Figure 3C). The four sig-

nificant FAUST phenotypes were not distinguishable solely on

the basis of the UMAP embedding of the primary expression

data (Figure 3D).

To improve the visualization of FAUST results, we devel-

oped a novel approach to embedding cytometry data, which

we call generating an ‘‘annotation embedding’’ (see ‘‘FAUST

algorithm: annotation embedding’’). In brief, this approach

works by using each observed FAUST annotation (both

selected and filtered phenotypes) as a ‘‘landmark.’’ All expres-

sion data corresponding to a distinct phenotype is shifted and
ression differences not captured by direct dimensionality reduction

n for the stated marker winsorized at the 1st and 99th percentile, and scaled to

UST phenotypes; (D) significant FAUST phenotypes. UMAP embedding of the

), (G) colored as (C), and (H) colored as (D). The red bounding box in (G) and (H)

et in (H) is the entire embedding plot; the main component is zoomed into the

ation embedding.



Figure 4. FAUST CD8+ phenotypes are asso-

ciated with positive response to anti-PD-1

therapy in virus-positive subjects

(A–C) (A) The two CD8 FAUST phenotypes signifi-

cantly associated with positive treatment outcome,

stratified by viral status. Observed p values

contrasting all responders (n = 18) against all non-

responders (n = 9) are reported in the figure. Fre-

quencies of the CD8+ phenotypes relative to total

CD3+ cells versus (B) total PD-1 expression

measured by IHC from tumor biopsies as described

in Giraldo et al.46 (C) Productive clonality (1 �
normalized entropy) from tumor samples as

described in Miler et al.47 A suggestive trend is

observed in both (B) and (C) among virus-positive

subjects, although strong conclusions are not war-

ranted due to the small sample size.

(D) Targeted frequencies relative to total CD3+ cells

in the cryopreserved PBMC samples (MCC valida-

tion) with observed p value contrasting responders

against non-responders in virus-positive subjects,

and the CyTOF melanoma dataset with observed

p value.
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scaled marker by marker so that the marker data is centered

at and standardized around the appropriate ‘‘landmark.’’ The

transformed dataset is then embedded using the dimension-

ality reduction algorithm of choice; here we continue to use

the UMAP algorithm.

Whenwe applied this approach to theMCC cytometry data, we

observed that within-island marker expression in the annotation

embedding appeared more homogeneous across the selected

markers relative to the embedding generated from the primary

expression data (Figure 3E). As a result, FAUST single-cell anno-

tationsmapped neatly to each ‘‘island’’ (Figure 3F). This produced

visualizations of the selected FAUST phenotypes that did not
significantly overlap within islands (Fig-

ure 3G). Consequently the four significant

FAUST phenotypes were clearly displayed

in the annotation embedding (Figure 3H).

CD8+ T cells from virus-positive
subjects correlate with in-tumor
measurements; their association
with outcome validates on
independent data
MCC is a virus-associated malignancy:

Merkel cell polyomavirus occurs in many

MCC tumors.38 Reports that CD8 T cells

co-expressing HLA-DR and CD28 can

exhibit anti-viral properties,45 as well as re-

ports of CD28-dependent rescue of ex-

hausted CD8 T cells by anti-PD1 therapies

in mice,42 led us to investigate the associ-

ation between the abundance of the thera-

peutic-response-associated phenotypes

discovered by FAUST and tumor viral sta-

tus of each subject, as we hypothesized

that these cells may represent virus-spe-

cific subpopulations. We adapted the dif-
ferential abundance GLMM to test for an interaction between

response to therapy and tumor viral status in the four significant

FAUST phenotypes and found a statistically significant interac-

tion in the CD8 phenotypes (Figure 4A). This suggested that

the CD8+ T cells may be particularly relevant to anti-tumor

response in subjects with virus-positive tumors.

To further investigate the relevance of these CD8+ T cells, we

examined published data on PD-1 immunohistochemistry (IHC)

staining in tumor biopsies from the same patients.46 Importantly,

the in-tumor PD-1 measurement is a known outcome correlate

in MCC.46 Limited overlap between the assays resulted in only

five subjects for whom both flow cytometry and tumor biopsy
Patterns 2, 100372, December 10, 2021 9



Figure 5. Longitudinal profiles of aggregated

FAUST cell populations in a pembrolizumab

therapy trial and an FLT3-L + CDX-1401 trial

are consistent with underlying technical and

biological signals

(A) The aggregate frequency of all phenotypes

discovered by FAUST containing the subphenotype

CD8+ PD-1bright CD3+ CD4� across all time points.

Aggregation occurs within subject by time point.

(B) The longitudinal profiles of all cell subpopulations

with phenotypes consistent with the DC compart-

ment: CD19�, CD3�, CD56�, HLA-DR+, CD14�,
CD16�, and CD11C+/�. Light-colored lines show in-

dividual subjects. The dark line shows the median

across subjects over time. Error bars show the 95%

confidence intervals of median estimate at each time

point. Cohort 1, n = 16 subjects; cohort 2, n = 16

subjects.
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anti-PD-1 IHC staining were available, and only four of these were

virus positive. Nonetheless, the frequencies of the CD8+ T cells

were strongly correlated (PD-1dim r = 0:806; PD-1bright r =

0:579) with the PD-1 total IHC measurements within the four vi-

rus-positive subjects (Figure 4B). We also examined published

T cell receptor clonality data generated from patient tumor sam-

ples.47 Ten subjects passing clonality quality control (QC) were

common to the two datasets, six of which were virus positive. Fre-

quencies of the CD8+ FAUST populations within these six sub-

jects were strongly correlated (PD-1dim r = 0:988; PD-1bright r =

0:790) with the measurement of productive clonality (Figure 4C).

Wenote that the small sample size limits the strength of inferences

that can be drawn from these observed correlations.

To validate our findings in theMCCstudy,we tested the hypoth-

eses that increased abundance of the T cell phenotypes are asso-

ciated with positive response to pembrolizumab treatment in two

different datasets. The first dataset consisted of 15 cryopreserved

PBMC patient samples from the MCC study. The second dataset

was a published metastatic melanoma CyTOF dataset we down-

loaded from FlowRepository.48 A full description of the latter data-

set is given by Subrahmanyam et al.;49 here, we restricted our

analysis to unstimulated baseline PBMC samples.

In both datasets, we applied FAUST to generate data-driven

annotation thresholds for the 10 selected markers used to define

phenotypes in the initial MCC analysis. We then used these

thresholds to extract counts of the pre-specified T cell correlates

in both datasets. Since FAUST defined only one threshold for

PD-1 in both of the validation datasets, we targeted PD-1+ cells

in place of PD-1dim/bright cells. To validate the associations, we

then tested the targeted phenotypes for differential abundance

between responders and non-responders in samples from

subjects that went on to receive pembrolizumab. In the cryopre-

served PBMC data, we detected significantly increased abun-

dance among virus-positive subjects in the CD8+ T cells; in the

melanoma dataset, we detected significantly increased abun-

dance among responding subjects (Figure 4D). We note that

in the CyTOF melanoma dataset, responders were defined as

patients that exhibited progression-free survival for at least

180 days after therapy.49 These analyses validated the associa-

tions detected by FAUST in the MCC trial and highlight a power-

ful feature of FAUST: performing targeted validation across

studies and technologies.
10 Patterns 2, 100372, December 10, 2021
FAUST phenotypes capture underlying biological and
technical signals in longitudinal studies
Assessing the sensibility of a method’s partitioning of a biolog-

ical dataset is challenging in the absence of a source of ground

truth such as human labels. FAUST’s annotations can amelio-

rate this issue by allowing an investigator to check phenotypes

discovered by the method for expected biological or technical

effects.

To demonstrate this, we examined the longitudinal profiles of

specific phenotypes in the MCC anti-PD-1 trial for which we ex-

pected longitudinal changes in the abundance due to known

technical effects. Specifically, we examined all selected FAUST

phenotypes whose annotations included CD3+, CD8+, CD4�,
and PD-1�/bright. The temporal abundance of these cells reveals

that these cells are not detectable inmost samples after subjects

have received pembrolizumab therapy (Figure 5A), presumably

from pembrolizumab blocking the detecting antibody. The

observed decay post treatment is consistent with the manual

gating of CD3+ CD8+ PD-1+ cells in this study (supplemental

experimental procedures A.5).

We also analyzed flow cytometry data from a second CITN

trial: CITN-07 (NCT02129075, see supplemental experimental

procedures A.1 for trial data), a randomized phase II trial study-

ing immune responses against a DEC-205/NY-ESO-1 fusion

protein (CDX-1401) and a neoantigen-based melanoma vaccine

plus poly-ICLCwhen deliveredwith or without recombinant FLT3

ligand (CDX-301) in treating patients with stage IIB to stage IV

melanoma. The cytometry data consisted of fresh whole blood

stained for myeloid cell phenotyping (see ‘‘CITN-07 phenotyping

panel analysis’’).

In the FLT3-ligand + therapeutic Vx trial we expected to

observe expansion of dendritic cells in response to FLT3-L stim-

ulation.50 After applying FAUST to this dataset, we examined the

longitudinal profile of phenotypes whose annotations were

consistent with dendritic cells (Figure 5B). This examination re-

vealed dynamic expansion and contraction of the total DC

compartment in the FLT3-L-stimulated cohort but not in the un-

stimulated-by-FLT3-L-pre-treatment cohort. The expansion

peaked at day 8 after FLT3-L simulation in cycles 1 and 2. This

dynamic is consistent with observations from manual gating of

the DC population,51 the expected biological effect of FLT3-

L,50 and the timing of FLT3 administration.



Figure 6. FAUST phenotypes enable cross-

study meta-analysis of datasets stained

with disparate marker panels

(A)Forestplotsdisplayingone-sided95%confidence

intervals (CIs) for increasedabundanceofCD3+CD4�

CD8+ PD-1dim/bright phenotypes (CD8 compartment)

and CD3+ CD4bright CD8� PD-1dim/bright phenotypes

(CD4 compartment) in the MCC trial T cell panel.

(B) Forest plots displaying one-sided 95% CIs

for increased abundance of CD14+ CD16� HLA-

DR+/bright CD3� CD56� CD19� phenotypes in re-

sponders versus non-responders for three trials.

Each panel shows CIs derived from fitting the uni-

variate model to each FAUST phenotype consistent

with the target, the 95% CI arising from the targeted

approach, and the 95% CI derived by fitting a PFDA

model jointly to the FAUST phenotypes and then

testing for increased abundance using model

coefficients.
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These results demonstrate that FAUST’s phenotypes provide a

unique way to validate cluster quality in the absence of human la-

bels: FAUST phenotypes can be checked for consistency with

technical signals or biological responses that are expected from

the experimental design. The longitudinal behavior of PD-1bright

T cell populations in theMCCanti-PD-1 trial and the dendritic cells

in the FLT3-ligand + CDX-1401 trial are consistent with manual

gating of cytometry data and serve as an internal validation of

the methodology.

FAUST enables targeted hypothesis testing for pre-
specified phenotypes
FAUST provides investigators with two ways to test pre-specified

hypotheses in cytometry studies. We call these procedures ‘‘the

targeted approach’’ and PFDA. The targeted approach uses

FAUST’s standardized thresholds to extract counts for pheno-

types matching a pre-specified marker combination. This is the

method used on the test set in the benchmark analysis of the

section ‘‘FAUST discovers predictive phenotypes in benchmark

dataset’’ as well as in the validation analyses of ‘‘CD8+ T cells

from virus-positive subjects correlate with in-tumor measure-

ments; their association with outcome validates on independent

data.’’ To apply it, an investigator must have a priori knowledge
of the exact phenotype to evaluate. In

contrast to this, PFDA fits a multivariate

model to all FAUST phenotypes that

contain a specific subphenotype within

their annotations, providing protection

against mis-specification. Using PFDA,

tests of differential abundance between

classes are then performed using linear

combinations of the estimated model coef-

ficients. Similar to gene set enrichment

analysis methods,22 PFDA accounts for

the correlation between the different phe-

notypes discovered by FAUST.

To demonstrate how these approaches

are used to test a specific hypothesis

within a single study, we applied both of
them to the T cell panel data from the MCC study (see ‘‘CD8+

T cells from virus-positive subjects correlate with in-tumor

measurements; their association with outcome validates on in-

dependent data’’). We hypothesized that total CD4 and total

CD8 T cells expressing PD-1 were elevated in responders at

baseline. To test this hypothesis with the targeted approach,

we applied FAUST and extracted counts for all cells either

with CD4bright CD3+ CD8� PD-1bright or CD8+ CD3+ CD4�

PD-1bright in their FAUST phenotypes. We then tested counts

of these targeted phenotypes for increased abundance in re-

sponders using binomial GLMMs. To test the hypothesis with

PFDA, we fitted two multivariate models to all FAUST pheno-

types consistent with each of the targeted phenotypes, then

used the model coefficients from each model to test for

increased abundance in responding subjects. Using the tar-

geted approach, we did not detect significantly increased

abundance among responders in the targeted T cell pheno-

types; using PFDA we did, since PFDA accounted for the het-

erogeneity of abundance patterns observed in the underlying

FAUST phenotypes (Figure 6A).

These approaches can also be used to harmonize findings

across different studies. To demonstrate this, we tested a sec-

ond hypothesis that was generated from the unbiased FAUST
Patterns 2, 100372, December 10, 2021 11
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analysis of several myeloid datasets. Both the MCC anti-PD-1

and FLT3-ligand + therapeutic Vx trials had cytometry data

stained with a myeloid phenotyping panel. We also selected a

myeloid phenotyping dataset from a previously published anti-

PD-1 trial in metastatic melanoma.9 We used FAUST to conduct

unbiased discovery on these three datasets and identified signif-

icant baseline phenotypes associated with clinical outcome at

the Bonferroni-adjusted 10% level in all examined datasets.

In all considered studies, FAUST discovered significant phe-

notypes that were consistent with a principal finding of the pre-

viously published analysis:9 the frequency of CD14+ CD16�

HLA-DRhi cells is associated with positive response to therapy

(supplemental experimental procedures A2, A3, A4, and A.9).

While the FAUST phenotypes were consistent with this finding,

they were not directly comparable across trials due to differ-

ences in the staining panels. However, the panels shared a com-

mon group of markers: CD14, CD16, HLA-DR, CD3, CD56, and

CD19. Based on this commonality, we hypothesized that CD14+

CD16� HLA-DR+/bright CD3� CD56� CD19� cells exhibit

increased abundance in responding subjects at baseline across

the three examined trials.

To test this second hypothesis with the targeted approach,

we applied FAUST and extracted counts of CD14+ CD16�

HLA-DR+/bright CD3� CD56� CD19� cells in each study and

then tested for differential abundance using binomial GLMMs.

To test this hypothesis with PFDA, we fit a multivariate model

to the FAUST phenotypes containing the annotation CD14+

CD16� HLA-DR+/bright CD3� CD56� CD19� in each trial and

then tested for increased abundance using the estimated model

coefficients. Using both the targeted approach and PFDA, we

detected significantly increased abundance among responders

in the CD14+ CD16�HLA-DR+/bright CD3�CD56�CD19� pheno-

type (Figure 6B), consistent with the original publication.

The total CD4 and total CD8 T cell results demonstrate that the

targeted approach does not always detect differential abun-

dance when used to test phenotypes that contain numerous

subpopulations with weak effects. On the other hand, PFDA

can detect differential abundance in these cases by fitting a joint

model to all FAUST phenotypes consistent with the target (so ac-

counting for their correlation structure) and then using the model

coefficients to test for an overall increase in abundance (Fig-

ure 6A). In the case of the CD14+ CD16� HLA-DR+/bright CD3�

CD56� CD19� results, there is less heterogeneity detected

within the targeted phenotype across the studies, and both the

top-down approach and PFDA detect increased abundance in

responding subjects (Figure 6B). Together, these results demon-

strate two ways that FAUST enables targeted hypothesis testing

of pre-specified phenotypes, which in turn makes it possible to

use FAUST to carry out validation analyses as well as to integrate

findings across studies.

DISCUSSION

We applied FAUST to seven cytometry datasets (CyTOF and

flow) generated from five independent studies described in the

results section. We performed simulation studies which demon-

strated that FAUST consistently recovers high-dimensional

structures. We also performed a benchmark study on the

FlowCAP-IV dataset which showed that FAUST discovered bio-
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logically predictive phenotypes. We used FAUST to conduct un-

biased analysis of data from an MCC anti-PD-1 trial, discovered

baseline correlates of response to therapy, demonstrated a

novel way to visualize FAUST results, and showed how FAUST

could be used to perform targeted validation of these correlates

in independent data. We provided results showing how FAUST’s

phenotypes can be used to interrogate expected biological and

technical signals in longitudinal studies. Finally, we illustrated

how FAUST could be used to test pre-specified hypotheses us-

ing a targeted approach and PFDA.

Our simulation results show that FAUST’s approach to dis-

covery and down-selection captures genuine structure in

data: FAUST did not severely over-partition the simulated data-

sets when the true number of clusters was small, nor did it un-

der-partition as the true number of clusters grew (Figures 2A

and 2C). In our experience, when we have applied FAUST to

experimental cytometry datasets it is not uncommon for the

number of down-selected phenotypes to be in the hundreds.

These simulation results support the hypothesis that FAUST

is identifying actual variation in such biological datasets, in

favor of the competing hypothesis that FAUST is over-partition-

ing them as a methodological artifact. Moreover, the discovery

results demonstrate that many methods are able to identify a

predictive subset with good performance when we simulate a

single perfect predictor of response (Figures 2B and 2D). How-

ever, they also demonstrate that when a method under-re-

solves the dataset it can cause the predictive subset to include

many observations unrelated to the simulated response status,

as measured by the adjusted Rand index (ARI) of the method’s

top cluster (Figure 2D). This raises the possibility that in the

course of analyzing a real biological dataset, a method could

identify a predictive subset of cells whose heterogeneity (due

to under-resolution) masks the biological phenotype important

for designing follow-on studies.

In our analysis of the MCC anti-PD-1 T cell dataset, we found

that FAUST discovered hundreds of phenotypes and could be

used to visualize them (see ‘‘FAUST identifies and visualizes

baseline T cells in blood’’). We also found that four of these phe-

notypes were significantly associated with clinical outcome in

pre-treatment samples (see ‘‘CD8+ T cells from virus-positive

subjects correlate with in-tumor measurements’’). Notably,

manual gating did not identify statistically significant T cell corre-

lates of outcome in this study. We observed that the significant

FAUST phenotypes involve combinations of PD-1, HLA-DR,

and CD28 that were not investigated by the manual gating. We

also applied FlowSOM, k-means, PARC, and PhenoGraph to

this dataset. When we tested each method’s clusters for associ-

ation with outcome in baseline samples, we did not observe sta-

tistically significant correlates at either the Bonferroni or false-

discovery-rate-adjusted 0.20 level (supplemental experimental

procedures A.12). We were able to use FAUST to validate that

the effector memory phenotypes discovered by FAUST in the

MCC anti-PD-1 T cell dataset were also significantly increased

in responding subjects in cryopreserved PBMCs from subjects

in the same study, as well as the CyTOF dataset of Subrahma-

nyam et al.49 (see ‘‘CD8+ T cells from virus-positive subjects

correlate with in-tumor measurements’’).

Validation followed from the specificity of our hypotheses: we

only tested three phenotypes of interest in the CyTOF dataset,
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while the authors reported examining 210 cell population frac-

tions using FlowJo in the original analysis.49 Similar to the

manual MCC analysis, none of the 210 cell populations manually

examined in the original CyTOF analysis involved combinations

of PD-1, HLA-DR, and CD28 (see Figures S2 and S4 in their pub-

lication).49 We believe that this is an important scientific feature

of our method: when FAUST is used to perform unbiased discov-

ery on datasets (such as in the MCC study), phenotypes that are

found significant in subsequent modeling constitute testable hy-

potheses about specific cellular phenotypes. Furthermore, when

independent datasets are publicly available (such as the CyTOF

dataset of Subrahmanyam et al.49), we demonstrated that

FAUST can be used to test and validate those hypotheses (see

‘‘CD8+ T cells from virus-positive subjects correlate with in-tu-

mor measurements’’).

The data reported here indicate that a population of effector

memory CD4+ and CD8+ T cells co-expressing CD28, HLA-DR,

and PD-1 are candidate biomarkers for response to pembroli-

zumab therapy in humans. These results are consistent with

the findings of Kamphorst et al., who reported that HLA-DR+

CD28+ PD-1+ CD8 T cells (that also express CD38 and Ki-67)

proliferate in the peripheral blood of non-small cell lung cancer

(NSCLC) patients following PD-1 therapy (see Figure 4 of that

publication).42 On the other hand, Ottonello et al. reported

that the baseline frequency of PD-1+ EOMES+ CD8 T cells

was significantly higher in NSCLC patients with progressive

disease than in NSCLC patients with controlled disease prior

to receiving nivolumab therapy.52 Contrasting this finding with

our FAUST analysis suggests that the co-expression of CD28

and HLA-DR with PD-1 detected in the MCC study may be of

particular importance in predicting positive response to ther-

apy. Our findings also accord with literature reporting that

CD28 signaling, when disrupted by PD-1, impairs T cell func-

tion.41 Brummelman et al. report an activated CD8+ T cell clus-

ter enriched in lung tumor (see Figure 1D of that publication,53

cluster 7), whose phenotype (comparing markers that overlap

between the panels) is consistent with the effector memory

phenotypes described above in the MCC analysis (CCR7�,
CD45RA�, CD25�, PD-1dim/bright, HLA-DR+). Whether the

T cell populations discovered by FAUST are related to the re-

ported T stem cell-like progenitor cells54 remains to be deter-

mined. Our data suggest that we may be capturing T cells in

a state of dynamic transition.

Other blood-based candidate biomarkers for response to

pembrolizumab therapy include: relative eosinophil count and

relative lymphocyte count (both favorably associatedwith overall

survival);55 CD69+ and MIP-1b+ natural killer cell subsets

(increased in responding subjects);49 elevated levels of soluble

PD-L1 (high pre-treatment levels were associated with increased

likelihood of progressive disease);56 the observed ratio of Ki67+

CD8+ T cells to tumor burden at the post-treatment time point

with peak T cell response (a higher ratio was associated with a

better clinical outcome);57 and frequency of CD14+ CD16�

HLA-DRhi monocytes (which predict progression-free and over-

all survival in response to anti-PD-1 immunotherapy).9 FAUST’s

detection of myeloid phenotypes as outcome correlates across

three different datasets from three independent trials spanning

different cancer types and therapies is also consistent with this

last finding of Krieg et al.9
Overall, we demonstrated that FAUST can discover correlates

of outcome in complex cytometry datasets that validate across

independent trials and technologies. The reported correlates

survived strong multiple testing adjustment and are biologically

plausible (in that the FAUST phenotypes are consistent with

related literature), which suggests that they represent real bio-

logical signals. We emphasize that additional prospective

studies based on independent cohorts of patients with cancers

(including MCC and melanoma) that have been approved for

pembrolizumab therapy are needed to confirm both the T cell

and myeloid signatures reported here.

There are several known limitations of the FAUST method.

First, FAUST relies on one-dimensional statistics to detect multi-

modality and grow the forests used for annotation and discovery.

Because of this, FAUST will not identify phenotypes if it does not

detect marginal separation in any markers in a dataset. In our

experience, this has not occurred when we have applied FAUST

to heterogeneous populations of cells (e.g., lymphocytes) that

have been profiled by a diversemarker panel. However, this con-

dition could occur if FAUST is applied to a relatively homoge-

neous population of pre-gated cells (such as regulatory T cells)

and the remaining markers in the panel do not exhibit multimo-

dality. This situation is related to a second limitation of FAUST:

if the method is applied to a large heterogeneous population of

cells, markers in the panel which are known to be expressed

solely on relatively rare subsets of cells will potentially be as-

signed a low depth score and dropped from discovery and anno-

tation. If fluorescence-minus-one (FMO) controls exists, FAUST

can be tuned to include the difficult-to-resolve markers by incor-

porating the location of each expression threshold informed by

the controls into the analysis (see the marker boundary matrix

in ‘‘FAUST method: tuning parameters’’ for more information).

Our results demonstrate that FAUST can consistently detect

immunologically plausible candidate biomarkers from measure-

ments made in blood using a simple, well-understood assay.

They also demonstrate that FAUST may be of particular use in

re-analyzingpublisheddatasets that havebeendistributed in pub-

lic repositoriessinceweappliedFAUST tohigh-dimensionalpublic

CyTOFdata asoneway to validate the T cell correlatesdetected in

theMCCstudy.Many large experimental cytometry datasets have

already been published, and FAUST could be used to systemati-

cally analyze thesedatasets toproduce standardizedphenotypes.

In turn, this could open the door to the re-analysis and meta-

analysis of public datasets using approaches such as PFDA.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for data and requests for additional information should be directed to

the lead contact, Raphael Gottardo (raphael.gottardo@chuv.ch).

Materials availability

This study did not generate physical materials.

Data and code availability

Cytometry data from CITN-07 and CITN-09 analyzed in this study are available

for download via DOI from figshare: 10.6084/m9.figshare.14791464.

Cytometry data from the remaining studies were downloaded from

FlowRepository:48

d FlowCAP-IV:36 https://flowrepository.org/id/FR-FCM-ZZ99

d Subrahmanyam et al.:49 https://flowrepository.org/id/FR-FCM-ZYKP
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d Krieg et al.:9 https://flowrepository.org/id/FR-FCM-ZY34

FAUST is available as an R package at https://github.com/RGLab/FAUST.

This implementation supports multithreading. When used, we have observed

run times on large datasets comparable with phenograph31,32 (supplemental

experimental procedures A.11). Scripts to reproduce the FlowCAP-IV analysis

and the simulation study are available at

d https://github.com/RGLab/faust_flowcap4_analysis

d https://github.com/RGLab/faust_simulation_study
FAUST method: Growing the annotation forest

To grow the annotation forest (Figure 1B), FAUST first tests each marker in

each experimental unit for unimodality using the dip test.23 The hypothesis

of unimodality is rejected for any marker that has dip test p values below

0.25. All markers which are deemed multimodal according to this dip criterion

are then used to initialize gating strategies. Gate locations for each strategy are

determined using the taut string density estimator.58 The location of each gate

is the mid-point of any anti-modal component of the taut string. Since the taut

string makes no assumptions about the number of modes present in a density,

in principle this approach can lead to estimating an arbitrary number of gates in

a given strategy. In practice, we only pursue strategies containing 4 or fewer

gates under the assumption that marker expression of 5 or more expression

categories does not reflect biological signal.

Once the initial set of gates are computed for a given marker, events are

divided into subcollections relative to the gates for that marker, and the pro-

cedure recurses and repeats along each subcollection. Algorithm 1 describes

the procedure. A gating strategy terminates when it meets any of the following

stopping conditions. First, once a strategy involves any three combinations of

markers, it terminates. This is because the space of gating strategies grows

factorially with the number ofmarkers. Due to this growth rate, nodes in the for-

est are penalized factorially relative to their depth in the gating strategy when

we subsequently compute the depth score. Second, if at any point in a strategy

FAUST fails to reject the null hypothesis of unimodality for all tested markers,

the strategy terminates regardless of depth. Finally, a gating strategy termi-

nates along a branch if all nodes along the branch contain too few cells. The

algorithm displayed here assumes event measurements are distinct in the cy-

tometry dataset, and all nodes in the forest contain in excess of 500 events. For
Algorithm 1. Grow annotation forest

1: function growAnnotationForest(cells, depth, activeMarke

2: if (length(cells) < 500) or (depth >3) then

3: return strategy ⊳ Gating strategy stops due to depth, event

constraints.

4: else

5: newDepth)depth+ 1

6: multimodalList)empty list

7: for mIdx˛ðcolumnsðexprsMatrixÞXactiveMarkersÞ do
8: if pValueðdipTestðexprsMatrix½currentCells;mIdx�ÞÞ<0:25 th

9: appendðmultimodalList;mIdxÞ
10: if lengthðmultimodalListÞ= = 0 then

11: return strategy⊳Gating strategy stops due to shape constr

12: else

13: for mIdx in multimodal List do

14: boundary List)empty list

15: Compute taut string density estimate of exprsMatrix½cells;
16: boundary List)mid� points of antimodal components of

17: remainingMarkers)activeMarkersymIdx

18: for iin½1; lengthðboundaryListÞ� do
19: lg)boundaryList½ði� 1Þ�
20: ug)boundaryList½i�
21: newCells)rows of exprsMatrix½cells;mIdx� between lg an

22: growAnnotationForestðnewCells; newDepth; remainingMa
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details of how FAUST breaks ties and deals with nodes containing between 25

and 500 events, we refer the reader to Greene et al.59

FAUST method: Depth-score computation

While we were aware of tree-based learning algorithms when developing this

score (in particular, random forests,60 a related unsupervised approach using

well-chosen synthetic data,61 and related measures of variable impor-

tance),62,63 here we chose to develop a score that attempts to incorporate

characteristics of the non-parametric tools used to grow the annotation forest

(in particular the dip test23 and taut string).58 Suppose there are p>1 active

markers in a sample. To compute the depth score for any of the p markers,

the annotation forest is first examined to determine the following quantities:

d1, the number of times different markers are gated in the root population;

d2, the number of times children of the root are gated; and d3, the number

of times grandchildren of the root are gated. For i˛f1; 2; 3g, define

dih
1

di

:

For 1%m%p, let

Nmh
�
Nm;1;Nm;2;.;Nm;n

�

be the set of all n parent nodes in the annotation forest for which the null hy-

pothesis of unimodality is rejected for marker m. For a parent node 1%j%n,

let 1R denote the indicator function that is 1 when Nm; j is the root population.

Similarly, let 1C denote an indicator of a child of the root, and 1G a grandchild of

the root. Define the scoring function

QðNm; jÞhð1� aRÞ1RðNm; jÞ+ ð1� aRÞð1� aCÞ1CðNm; jÞ+ ð1� aRÞð1� aCÞð1
� aGÞ1GðNm; jÞ;

where, abusing notation, we let

aRhaRðNm; jÞ

hthe dip test p

� value in the root population of the gating strategy that led to Nm; j :
rs)

en

aint.

mIdx�
taut string

d ug

rkersÞ

https://flowrepository.org/id/FR-FCM-ZY34
https://github.com/RGLab/FAUST
https://github.com/RGLab/faust_flowcap4_analysis
https://github.com/RGLab/faust_simulation_study
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We allow aC and aG to be defined similarly. The function Q can be inter-

preted as a measure of the quality of the gating strategy that led to node

Nm; j. In the case of a grandchild node that had clear modal separation along

all markers in the strategy, Q
�
Nm; j

�
z1, while a grandchild node that had p

values of 0.25 at each ancestral node, Q
�
Nm; j

�
z27=64 = 0:753.

Let Pm be the population size for marker m in the root population.

Next, define

PðNm; jÞh# of cells in node Nm; j

Pm

:

Finally, define

DðNm; jÞhd1,1RðNm; jÞ+ d2,1CðNm; jÞ+ d3,1GðNm; jÞ:

The depth score is defined to be the normalized sum

DSðNmÞh
Pn

i = 1QðNm; iÞ,PðNm; iÞ,DðNm; iÞ
max1%q%pDSðN qÞ h

Pn
i = 1uðNm; iÞ

max1%q%pDSðN qÞ :

(Equation 4.1)

ThedepthscoremapsNm into ½0;1�,withat leastonemarker inagatedsample

achieving themaximal scoreof1.This is takenasameasureof separationquality:

thebestscoringmarker according to thedepthscore is taken tobe thebestsepa-

rated marker in that sample at the root population, and conditionally along all

other gating strategies. Normalizing to the unit interval allows depth scores to

be compared across experimental units for given markers. By using the factorial

weights di, the depth score also explainswhy FAUSTonly explores gating strate-

gies involving, at most, combinations of three markers in its scoring and marker

selection phase. Adding more combinations of markers induces a factorial in-

crease in computational cost. But any marker that enters a gating strategy at

depth 4 (or beyond) will be dominated in depth score by those markers initially

gated in the annotation forest at or near the root population. Consequently, after

normalization in experimentswith a large number ofmarkers, suchmarkers have

a depth score an ε above zero, and are effectively never selected by FAUST for

discovery and annotation—hence the restriction to 3-marker gating strategies.

FAUST method: Annotation boundary estimation

The depth score is also used to estimate annotation boundaries. Recalling

FAUST only explores gating strategies with 4 or fewer annotation boundaries,

FAUST partitions the set

N m = G1WG2WG3WG4:

Define

G1h
�
Nm; i˛Nm jNm; i has a single gate determined by the taut string

�
:

G2;G3; and G4 are defined similarly. In other words, each Gi is the subset of no-

des in the annotation forest for marker m with i gates. Recalling Equation 4.1

(which defines u), we can partition the score sum

Xn

i = 1

uðNm; iÞ=
X4

j =1

X

N˛Gj
uðNÞ:

FAUST selects the number of annotation boundaries for the marker m by

choosing the set Gj with the maximal sum
P
N˛Gj

uðNÞ. Letting g1

�
Nm; j

�
denote

the smallest gate location estimated by the taut string in node Nm; j (which is

the only gate location if FAUST selects G1), FAUST estimates the phenotypic

boundary locations for the marker by taking the weighted average

P
N˛GjuðNÞg1ðNÞP

N˛GjuðNÞ
:

In the event FAUST selects Gj ; j>1 (i.e., multiple annotation boundaries),

similar weighted averages are taken for g2ðNm;jÞ, and so forth.

FAUST method: Marker selection

Markers are selected by comparing the empirical depth-score selection quan-

tile across experimental units to a depth-score selection threshold value. All
markers whose empirical quantile exceeds the threshold are used for discov-

ery and annotation. Both values are tunable.

FAUST method: Boundary standardization

FAUST standardizes the number of annotation boundaries for each marker by

majority vote. The most frequently occurring number of annotation boundaries

across experimental units is chosen as the standard number. This behavior

can be modified via the preference list tuning parameter (see supervised

boundary estimation list) in order to incorporate prior biological information

into FAUST.

Next, for a given marker, FAUST selects the set of experimental units where

the number of annotation boundaries for that marker matches the standard.

Then, by rank, FAUST computes the median location of each phenotypic

boundary across experimental units. We refer to these median boundary loca-

tions as the standard boundaries.

FAUST enforces standardization of annotation boundaries for non-conform-

ing experimental units by imputation or deletion. Imputation in an experimental

unit occurs when FAUST estimates fewer boundaries than the standard. In this

case, each boundary in the non-conforming unit is matched to one of the stan-

dards by distance. Unmatched standards are used to impute the missing

boundaries. Similar distance computations are done in the case of deletion,

but FAUST deletes boundaries that are farthest from the standards. For both

imputation and deletion, if multiple boundaries match the same standard,

then the boundary minimizing the distance is kept and the other boundaries

are deleted. Should this result in standards that do not map to any boundaries,

those unmatched standards are used to impute the missing boundaries.

If the user modifies the imputation hierarchy parameter (see tuning parame-

ters), the previously described imputation process is modified in the following

way. First, FAUST iterates over distinct values of the imputation hierarchy

setting, and will attempt to impute missing boundaries for an experimental

unit by only using data from experimental units with the same setting. Similarly,

deletions occur only using data from experimental units with the same impu-

tation hierarchy setting. Once this is complete, FAUSTwill then impute missing

boundaries and delete excess boundaries using data across all experi-

mental units.

FAUST method: Phenotype discovery and cluster annotation

For each experimental unit, FAUST constructs a forest of partition trees

(randomly sampled) and annotates selected leaves from this forest relative

to the standardized annotation boundaries. Partition tree construction is

similar to tree construction for the annotation forest (see growing the annota-

tion forest), but they are not depth constrained: a tree continues to grow

following the previously described strategy until each leaf is unimodal accord-

ing to the dip test23 or contains fewer than 25 cells. Consequently, a single

partition tree defines a clustering of an experimental unit. Clusterings from

the forest of partition trees are combined into a single clustering in the following

manner. To ensure cells are not assigned to multiple clusters, a subset of

leaves of the partition forest are selected by scoring leaves according to shape

criteria and then selecting a subset of leaves across partition trees that share

no cells to maximize their total shape score. The shape score is defined in

terms of trimmed sample Lmoments64,65 as well dip test p values23 of leaf mar-

gins. Only the selected leaves are given phenotypic annotations. Phenotypes

are determined for a selected leaf by comparing the median of each margin

with the standardized annotation boundary for the sample, then assigning

the leaf a label that locates the leaf relative to the sample boundaries. In the

case of a single boundary for a phenotype, the location then maps to ‘‘�’’ or

‘‘+;’’ for two boundaries, ‘‘�,’’ ‘‘dim,’’ and ‘‘bright.’’ FAUST keeps a list of

discovered phenotypes for each experimental unit and concludes by returning

exact counts of cells in each sample whose phenotypes exceed a user-spec-

ified occurrence frequency threshold. For more details of the scoring and se-

lection procedure, we refer the reader to Greene et al.59

FAUST method: Tuning parameters

We describe here the key tuning parameters of FAUST.

Experimental unit

This parameter is used to link individual samples together into a single exper-

imental unit. All samples with the same ‘‘experimental unit’’ value are concat-

enated prior to FAUST conducting discovery and annotation.
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Table 1. Possible mean vector entries for the 10 simulation

variables

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Not expressed 0 0 0 0 0 0 0 0 0 0

Expressed 8 8 8 8 8 8 8 8 8 8

ll
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Imputation hierarchy

This parameter is used to link experimental units together during the standard-

ization of annotation thresholds. All experimental units with the same ‘‘imputa-

tion hierarchy’’ value will define a class of units across which the boundary

standardization process first occurs. For example, suppose a study contains

tissue samples and blood samples stained by the same marker panel. The

imputation hierarchy can be used so that if a boundary is missing for a marker

from a blood sample, FAUST will impute the missing boundary using bound-

aries from other blood samples if possible. Similarly, if a boundary is missing

for a marker from a tissue sample, this parameter will have FAUST estimate

the missing boundary location using other tissue samples alone if possible.

If it is not possible to impute a missing boundary within a class (since the

boundary is never estimated with the class), imputation then occurs across

all experimental samples. By default, this parameter is flat: standardization oc-

curs across all experimental samples unless otherwise specified by the user.

Starting cell population

The name of the population in the manual gating strategy where FAUST con-

ducts discovery and annotation.

Active markers

A list of all markers in the experiment that can possibly be used for discovery

and annotation in the starting cell population. FAUST will only compute the

depth score for markers in this initial set.

Marker boundary matrix

A 23nmatrix of lower and upper protein expression bounds. When themanual

gating strategy does not remove all debris or doublets from the starting cell

population, samples can appear to have clusters of events along at very low

or very high expression values for some markers. By setting boundaries for

those markers to exclude these doublet or debris clusters, FAUST treats all

events below the lower and above the upper bounds as default low or high,

respectively. These events are not dropped from the experiment. However,

they are ignored when testing for multimodality and subsequent density

estimation. The number of events in a marker that falls between the lower

and upper marker boundaries in the starting cell population defines the effec-

tive sample size for that marker. By default, values in the marker boundary ma-

trix are determined as follows: the 1st and 99th percentiles of expression by

marker are computed per sample, and the fifth percentile of first percentiles

and the 95th percentile of 99th percentiles are then used as the bounds for a

marker. If FMO controls exist for a flow cytometry experiment, the lower bound

for a given marker can be modified so that the lower boundary is near the

expression threshold contained in the corresponding control: this can help

FAUST include hard-to-resolve markers of interest. An example of how tuning

this parameter affects the distribution of annotation thresholds is given in sup-

plemental experimental procedures A.8.

Depth-score selection quantile

The empirical quantile of a marker’s depth score across all experimental units

that is used to compare against a user-selected depth-score threshold. By

default, this parameter is set to the median.

Depth-score selection threshold

A value in ½0; 1� used to select a subset of markers to be used in discovery and

annotation based on their empirical depth-score selection quantile. By default,

this parameter is set to 0.01.

Supervised boundary estimation list

This allows the user to modify FAUST’s default gate standardization method-

ology for each marker. This parameter is one way to incorporate prior (biolog-

ical) knowledge in the FAUST procedure: if a marker is known to have a certain

range of expression, such as low-dim-bright, this can be used to encourage or

force FAUST to estimate the corresponding number of annotation boundaries

from the data. Similarly, if FMO controls have been collected for a marker, this

parameter can be used to set the phenotypic boundary according to the

controls.

Phenotype occurrence threshold

An integer value (set to 1 by default) used to include or exclude discovered

phenotypes in the final count matrix returned by FAUST. If a phenotype ap-

pears at least phenotype occurrence threshold times across experimental

units, it is included in the final counts matrix. If an experiment contains

4 or fewer samples, FAUST includes all discovered phenotypes by

default. If an experiment contains more than 4 samples, FAUST sets this

parameter by computing the greatest convex minorant (GCM) of the distri-
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bution of occurrences over all phenotypes, for phenotypes observed be-

tween phenoMinhmaxð2; 0:05 ,number of samplesÞ and phenoMaxhmin

ðnumber of samples�1;0:95 ,number of samplesÞ times. FAUST then finds

the knot on the GCM that maximizes the distance between the GCM and

the line connecting phenoMin and phenoMax, taking this as an estimate

of the elbow of the GCM. Phenotypes exceeding the threshold are the consis-

tently detected phenotypes and are included in the annotated count matrix

produced by FAUST.

FAUST algorithm: Annotation embedding

Given a completed FAUST run, an annotation embedding is generated for a

sample by first winsorizing the observed expression data for each selected

marker to the 1st and 99th percentile. Samples from Nð0; 0:01Þ are taken to

perturb the winsorized data at the 1st and 99th percentile in order to break

ties in rare annotation groups in the sequel. The winsorized data is then trans-

formed as follows. For each FAUST annotation observed in the dataset (which

includes phenotypic annotations removed via down-selection), all rows in the

winsorized dataset corresponding to the specific FAUST annotation are

selected. The observed expression of each subset comprises an annotation

grouping, and is scaled to have mean zero and unit standard deviation for

each marker. The maximum and minimum values of each annotation grouping

are both recorded.

For eachmarker, themaximumandminimumvalueswithin eachdistinct anno-

tation label areused todetermineafinal scalingvalue. In addition, foreachmarker

an equispaced grid is established as landmarks for the standardized data. For

each annotation grouping, the standardized expression data are translated for

eachmarker to thecorresponding landmarkandscaled toby thefinal scaling fac-

tors. This ensures the annotation groupings translated to distinct landmarks for a

given marker do not overlap. Once all annotation groupings are translated and

scaled, the dataset has been prepared for annotation embeddings. This can be

performed using any dimensionality reduction algorithm; by default, we use the

UMAP algorithm with ‘‘qualitative’’ parameter settings.44

Simulation study: Estimating the number of clusters and partition

scoring

The number of clusters simulation is designed as follows. A reference proba-

bility vector with 1 component set to 0.1425, 2 components set to 0.07125, 4 to

0.035625, 8 to 0.0178125, 16 to 0.00890625, 32 to 0.004453125, and 64 to

0.002226562 is initialized in decreasing sort order. In the simulation, the num-

ber of clusters is varied from 5 to 115 components by step size of 10, and the

simulation repeats 5 times for each setting.

For a given number of clusters, mixture weights for a multivariate Gaussian

mixture model are determined by selecting the subset of the reference proba-

bility vector (starting from the first position) corresponding to simulated

number of clusters. If the subset of weights does not sum to 1, residual

mass is uniformly added to all elements of the subset so that they sum to unity.

The number of components in the mixture model is identified as the true num-

ber of clusters in the simulation. For each simulation iteration a dataset of 10

independent samples is generated, with each sample consisting of 25,000 ob-

servations drawn from a 10-dimensional multivariate Gaussian mixture with

the specified number of components.

Before generating the samples, a fixed collection of mean vectors mc,

1%c%10 is determined for the Gaussian mixture components. Each of the

10 entries of mc are randomly selected from the columns of Table 1 and repre-

sent whether or not the simulated variable is expressed. When an entry of mc is

from the ‘‘Not expressed’’ row of Table 1, the corresponding variable is labeled

‘‘�.’’ Similarly, when an entry of mc is from the ‘‘Expressed’’ row of Table 1, the

corresponding variable is labeled ‘‘+.’’ As an example, the annotation ‘‘V1 �
V2� V3 + V4� V5 + V6� V7� V8� V9 + V10�’’ indicates that the mean vec-

tor mc of the mixture component contains 0 for V1, V2, V4, V6, V7, V8, and V10,



Table 2. Fixed weight vector for non-responding samples

0.16155 0.0712 0.0712 0.0356 0.0356 0.0356 0.0356 0.0178 0.0178 0.0178 0.0178 0.0178 0.0178

0.0178 0.0178 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089

0.0089 0.0089 0.0089 0.0089 0.0089 0.0089 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045

0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045

0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045

0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022

0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.00209 0.00198 0.00187

0.00176 0.00165 0.00154 0.00143 0.00132 0.00121 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

The predictive component’s weight is 0.0011 (the first such entry in the table). The weight vector is specified left-to-right, top-to-bottom, with empty

cells in the table skipped.
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while it is 8 for V3, V5, and V9. Each mean vector is associated with an element

of the mixture weight vector.

Covariance matrices Sc are randomly sampled; they are always constrained

to have variances between 1 and 2, but otherwise are randomly generated

sample by sample and component by component. The number of observa-

tions sampled for each component is determined by taking a single sample

from a multinomial distribution, with multinomial parameters set using the

weight vector and to ensure 25,000 total observations per sample. Sample-

to-sample variability is modeled during the simulation by modifying the covari-

ance matrices as previously described, and perturbing each component’s

mean vector in the following way: 10 samples are taken from a mean

0 Gaussian with standard deviation set to 1=
ffiffiffi
2

p
, rounded to the nearest

integer, and used to translate the mean vector.

Methods are then applied to the simulated dataset. Every method (except

FAUST, see the following) is applied to the 10 samples concatenated together.

Methods are applied with the following parameter settings.

d FAUST is run with default analysis parameter settings. This means that

the number of clusters is estimated automatically, marker selection is

done automatically, and the experimental unit is set to individual sam-

ples. The only change from default is that FAUST is set to use 10 threads

in order to accelerate the computation.

d DEPECHE27 was run with k parameter (the number of initial cluster

centers) set to 2,simulated true number of clusters, and was allowed

10 threads to accelerate the computation.

d flowMeans10,28 is run with default parameter settings, except that the

MaxN parameter is set to twice the simulated true number of clusters

to accelerate the computation.

d FlowSOM6,29 (automated) is run with default parameter settings, except

that the maxMeta parameter is set to 90. We did not scale with the num-

ber of clusters due to FlowSOM’s dependency on ConcensusCluster-

Plus: in our simulation runs where the number of clusters exceeded

100, this led to an error in an internal call of stats:cutree with the k > 9

parameter causing an error.

d FlowSOM6,29 (oracle) is run using the default parameters of the

FlowSOM:BuildSOM function with the grid parameters set to xdim = 1

and ydim = simulated true number of clusters. This grid topology is

selected as per the self-organizing map discussion in pages 421–423

of Hennig et al.66

d k-means was run using the simulated true number of clusters for k, for

10,000 iteration maximum, using the Lloyd algorithm.

d PARC30 was run with default parameters via the reticulate R package.67

d PhenoGraph31,32 was run with default parameter settings.

d Rclusterpp33 was run with default parameter settings. The k parameter

in cutree was set to minðtrue number of clusters; nrowðrcppResult$
mergeÞ +1Þ to guarantee a successful run for each simulation iteration.

For eachmethod, the number of clusters estimated is recorded (if themethod

did not require the simulated truth as a tuning parameter). For FAUST, the num-

ber of clusterswas identified as the number of down-selected phenotypes in the
final countmatrix. Additionally, the adjusted Rand index (ARI) was computed for

each clustering relative to the simulated truth, both on the entire dataset as well

as the subset of observations annotated by FAUST (the down-selected pheno-

types). For FAUST, all events that were not annotated as one of the down-

selected phenotypes were treated as a single class: such events were given

the annotation ‘‘0_0_0_0_0’’ to indicate that no down-selected phenotype was

applied.
Simulation study: Predicting simulated responder status

This simulation begins by fixing a weight vector with 125 components, listed in

Table 2. By design, the weight of component 120 is set to 0.0011, and this

component is designated as the perfect predictor of response status. For re-

sponding samples, the weight vector is modified to the values listed in Table 3.

Comparing the responding weight vector in Table 3 with the non-responding

weight vector in Table 2, we see that the predictive component is exactly

doubled. We also see that the other 124 weights are proportionally modified

to achieve that doubling. This proportional modification was done to break

any correlation between the other 124 components and responder status: in

expectation, there will be differential abundance in the predictive compo-

nent alone.

For each simulation iteration, 20 samples of 25,000 observations are gener-

ated according to the procedure described in ‘‘estimating the number of clus-

ters and partition scoring.’’ Ten of the 20 samples are randomly assigned as

responders and simulated using the responder weight vector in Table 3. The

remaining 10 samples are designated non-responders and are simulated using

the non-responder weight vector in Table 2.

For each simulation iteration, each method described in ‘‘estimating the

number of clusters and partition scoring’’ (with the exception of flowMeans)

is applied to the simulated dataset. For each method, a binary clustering iden-

tifying each discovered cluster is determined. The ARI of each binary clustering

relative to a binary clustering identifying the simulated predictive component is

then computed. Additionally, for each method, a per-sample count matrix of

the resulting clustering is derived, with rows corresponding to simulated sam-

ples, columns to a cluster, and cells to the count of the cluster in a sample.

Using this count matrix, each cluster is tested for association with responder

status using a binomial GLMM with sample-level random effect (this is the

model used in our analysis of real cytometry datasets, specified in Equa-

tion 4.2). The cluster with the smallest p value is designated the ‘‘top cluster’’

discussed in ‘‘FAUST resolves high-dimensional structure in simulation

studies.’’ The binary ARI for this cluster is recorded. Then, using the per-sam-

ple frequency of this ‘‘top cluster,’’ the 5cvAUC using a logistic model predict-

ing responder type given frequency is computed, and each simulation iteration

is recorded.

In addition to the previously described methods, we also apply the following

approaches with specified parameter settings and analysis modifications for

each simulation iteration.

d Citrus5 analysis conducted using the citrus.full function with parameters

set to default for modeling, and to ensure all data were used in the
Patterns 2, 100372, December 10, 2021 17
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Table 4. The four significant phenotypes at the Bonferroni-

adjusted 0.10 level discovered and annotated by FAUST in the

analysis of the CITN-09 T cell panel

FAUST phenotype

Bonferroni

p value

CD4bright CD8� CD3+ CD45RA� HLA-DR� PD-1dim

CD28+ CD127� CD25� CCR7�
0.0016

CD4� CD8+ CD3+ CD45RA� HLA-DR+ PD-1dim

CD28+ CD127� CD25� CCR7�
0.0072

CD4� CD8+ CD3+ CD45RA� HLA-DR+ PD-1bright

CD28+ CD127� CD25� CCR7�
0.0487

CD4bright CD8� CD3+ CD45RA� HLA-DR+ PD-1dim

CD28+ CD127� CD25� CCR7�
0.0599
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analysis. For our version, the defaults were the ‘‘family’’ parameter set to

‘‘classification,’’ the ‘‘modelTypes’’ parameter set to ‘‘glmnet,’’ the ‘‘fea-

tureType’’ set to ‘‘abundances,’’ the ‘‘nfold’’ parameter set to ‘‘1,’’ the

‘‘fileSampleSize’’ set to ‘‘25,000,’’ the ‘‘transformColumns’’ parameter

set to ‘‘NULL,’’ the ‘‘transformCofactor’’ parameter set to ‘‘NULL,’’

and the ‘‘scaleColumns’’ parameter set to ‘‘NULL.’’ All differentially

abundant clusters defined by citrus that minimize the cross-validation

are taken together as the ‘‘top cluster.’’ This means that for citrus alone,

on a simulation iteration we potentially use frequencies from multiple

clusters to compute the 5cvAUC, and that the ARI relative to the simu-

lated predictive element is computed using a single binary cluster that

possibly consists of multiple clusters.

d diffCyt19,34 is applied using the diffcyt function in R, with the grid param-

eters set to xdim = 11 and ydim = 12 and analysis type set to ‘‘DA’’ for

differential abundance. This produces a rectangular grid of 131 clusters,

which slightly over-partitions the 125 simulated true number of clusters.

We defined ‘‘top cluster’’ for diffCyt as the first element of the signifi-

cance table generated by the function diffcyt:topTable. For this cluster

only, an ARI relative to the simulated predictive element and a 5cvAUC

is computed each simulation iteration.

d FlowSOM6,29 (over-partitioned) using the default parameters of the

FlowSOM:BuildSOM function with the grid parameters set to xdim =

15 and ydim = 15. This produces an over-partitioned grid of 225 clusters

(relative to the true 125). ARI and 5cvAUC values are computed in the

same fashion as the other methods.

CITN-09 T cell panel analysis

The CITN-09 T cell staining panel is described in supplemental experimental

procedures A.25. FAUST tuning parameter settings for this dataset are

described in supplemental experimental procedures A.18.

Between 1 and 4 samples were collected from 27 patients with stage IV and

unresectable stage IIIB Merkel cell carcinoma (MCC)38,68 spanning the course

of treatment. All 27 patients had samples collected at baseline (cycle C01,

before initiation of anti-PD-1 therapy); 16 at cycle C02 (3 weeks post-treatment

of the second cycle of therapy); 22 at cycle C05 (12 weeks post-treatment of

the fifth cycle of therapy); and 13 at end of trial (EOT, patient specific). This pro-

duced a dataset consisting of 78 samples in total. Eighteen of 27 subjects re-

sponded to therapy (CR/PR) for an observed response rate of 67%. Each sam-

ple was pre-gated to remove debris and identify live lymphocytes.

FAUST was applied to the subset of live lymphocytes with the experimental

unit set to individual patient samples. After tuning, FAUST selected the

markers CCR7, CD127, CD25, CD28, CD3, CD45RA, CD4, CD8, HLA-DR,

and PD-1 for the discovery and annotation of phenotypes. In the 27 baseline

samples, FAUST phenotypes annotated CD3+ were tested for association

with response to therapy (CR/PR) using a binomial GLMM with a subject-level

random effect (the model is formally specified in Equation 4.2).

At Bonferroni-adjusted 0.10 level, four significant phenotypes (discussed in

‘‘FAUST identifies and visualizes baseline T cells in blood associated with

outcome in CITN-09’’ and ‘‘CD8+ T cells from virus-positive subjects correlate

with in-tumor measurements’’) were detected. These phenotypes and their

adjusted p values are listed in Table 4.
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To specify the binomial model, let ci; k denote the number of events in

FAUST cluster k for sample i. Let ni denote the number of events annotated

as CD3+ by FAUST in the ith subject’s baseline sample. Similar to Nowicka

et al.,39 we assume ci; k � Binomial
�
ni ; mi; k

�
. Our model is

logit�1
�
mi; k

�
= b0 + b1,Responder+ xi; k ; (Equation 4.2)

where Responder is an indicator variable equal to 1 when the subject exhibits

CR or PR to therapy, and 0 otherwise, and each xi;k � Nð0; s2i;kÞ is a subject-

level random effect. The R package lme4 was used to fit all GLMMs.69

CITN-09 cryopreserved PBMC analysis

The staining panel used for the CITN-09 cryopreserved PBMC analysis is the

same as that used in the initial T cell analysis, and is described in supplemental

experimental procedures A.25. FAUST tuning parameter settings for this data-

set are described in supplemental experimental procedures A.19.

FAUST was used to generate annotation thresholds in 15 cryopreserved

PBMCpatient samples from the CITN-09MCC study. As in the initial discovery

analysis, FAUST was applied to the subset of live lymphocytes with the exper-

imental unit set to individual patient samples. FAUST was tuned to generate

thresholds for the markers CCR7, CD127, CD25, CD28, CD3, CD45RA,

CD4, CD8, HLA-DR, and PD-1, those selected in the initial analysis. These

thresholds were used to derive counts for CD4 and CD8 phenotypes compa-

rable with those discovered in the initial analysis. The resulting counts were

tested for differential abundance between responders (PR/CR) and non-re-

sponders (PD/SD) in virus-positive subjects for the CD8+ phenotype, and be-

tween all responders and non-responders in the CD4+ phenotypes.

FlowCAP-IV analysis

The HIV progression dataset used in FlowCAP-IV was downloaded from

FlowRepository, https://flowrepository.org/id/FR-FCM-ZZ99. FloReMi scripts

submitted for the FlowCAP-IV analysis were downloaded from the github re-

pository https://github.com/SofieVG/FloReMi. The first script 1_preproces-

sing.R wasmodified to respect the local file system (but otherwise unchanged)

and then used to pre-gate live T cells from the FlowRepository data.

FAUSTwas first used to perform discovery and annotation of phenotypes on

the pre-gated live T cells in the 382 samples constituting the training set. The

tuning parameter setting used in the FAUST analysis of the training set is

described in supplemental experimental procedures A.23. After tuning, FAUST

selected themarkers CCR7, CD154, CD27, CD45RO, CD4, CD57, and CD8 for

phenotype discovery and annotation. FAUST was then used to generate anno-

tation thresholds on the 384 samples comprising the test set for these 7

markers. The tuning parameter setting used in the FAUST analysis of the

test set is described in supplemental experimental procedures A.24. Once

thresholds were generated for the test set, counts for the phenotypes discov-

ered on the training set were derived on the test set relative to the thresholds.

For predictivemodeling, we only used the random survival forest,70 the best-

performingmodel in the initial report.37 Two classes of features were used to fit

the model on the training set. The FAUST phenotypes could be differentiated

into those annotated CD154� and those annotated CD154+. SinceCD154 is an

activation marker,71 the features admitted to the model were the frequencies

of all phenotypes annotated CD154� in unstimulated samples, and the

difference in frequency between stimulated and unstimulated samples for

all phenotypes annotated CD154+. These features were used to fit the

model on the training set, with parameter settings for the random survival for-

est taken from the script 4b_randomSurvivalForest.R (again found in the re-

pository https://github.com/SofieVG/FloReMi). The reported concordance

and �log10(p value) were computed, as in the initial report, from fitting a Cox

proportional hazard model to the fitted values on the test set using the survival

R package.72,73

CITN-09 myeloid panel

The CITN-09 myeloid staining panel is described in supplemental experimental

procedures A.26. FAUST tuning parameter settings are described in supple-

mental experimental procedures A.20. This dataset consisted of 69 samples

stained to investigate myeloid cells. An initial screen comparing the ratio of

the number of events in the singlet gate with the number of events in the root

population led us to remove 3 samples from analysis due to low quality. We
ran FAUST on the remaining 66 samples, which consisted of 21 samples

collected at cycle C01, before initiation of anti-PD-1 therapy; 16 at cycle C02;

18 at cycle C05; 1 at C08; and 10 at EOT. Of the 21 baseline samples, 1 was

coded as non-evaluable ‘‘NE.’’ This samplewas removed fromdownstream sta-

tistical analysis. Thirteen of the 20 subjects with baseline samples available re-

sponded to therapy (PR/CR), for an observed response rate of 65%.

FAUST was applied to the subset of CD45+ singlets with the experimental

unit set to individual patient samples. After tuning, FAUST selected the

markers CD11B, CD11C, CD14, CD16, CD19, CD20, CD33, CD3, CD56,

and HLA-DR for the discovery and annotation of phenotypes. In the 20 base-

line samples, FAUST phenotypes were tested for association with response to

therapy (CR/PR) using a binomial GLMM with a subject-level random effect

(the model is analogous to that specified in Equation 4.2). At the Bonferroni-

adjusted 0.10 level, four phenotypes were significantly associated with

response to therapy in baseline samples (supplemental experimental proced-

ures A.2), including the phenotype discussed in ‘‘FAUST enables targeted hy-

pothesis testing for pre-specified phenotypes.’’

CITN-07 phenotyping panel analysis

We ran FAUST on this dataset comprising of a total of 358 longitudinal samples

from 35 subjects in two cohorts (cohort 1 with FLT-3 pre-treatment and cohort

2 without pre-treatment), with between 4 and 12 samples per subject over four

cycles of therapy and at the end of the trial. Subjects were given FLT-3 ligand

7 days prior to the start of the first two of four treatment cycles. FLT-3 ligand

was given to promote the expansion of myeloid and dendritic cell compart-

ments to investigate whether expansion improved response to therapy.

FAUST was configured to perform cell population discovery and annotation

per sample in order to account for biological and technical heterogeneity.

Debris, dead cells, and non-lymphocytes were excluded by pre-gating.

The CITN-07 phenotyping staining panel is described in supplemental exper-

imental procedures A.27. FAUST tuning parameter settings are described in

supplemental experimental procedures A.17. FAUST was applied to the pre-

gated cellswith the experimental unit set to individual patient samples. After tun-

ing, FAUST selected the markers CD11C, CD123, CD14, CD16, CD19, CD3,

CD4, CD56, CD8, and HLA-DR for the discovery and annotation of phenotypes.

We tested each discovered cell population at the cohort-specific baseline (32

samples) for association with recurrence of disease (14 subjects had disease

recurrence and 18 did not). We analyzed the baseline counts using a model

similar to that of Equation 4.2. Here, themodel was adjusted for subject-to-sub-

ject variability using a random effect, while cohort status, recurrence, and

NYESO-1 staining of the tumor by immunohistochemistry (measured as posi-

tive, negative, or undetermined) were modeled as population effects.

Krieg et al. FACS analysis

The Krieg et al.9 fluorescence-activated cell sorting (FACS) staining panel is

described in supplemental experimental procedures A.28. FAUST tuning

parameter settings are described in supplemental experimental procedures

A.21. We used FAUST to process 31 baseline flow cytometry samples from re-

sponders and non-responders to therapy (16 responders and 15 non-re-

sponders). QC and review of the manual gating strategy led us to make manual

adjustments to the ‘‘Lymphocytes’’ gate of 7 samples in this dataset. An

example of this gate adjustment is shown in supplemental experimental proced-

ures A.16.

FAUSTwas applied to live cells from themanual gating strategy used byKrieg

et al.9 with the experimental unit set to individual samples. After tuning, FAUST

selected 9 markers for discovery and annotation: CD11b, CD14, CD16, CD19,

CD3, CD45RO, CD4, CD56, and HLA-DR. FAUST phenotypes were tested for

association with responder status using a binomial GLMM with a subject-level

randomeffect. The statisticalmodel usedhere is identical to that of Equation 4.2,

with ci; k nowdenoting the clusters in the FACSdata and ni referring to the base-

line FACS sample counts. At the Bonferroni-adjusted 0.10 level, 3 phenotypes

were significantly associated with responder status (supplemental experimental

procedures A.4), including the phenotype discussed in ‘‘FAUST enables tar-

geted hypothesis testing for pre-specified phenotypes.’’

Subrahmanyam et al. CyTOF analysis

The markers used from the Subrahmanyam et al.49 CyTOF panel is described

in supplemental experimental procedures A.29. FAUST tuning parameter
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settings are described in supplemental experimental procedures A.22. We

used openCyto74 to reproduce the manual gating strategy reported by Sub-

rahmanyam et al.49 to identify live intact singlets in each analyzed sample (sup-

plemental experimental procedures A.15). We then used FAUST to process 64

pre-treatment, unstimulated CyTOF samples from responders and non-re-

sponders to ipilimumab (anti-CTLA-4, 10 responders, 14 non-responders)

and pembrolizumab (anti-PD-1, 21 responders, 19 non-responders). FAUST

was run through the boundary standardization phase at the individual-sample

level on live intact singlets (as identified by openCyto). FAUST was used to

determine standardized annotation boundaries for 10 markers: CD4, CD3,

CD8, CD45RA, HLA-DR, CD28, PD-1, CD25, CD127, and CCR7. Once these

boundaries were computed, cells with CD4+ or CD8+ phenotypes correspond-

ing to significant phenotypes discovered in theMCC anti-PD-1 trial (see ‘‘CD8+

T cells from virus-positive subjects correlate with in-tumor measurements’’)

were targeted in each sample using the standardized boundaries. This pro-

duced counts for two cell populations. Counts from these two cell populations

were taken from the 40 samples from subjects that went on to receive anti-PD-

1 therapy, and tested for association with response to therapy. The model

used here is identical to that of Equation 4.2, mutatis mutandis.

PFDA multivariate model

We describe the multivariate PFDA model for the CD14+ CD16� HLA-DR+/bright

cells; the T cell model is the same, modified only by the inclusion criteria. All

FAUST phenotypes annotated as CD14+ CD16� HLA-DR+/bright CD3� CD56�

CD19� and included in the univariate analysis were selected in CITN-07 (the

FLT3-ligand + therapeutic Vx trial), CITN-09 (the MCC anti-PD-1 trial), and the

Krieg et al. melanoma anti-PD-1 trial FACS dataset.9 Let k� denote the number

of FAUST phenotypes within a given study. Let n denote the number of subjects

at baseline, and N = n,k�. For 1%i%N, 1%j%k� our statistical model is

logit�1
�
mi; j

�
= b0 + bR,Responderi

+
Xk�

j = 1

�
bc;j,Clusteri; j + bi; j,Clusteri; j,Responderi

�
+ xi ; (Equation 4.3)

whereClusteri,j is an indicator variable that is 1when observation i is from cluster

j and 0 otherwise, Responderi is an indicator variable when observation i is taken

from a responding subject, and hi � Nð0; s2i Þ is an observation-level random ef-

fect. After estimatingmodel coefficients bi; j in Equation 4.3, we test for differen-

tial abundance by testing t for positivity of linear combination of the coefficients:

H0 : bR +
1

k�
,
Xk�

j =1

bi; j%0;

H1 : bR +
1

k�
,
Xk�

j = 1

bi; j>0:

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100372.
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