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In this Special Festschrift Issue for the celebration of 
Professor Nobuhiro Gō’s 80th birthday, we review 
enhanced conformational sampling methods for protein 
structure predictions. We present several generalized-en-
semble algorithms such as multicanonical algorithm, 
replica-exchange method, etc. and parallel Monte Carlo 
or molecular dynamics method with genetic crossover. 
Examples of the results of these methods applied to the 
predictions of protein tertiary structures are also pre-
sented.
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Professor Nobuhiro Gō is probably most well-known for 
his consistency principle in protein folding [1], which states 
that various types of interactions that contribute to the stabi-

lization of the native conformation of a protein are consis-
tent with each other. This principle was deduced from the 
results of Monte Carlo simulations of a lattice protein model. 
This principle was reinterpreted as the principle of minimal 
frustration [2,3]. They showed that the phase space of the 
protein system is characterized by two parameters, folding 
temperature TF and glass transition temperature TG and that a 
protein can fold into a unique native structure if TG/TF<<1. 
Another two-parameter argument is that a protein folds into 
the native structure if (Tθ−TF)/Tθ<<1, where Tθ is the 
coil-globule transition temperature [4,5]. These parameters 
characterize the free energy landscape of protein systems 
[1–6]. While these arguments were mainly given from simu-
lations of lattice models and coarse-grained models, we  
confirmed these properties by calculating TG, TF, and Tθ of a 
small peptide and its free energy landscape by simulations of 
an all-atom model [7,8].

Besides these fundamental works on protein folding,  
Professor Gō has also shown that protein structures can be 
determined in atomistic details by utilizing the results of 
NMR experiments [9], which drastically improved the dis-
tance geometry methods (see, e.g., [10]). Before that time, 
protein structures were determined mainly by X-ray diffrac-

This article reviews various enhanced conformational sampling methods for protein structure predictions. Several 
generalized-ensemble algorithms and a method based on the genetic algorithm are presented. These methods can 
sample much wider conformational space of biomolecules than conventional methods. Mathematical details are 
given so that those who are not familiar with these methods can understand them. Some examples of simulation 
results of protein structure predictions by these methods are also presented in order to elucidate the effectiveness 
of the methods.
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encouraged them to develop a modified force field (namely, 
CHARMM22 with CMAP [32]) [33]. We have also pro-
posed several methods for improving the force fields [34–37] 
(for a review, see Ref. [38]).

This article is organized as follows. We first describe the 
generalized-ensemble algorithms. We then present the 
results by some of the generalized-ensemble simulations. 
Finally, we draw conclusions.

Simulation Methods
Multicanonical algorithm

Let us consider a system of N atoms of mass mk (k=1, ..., 
N) with their coordinate vectors and momentum vectors 
denoted by q≡{q1, ..., qN} and p≡{p1, ..., pN}, respectively. 
The Hamiltonian H(q, p) of the system is the sum of the 
kinetic energy K(p) and the potential energy E(q):

H(q, p) = K(p) + E(q), (1)

where

K(p) = 

N

∑
k=1

pk
2

2mk
 . (2)

In the canonical ensemble at temperature T each state 
x≡(q, p) with the Hamiltonian H(q, p) is weighted by the 
Boltzmann factor:

WB(x; T) = exp (−βH(q, p)), (3)

where the inverse temperature β is defined by β=1/kBT  
(kB is the Boltzmann constant). The average kinetic energy  
at temperature T is then given by

〈K(p)〉T = 〈
N

∑
k=1

 
pk

2

〉2mk
 
T
 = 

3
2  NkBT. (4)

Because the coordinates q and momenta p are decoupled 
in Eq. (1), we can suppress the kinetic energy part and can 
write the Boltzmann factor as

WB(x; T) = WB(E; T) = exp (−βE). (5)

The canonical probability distribution of potential energy 
PB(E; T) is then given by the product of the density of states 
n(E) and the Boltzmann weight factor WB(E; T):

PB(E; T) ∝ n(E)WB(E; T). (6)

Because n(E) is a rapidly increasing function and the  
Boltzmann factor decreases exponentially, the canonical 
ensemble yields a bell-shaped distribution which has a  
maximum around the average energy at temperature T. The 
conventional MC or MD simulations at constant tempera-
ture are expected to yield PB(E; T). A MC simulation based 
on the Metropolis method [39] is performed with the follow-

tion experiments, and structures determined by NMR exper-
iments were emerging for the first time. Professor Gō’s 
method was one of very effective ones that were used to 
determine the three-dimensional structures of proteins from 
NMR experiments. After Professor Gō’s works, many groups 
worked on this problem. One example is the uses of simu-
lated annealing (SA) [11] to determine protein structures 
from the results of X-ray and NMR experiments [12–15]. 
SA was also applied to the protein folding simulations (see, 
e.g., Refs. [16–20] for earlier applications).

In this article, we discuss our methods for prediction of 
protein structures by Monte Carlo (MC) and molecular 
dynamics (MD) simulations. Conventional simulations of 
biomolecules suffer from the multiple-minima problem: The 
canonical fixed-temperature simulations at low temperatures 
tend to get trapped in a huge number of local-minimum- 
energy states, which will give wrong results. We have been 
advocating the uses of the generalized-ensemble algorithms, 
which overcomes the multipole-minima problem (for reviews 
see, e.g., Refs. [21–25]). In the generalized-ensemble algo-
rithm, each state is weighted by an artificial, non-Boltzmann 
probability weight factor so that a random walk in potential 
energy space and/or other physical quantities (such as vol-
ume, etc.) may be realized. The random walk allows the  
simulation to escape from any energy-local-minimum state 
and to sample much wider conformational space than by 
conventional methods. From a single simulation run, one 
can obtain accurate ensemble averages as functions of  
temperature and/or other parameters (such as pressure, etc.) 
of the system by the single-histogram [26] and multiple- 
histogram [27,28] reweighting techniques (an extension of 
the multiple-histogram method is also referred to as the 
weighted histogram analysis method (WHAM) [28]).

Sucessful predictions of the three-dimensional structures 
of proteins are possible when both enhanced sampling tech-
niques and accurate potential energy (or, force fields) for the 
protein systems are employed. If one has sufficient computa-
tional power, the former may not be necessary (see, e.g., 
Ref. [29] for examples of folding proteins into their native 
structures by conventional canonical-ensemble simulations). 
However, generalized-ensemble algorithms will save com-
putation time for this purpose. Generalized-ensemble algo-
rithms can give accurate thermodynamic averages and can 
also be used to judge which existing force fields are good. 
Several existing force fields were compared by general-
ized-ensemble simulations [30,31]. Those works showed 
that AMBER99 forms 310-helices and CHARMM22 forms 
π-helix in small peptides, which are not observed in experi-
ments [30,31]. The author visited the Laboratory of Professor 
Charles L. Brooks, III in August, 2001, and gave a seminar 
talk, which included unpublished results of Ref. [30,31] 
(especially, Fig. 4(e) of Ref. [31], which clearly showed the 
formation of π-helix with CHARMM22). Although they 
have also independently observed tendency of π-helix for-
mations with CHARMM22, our convincing results above 
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can also be considered as a sophisticated, ideal realization of 
a class of algorithms called umbrella sampling [50]. Also 
closely related methods are Wang-Landau method [51,52], 
which is also referred to as density of states Monte Carlo 
[53], and metadynamics [54], which can be considered as  
an extension of Wang-Landau method where a random walk 
in reaction coordinate, or collective variable, instead of 
potential energy is performed [55]. While MUCA and its 
generalizations have been first applied to spin systems, 
MUCA was also introduced to the molecular simulation field 
[56]. Since then MUCA and its generalizations have been 
extensively used in many applications in protein and other 
biomolecular systems [56–86]. Molecular dynamics version 
of MUCA has also been developed [49,62,63]. MUCA has 
been extended so that flat distributions in other variables 
instead of potential energy may be obtained (see, e.g., Refs. 
[57,61,64,67,80,84]).

In the multicanonical ensemble [42,43], each state is 
weighted by a non-Boltzmann weight factor Wmu(E) (which 
we refer to as the multicanonical weight factor) so that a 
uniform potential energy distribution Pmu(E) is obtained:

Pmu(E) ∝ n(E)Wmu(E) ≡ const. (16)

The flat distribution implies that a free random walk in the 
potential energy space is realized in this ensemble. This 
allows the simulation to escape from any local minimum- 
energy states and to sample the configurational space much 
more widely than the conventional canonical MC or MD 
methods.

The definition in Eq. (16) implies that the multicanonical 
weight factor is inversely proportional to the density of 
states, and we can write it as follows:

Wmu(E) ≡ exp [−β0Emu(E; T0)] = 
1

n(E)  , (17)

where we have chosen an arbitrary reference temperature, 
T0=1/kBβ0, and the “multicanonical potential energy” is 
defined by

Emu(E; T0) ≡ kBT0 ln n(E) = T0S(E). (18)

Here, S(E) is the entropy in the microcanonical ensemble. 
Since the density of states of the system is usually unknown, 
the multicanonical weight factor has to be determined numer-
ically by iterations of short preliminary runs [42,43].

A multicanonical MC simulation is performed, for instance, 
with the usual Metropolis criterion [39]: The transition prob-
ability of state x with potential energy E to state x′ with 
potential energy E′ is given by

w(x → x′) = min (1, 
Wmu(E′)
Wmu(E)

 

) = min (1, 
n(E)
n(E′)

 

) 
= min (1, exp (−β0∆Emu)) , (19)

ing transition probability from a state x of potential energy E 
to a state x′ of potential energy E′:

w(x → x′) = min (1, 
WB(E′; T)
WB(E; T)

 

) 
= min (1, exp (−β∆E)). (7)

where

∆E = E′ − E. (8)

A MD simulation, on the other hand, is based on the follow-
ing Newton equations of motion:

q̇k = 
pk

mk
 , (9)

ṗk = −
∂E
∂qk

 = fk , (10)

where fk is the force acting on the k-th atom (k=1, ..., N). 
This set of equations actually yield the microcanonical 
ensemble, and we have to add a thermostat in order to obtain 
the canonical ensemble at temperature T. Here, we just fol-
low Nosé’s prescription [40,41], and we have

q̇k = 
pk

mk
 , (11)

ṗk = −
∂E
∂qk

 −

 
ṡ
s  pk = fk −

 
ṡ
s  pk , (12)

ṡ = s
 
Ps

Q  , (13)

Ṗs = 

N

∑
k=1

pk
2

mk
 − 3NkBT = 3NkB(T(t) − T) , (14)

where s is Nosé’s scaling parameter, Q is its mass, Ps is its 
conjugate momentum, and the “instantaneous temperature” 
T(t) is defined by

T(t) = 
1

3NkB
 

N

∑
k=1

 

pk(t)2

mk
 . (15)

However, in practice, it is very difficult to obtain accurate 
canonical distributions of complex systems at low tem-
peratures by conventional MC or MD simulation methods. 
This is because simulations at low temperatures tend to get 
trapped in one or a few of local-minimum-energy states. The 
generalized-ensemble algorithms overcome this difficulty 
by performaing random walks in physical quantities such as 
potential energy and volume, etc. (or their conjugate param-
eters such as temperature and pressure, etc., respectively).

One of the most well-known generalized-ensemble algo-
rithms is perhaps the multicanonical algorithm (MUCA) 
[42,43] (for reviews see, e.g., Refs. [44,45]). The method is 
also referred to as entropic sampling [46,47] and adaptive 
umbrella sampling [48] of the potential energy [49]. MUCA 
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functions of potential energy) at any temperature T (=1/kBβ) 
can now be obtained as long as one stores the “trajectory” of 
configurations (and A) from the production run. Namely, we 
have [74]

〈A〉T = 

n0

∑
k=1

A(x(k))Wmu
−1(E(x(k))) exp [−βE(x(k))]

n0

∑
k=1

Wmu
−1(E(x(k))) exp [−βE(x(k))]

 , (25)

where x(k) is the configuration at the k-th MC (or MD) step 
and n0 is the total number of configurations stored. Note that 
when A is a function of E, Eq. (25) reduces to Eq. (22) where 
the density of states is given by Eq. (24).

Replica-exchange method
The replica-exchange method (REM) [87,88] is one of  

the most widely used method in biomolecular simulations. 
(REM is also referred to as parallel tempering [89] and  
multiple Markov chain method [90]) In this method, a num-
ber of non-interacting copies (or, replicas) of the original 
system at different temperatures are simulated independently 
and simultaneously by the conventional MC or MD method. 
Every few steps, pairs of replicas are exchanged with a  
specified transition probability. The weight factor is just the 
product of Boltzmann factors, and so it is essentially known.

REM has already been used in many applications in  
protein systems [91–104]. Other molecular simulation fields 
have also been studied by this method in various ensembles 
[105–108]. Moreover, REM and other generalized-ensemble 
algorithms were introduced to the quantum chemistry field 
[109–113]. The details of molecular dynamics algorithm for 
REM, which is referred to as the Replica-Exchange Molecu-
lar Dynamics (REMD) have been worked out in Ref. [92], 
and this led to a wide application of REM in the protein  
folding and related problems (see, e.g., Refs. [114–128]).

The system for REM consists of M non-interacting copies 
(or, replicas) of the original system in the canonical ensem-
ble at M different temperatures Tm (m=1, ..., M). We arrange 
the replicas so that there is always exactly one replica at each 
temperature. Then there exists a one-to-one correspondence 
between replicas and temperatures; the label i (i=1, ..., M) 
for replicas is a permutation of the label m (m=1, ..., M) for 
temperatures, and vice versa:

{   i = i(m) ≡ f (m),
m = m(i) ≡ f −1(i), (26)

where f (m) is a permutation function of m and f −1(i) is its 
inverse.

Let X={x1
[i(1)], ..., xM

[i(M)]}={xm
[1]

(1), ..., xm
[M]

(M)} stand for a 
“state” in this generalized ensemble. Each “substate” xm

[i] is 
specified by the coordinates q[i] and momenta p[i] of N atoms 
in replica i at temperature Tm:

xm
[i] ≡ (q[i], p[i])m. (27)

where

∆Emu = Emu(E′; T0) − Emu(E; T0). (20)

The MD algorithm in the multicanonical ensemble also nat-
urally follows from Eq. (17), in which the regular constant 
temperature MD simulation (with T=T0) is performed by 
replacing E by Emu in Eq. (12) [62,63]:

ṗk = −
∂Emu(E; T0)

∂qk
 −

 
ṡ
s  pk = 

∂Emu(E; T0)
∂E  fk −

 
ṡ
s  pk .

 (21)

If the exact multicanonical weight factor Wmu(E) is known, 
one can calculate the ensemble averages of any physical 
quantity A at any temperature T (=1/kBβ) as follows:

〈A〉T = 
∑
E  

A(E)PB(E; T)

∑
E  

PB(E; T)
 = 

∑
E  

A(E)n(E) exp (−βE)

∑
E  

n(E) exp (−βE)  ,

 (22)

where the density of states is given by (see Eq. (17))

n(E) = 
1

Wmu(E)

 

. (23)

The summation instead of integration is used in Eq. (22), 
because we often discretize the potential energy E with  
step size ϵ(E=Ei; i=1, 2, ...). Here, the explicit form of  
the physical quantity A should be known as a function of  
potential energy E. For instance, A(E)=E gives the average 
potential energy 〈E〉T as a function of temperature, and 
A(E)=β2(E−〈E〉T)2 gives specific heat.

In general, the multicanonical weight factor Wmu(E), or 
the density of states n(E), is not a priori known, and one 
needs its estimator for a numerical simulation. This esti-
mator is usually obtained from iterations of short trial multi-
canonical simulations. (The details of this process are 
described, for instance, in Refs. [44,45]). However, the iter-
ative process can be non-trivial and very tedius for complex 
systems.

Once a satsifactory multicanonical weight factor is 
obtained, we perform with this weight factor a multicanoni-
cal simulation with high statistics (production run) in order 
to get even better estimate of the density of states. Let Nmu(E) 
be the histogram of potential energy distribution Pmu(E) 
obtained by this production run. The best estimate of the 
density of states can then be given by the single-histogram 
reweighting techniques [26] as follows (see the proportion-
ality relation in Eq. (16)):

n(E) = 
Nmu(E)
Wmu(E)

 

. (24)

By substituting this quantity into Eq. (22), one can calculate 
ensemble averages of physical quantity A(E) as a function of 
temperature. Moreover, ensemble averages of any physical 
quantity A (including those that cannot be expressed as  
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Replica exchange is accepted according to the usual 
Metropolis criterion [39]:

w(X
 

→
 

X′) ≡ w(xm
[i]|xn

[ j]) = min
 

(1, exp (−∆)), (33)

where in the second expression (i.e., w(xm
[i]|xn

[ j])) we explicitly 
wrote the pair of replicas (and temperatures) to be exchanged, 
and

∆ = βm(E(q[ j]) − E(q[i])) − βn(E(q[ j]) − E(q[i])) (34)

= (βm − βn)(E(q[ j]) − E(q[i])). (35)

Without loss of generality we can assume T1<T2<...<TM. 
A REM simulation is then realized by alternately performing 
the following two steps:

1. Each replica in canonical ensemble of the fixed tempera-
ture is simulated simultaneously and independently for a 
certain MC or MD steps.

2. A pair of replicas at neighboring temperatures, say xm
[i] and 

x [ j]
m+1, are exchanged with the probability w(xm

[i]|x [ j]
m+1) in Eq. 

(33).

Note that in Step 2 we exchange only pairs of replicas  
corresponding to neighboring temperatures, because the 
acceptance ratio of the exchange process decreases exponen-
tially with the difference of the two β’s (see Eqs. (35) and 
(33)). Note also that whenever a replica exchange is accepted 
in Step 2, the permutation functions in Eq. (26) are updated. 

After a long REM production run, the canonical expectation 
value of a physical quantity A at temperature Tm (m=1, ..., M) 
can be calculated by the usual arithmetic mean as follows:

〈A〉Tm
 = 

1
nm

 

nm

∑
k=1

 A(xm(k)), (36)

where xm(k) (k=1, ..., nm) are the configurations obtained at 
temperature Tm and nm is the total number of measurements 
made at T=Tm. The expectation value at any intermediate 
temperature can also be obtained from Eq. (22), where  
the density of states is given by the multiple-histogram 
reweighting techniques [27,28] as follows. Let Nm(E) and  
nm be respectively the potential-energy histogram and the 
total number of samples obtained at temperature Tm=1/kBβm 
(m=1, ..., M). The best estimate of the density of states is 
then given by [27,28]

n(E) = 

M

∑
m=1

Nm(E)
M

∑
m=1

nm exp ( fm − βmE)
 , (37)

where we have for each m(=1, ..., M)

exp (−fm) = ∑
E  

n(E) exp (−βmE). (38)

Because the replicas are non-interacting, the weight factor 
for the state X in this generalized ensemble is given by the 
product of Boltzmann factors for each replica (or at each 
temperature):

WREM(X ) = 
M

∏
i=1

 

exp{−βm(i)H
 

(q[i], p[i])}

= 
M

∏
m=1

 

exp{−βmH
 

(q[i(m)], p[i(m)])}

= exp{−
M

∑
i=1

 

βm(i)H
 

(q[i], p[i])}

= exp{−
M

∑
m=1

 

βmH
 

(q[i(m)], p[i(m)])}, (28)

where i(m) and m(i) are the permutation functions in Eq. 
(26).

We now consider exchanging a pair of replicas in the gen-
eralized ensemble. Suppose we exchange replicas i and j 
which are at temperatures Tm and Tn, respectively:

X = {..., xm
[i], ..., xn

[ j], ...}  →  X ′ = {..., xm
[ j]′, ..., xn

[i]′, ...}.
 (29)

Here, i, j, m, and n are related by the permutation functions 
in Eq. (26), and the exchange of replicas introduces a new 
permutation function f ′:

{   i = f(m) → j = f ′(m),
j = f(n) → i = f ′(n). (30)

The exchange of replicas can be written in more detail as

{   xm
[i] ≡ (q[i], p[i])m → xm

[ j]′ ≡ (q[ j], p[ j]′ )m,
xn

[ j] ≡ (q[ j], p[ j])n → xn
[i]′ ≡ (q[i], p[i]′ )n, (31)

where the definitions for p[i]′ and p[ j]′ will be given below. In 
the original implementation of the replica-exchange method 
(REM) [87,88], Monte Carlo algorithm was used, and only 
the coordinates q (and the potential energy function E(q)) 
had to be taken into account. In molecular dynamics algo-
rithm, on the other hand, we also have to deal with the 
momenta p. We proposed the following momentum assign-
ment in Eq. (31) [92]:

{   p[i]′ ≡ √ Tn

Tm
 p[i],

p[ j]′ ≡ √ Tm

Tn
 p[ j], (32)

which we believe is the simplest and the most natural. This 
assignment means that we just rescale uniformly the veloci-
ties of all the atoms in the replicas by the square root of the 
ratio of the two temperatures so that the temperature condi-
tion in Eq. (4) may be satisfied.
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Ɛmu
{0}(E) ≡ 

∂Emu(E; T0)
∂E  |E=E1

(E−E1)+Emu(E1; T0), for E < E1,{  Emu(E; T0), for E1 ≤ E ≤ EM ,

∂Emu(E; T0)
∂E  |E=EM

(E−EM)+Emu(EM; T0), for E > EM .
 (42)

The multicanonical MC and MD runs are then performed 
respectively with the Metropolis criterion of Eq. (19) and 
with the modified Newton equation in Eq. (21), in which  
Ɛmu

{0}(E) in Eq. (42) is substituted into Emu(E; T0). We expect 
to obtain a flat potential energy distribution in the range  
of Eq. (40). Finally, the results are analyzed by the single- 
histogram reweighting techniques as described in Eq. (24) 
(and Eq. (22)).

Hence, our choice of Ɛmu
{0}(E) in Eq. (42) results in a  

canonical simulation at T=T1 for E<E1, a multicanonical 
simulation for E1≤E≤EM, and a canonical simulation at T=TM 
for E>EM. Note also that the above arguments are indepen-
dent of the value of T0, and we will get the same results, 
regardless of its value.

For Monte Carlo method, the above statement follows 
directly from the following equation. Namely, our choice of 
the multicanonical potential energy in Eq. (42) gives from 
Eq. (17)

Wmu(E) = exp [−β0Ɛmn
{0}(E)] 

exp (−β1E), for E < E1 ,

= {   
1

n(E)

 

, for E1 ≤ E ≤ EM ,

exp (−βME), for E > EM . (43)

Multicanonical replica-exchange method
In the previous subsection we presented REMUCA, which 

uses a short REM run for the determination of the multi-
canonical weight factor. Here, we present the multi canoni-
cal replica-exchange method (MUCAREM) [73–75]. In 
MUCAREM the production run is a REM simulation with  
a few replicas not in the canonical ensemble but in the  
multicanonical ensemble, i.e., different replicas perform 
MUCA simulations with different energy ranges. While 
MUCA simulations are usually based on local updates, a 
replica-exchange process can be considered to be a global 
update, and global updates enhance the sampling further.

We now describe MUCAREM. Let M be the number of 
replicas. Here, each replica is in one-to-one correspondence 
not with temperature but with multicanonical weight factors 
of different energy range. Note that because multicanonical 
simulations cover much wider energy ranges than regular 
canonical simulations, the number of required replicas for 
the production run of MUCAREM is much less than that for 
the regular REM (M<<M). The weight factor for this gener-

Note that Eqs. (37) and (38) are solved self-consistently 
by iteration [27,28] to obtain the density of states n(E) and 
the dimensionless Helmholtz free energy fm. Namely, we can 
set all the fm (m=1, ..., M) to, e.g., zero initially. We then use 
Eq. (37) to obtain n(E), which is substituted into Eq. (38) to 
obtain next values of fm, and so on.

Moreover, ensemble averages of any physical quantity A 
(including those that cannot be expressed as functions of 
potential energy) at any temperature T (=1/kBβ) can now be 
obtained from the “trajectory” of configurations of the pro-
duction run. Namely, we first obtain fm (m=1, ..., M) by  
solving Eqs. (37) and (38) self-consistently, and then we 
have [74]

〈A〉T = 
M

∑
m=1

nm

∑
k=1

A(xm(k)) 
1

M

∑
ℓ=1

nℓexp[ fℓ − βℓE(xm(k))]

 

exp[−βE(xm(k))]

M

∑
m=1

nm

∑
k=1

 

 
1

M

∑
ℓ=1

nℓexp[ fℓ − βℓE(xm(k))]

 

exp[−βE(xm(k))]
 

,

 (39)

where xm(k) (k=1, ..., nm) are the configurations obtained at 
temperature Tm.

Replica-exchange multicanonical algorithm
MUCA and REM can be combined. In the replica- 

exchange multicanonical algorithm (REMUCA) [73–75]  
we first perform a short REM simulation (with M replicas)  
to determine the multicanonical weight factor and then  
perform with this weight factor a regular multicanonical 
simulation with high statistics. The first step is accomplished 
by the multiple-histogram reweighting techniques [27,28]. 
Let Nm(E) and nm be respectively the potential-energy histo-
gram and the total number of samples obtained at tempera-
ture Tm (=1/kBβm) of the REM run. The density of states n(E) 
is then given by solving Eqs. (37) and (38) self-consistently 
by iteration.

Once the estimate of the density of states is obtained, the 
multicanonical weight factor can be directly determined from 
Eq. (17) (see also Eq. (18)). Actually, the density of states 
n(E) and the multicanonical potential energy, Emu(E; T0), 
thus determined are only reliable in the following range:

E1 ≤ E ≤ EM , (40)

where

{   E1 =〈E〉T1 
,

EM =〈E〉TM , (41)

and T1 and TM are respectively the lowest and the highest 
temperatures used in the REM run. Outside this range we 
extrapolate the multicanonical potential energy linearly: [73]
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tively, are exchanged: X={..., xm
[i], ..., x [ j]

m+1, ...}→ 
X′={..., xm

[ j], ..., x [i]
m+1, ...}. The transition probability of this 

replica exchange is given by the Metropolis criterion:

w(X → X′) = min (1, exp (−∆)), (48)

where we now have (see Eq. (34)) [73]

∆ = βm{Ɛmu
{m}(E(q[ j])) − Ɛmu

{m}(E(q[i]))}

−βm+1{Ɛmu
{m+1}(E(q[ j])) − Ɛmu

{m+1}(E(q[i]))}. (49)

Here, E(q[i]) and E(q[ j]) are the potential energy of the i-th 
replica and the j-th replica, respectively.

Note that in Eq. (49) we need to newly evaluate the multi-
canonical potential energy, Ɛmu

{m}(E(q[ j])) and Ɛmu
{m+1}(E(q[i])), 

because Ɛmu
{m}(E) and Ɛmu

{n}(E) are, in general, different func-
tions for m≠n.

In this algorithm, the m-th multicanonical ensemble actu-
ally results in a canonical simulation at T=TL

{m} for E<EL
{m}, 

a multicanonical simulation for EL
{m}≤E≤EH

{m}, and a canoni-
cal simulation at T=TH

{m} for E>EH
{m}, while the replica- 

exchange process samples states of the whole energy range 
(EL

{1}≤E≤EH
{M}).

For obtaining the canonical distributions at any inter-
mediate temperature T, the multiple-histogram reweighting 
techniques [27,28] are again used. Let Nm(E) and nm be 
respectively the potential-energy histogram and the total 
number of samples obtained with the multicanonical weight 
factor Wmu

{m}(E) (m=1, ..., M). The expectation value of a 
physical quantity A at any temperature T (=1/kBβ) is then 
obtained from Eq. (22), where the best estimate of the den-
sity of states is obtained by solving the WHAM equations, 
which now read [73]

n(E) = 

M

∑
m=1

Nm(E)
M

∑
m=1

nm exp ( fm)Wmu
{m}(E)

 

= 

M

∑
m=1

Nm(E)
M

∑
m=1

nm exp ( fm − βmƐmu
{m}(E))

 , (50)

and for each m (=1, ..., M)

exp (−fm) = ∑
E  

n(E)Wmu
{m}(E) 

= ∑
E  

n(E) exp (− βmƐmu
{m}(E)). (51)

Note that Wmu
{m}(E) is used instead of the Boltzmann factor 

exp(−βmE) in Eqs. (37) and (38).
Moreover, ensemble averages of any physical quantity A 

(including those that cannot be expressed as functions of 

alized ensemble is now given by (see Eq. (28))

WMUCAREM(X) = 
M

∏
i=1

 

Wmu
{m(i)}(E(xm

[i]
(i)))

= 
M

∏
m=1

 

Wmu
{m}(E(xm

[i(m)])), (44)

where we prepare the multicanonical weight factor (and the 
density of states) separately for m regions (see Eq. (17)):

Wmu
{m}(E(xm

[i])) = exp [−βmƐmu
{m}(E(xm

[i]))] 

≡ 
1

n{m}(E(xm
[i]))

 

. (45)

Here, we have introduced M arbitrary reference tempera-
tures Tm=1/kBβm (m=1, ..., M), but the final results will be 
independent of the values of Tm, as one can see from the 
second equality in Eq. (45) (these arbitrary temperatures are 
necessary only for MD simulations).

Each multicanonical weight factor Wmu
{m}(E), or the  

density of states n{m}(E), is defined as follows. For each m 
(m=1, ..., M), we assign a pair of temperatures (TL

{m}, TH
{m}). 

Here, we assume that TL
{m}<TH

{m} and arrange the tempera-
tures so that the neighboring regions covered by the pairs 
have sufficient overlaps. Without loss of generality we can 
assume TL

{1}<...<TL
{M} and TH

{1}<...<TH
{M}. We define the fol-

lowing quantities:

{   EL
{m} =〈E〉TL

{m},
EH

{m} =〈E〉TH
{m},   (m=1, ..., M). (46)

Suppose that the multicanonical weight factor Wmu(E) (or 
equivalently, the multicanonical potential energy Emu(E; T0) 
in Eq. (18)) has been obtained as in REMUCA or by any 
other methods in the entire energy range of interest 
(EL

{1}<E<EH
{M}). We then have for each m (m=1, ..., M) the 

following multicanonical potential energies (see Eq. (42)): 
[73]

Ɛmu
{m}(E) = 

∂Emu(EL
{m}; Tm)

∂E  (E−EL
{m})+Emu(EL

{m}; Tm), for E < EL
{m},{  Emu(E; Tm), for EL

{m}
 ≤ E ≤ EH

{m},

∂Emu(EH
{m}; Tm)

∂E  (E−EH
{m})+Emu(EH

{m}; Tm), for E > EH
{m}.

 (47)

Finally, a MUCAREM simulation is realized by alternately 
performing the following two steps.

1. Each replica of the fixed multicanonical ensemble is  
simulated simultaneously and independently for a certain 
MC or MD steps.

2. A pair of replicas, say i and j, which are in neighboring 
multicanonical ensembles, say m-th and (m+1)-th, respec-
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considered as a multidimensional extension of the original 
replica-exchange method where the “parameter space” is 
one-dimensional (i.e., Λm=Tm). Because the replicas are 
non-interacting, the weight factor for the state X in this  
new generalized ensemble is again given by the product of 
Boltzmann factors for each replica (see Eq. (28)):

WMREM(X) = exp{−
M

∑
i=1

 

βm(i)Hm(i)(q[i], p[i])}

= exp{−
M

∑
m=1

 

βmHm(q[i(m)], p[i(m)])}, (54)

where i(m) and m(i) are the permutation functions in Eq. 
(26). Then the same derivation that led to the original replica- 
exchange criterion follows, and the transition probability of 
replica exchange is given by Eq. (33), where we now have 
(see Eq. (34)) [94]

∆ = βm(Eλm
(q[ j]) − Eλm

(q[i])) − βn(Eλn
(q[ j]) − Eλn

(q[i])). (55)

Here, Eλm
 and Eλn

 are the total potential energies (see Eq. (53)). 
Note that we need to newly evaluate the potential energy for 
exchanged coordinates, Eλm

(q[j]) and Eλn
(q[i]), because Eλm

 and 
Eλn

 are in general different functions.
We remark that MUCAREM in the previous subsection  

is a special case of MREM. We also remark that a general 
formalism for multidimensional generalized-ensemble algo-
rithms was presented in Refs. [138,139].

Parallel Monte Carlo or molecular dynamics using 
genetic crossover

Besides generalized-ensemble algorithms explained above, 
we have also proposed conformational search method using 
genetic crossover (PSA/GAc) [140–142]. While genetic 
algorithm is usually used for finding the global-minimum 
energy state, we have proposed to use genetic crossover to 
just introduce global update of conformations to enhance 
conformational sampling in conventional MC or MD simula-
tions [143–145]. We refer to these methods as parallel Monte 
Carlo using genetic crossover (PMC/GAc) and parallel 
molecular dynamics using genetic crossover (PMD/GAc).

In Figure 1, we show the flow charts of the PMC/GAc  
or PMD/GAc method [143–145] and the original GA for 
comparison.

We first prepare M initial conformations of the system in 
study, where M is the total number of ‘individuals’ in GA 
and is usually taken to be an even integer. We then alter-
nately perform the following two steps:

1. For the M individuals, regular canonical MC or MD sim-
ulations at temperature T are carried out simultaneously 
and independently for certain MC or MD steps.

2. M/2 pairs of conformations are selected from “parental” 
group randomly, and the crossover operation is performed 
to create “child” conformations. The obtained “child” 

potential energy) at any temperature T (=1/kBβ) can now  
be obtained from the “trajectory” of configurations of the 
production run. Namely, we first obtain fm (m=1, ..., M) by 
solving Eqs. (50) and (51) self-consistently, and then we 
have [74]

〈A〉T = 
M

∑
m=1

nm

∑
k=1

A(xm(k)) 
1

M

∑
ℓ=1

nℓexp( fℓ)Wmu
{ℓ}(E(xm(k)))

 

exp[−βE(xm(k))]

M

∑
m=1

nm

∑
k=1

 

 
1

M

∑
ℓ=1

nℓexp( fℓ)Wmu
{ℓ}(E(xm(k)))

 

exp[−βE(xm(k))]
 

,

 (52)

where the trajectories xm(k) (k=1, ..., nm) are taken from each 
multicanonical simulation with the multicanonical weight 
factor Wmu

{m}(E) (m=1, ..., M) separately.
As seen above, both REMUCA and MUCAREM can be 

used to obtain the multicanonical weight factor, or the den-
sity of states, for the entire potential energy range of inter-
est. For complex systems, however, a single REMUCA or 
MUCAREM simulation is often insufficient. In such cases 
we can iterate MUCA (in REMUCA) and/or MUCAREM 
simulations in which the estimate of the multicanonical 
weight factor is updated by the single- and/or multiple- 
histogram reweighting techniques, respectively [75].

Multidimensional replica-exchange method
We now present our multidimensional extension of REM, 

which we refer to as multidimensional replica-exchange 
method (MREM) [94]. (The method is also referred to as 
Hamiltonian replica-exchange method [95], generalized 
parallel sampling [129], and Model Hopping [130].) Some 
other examples of multidimensional generalized-ensemble 
algorithms can be found in, e.g., Refs. [120,131–137]. Another 
special realization of MREM is replica-exchange umbrella 
sampling (REUS) [94] and it is particularly useful in free 
energy calculations (see also Ref. [96] for a similar idea). 
REUS can be applied to ligand docking simulations and free 
energy calculations of ligand binding affinity [97–99].

The crucial observation that led to the new algorithm is: 
As long as we have M noninteracting replicas of the original 
system, the Hamiltonian H(q, p) of the system does not 
have to be identical among the replicas and it can depend  
on a parameter with different parameter values for different 
replicas. Namely, we can write the Hamiltonian for the i-th 
replica at temperature Tm as

Hm(q[i], p[i]) = K(p[i]) + Eλm
(q[i]). (53)

While replica i and temperature Tm are in one-to-one  
correspondence in the original REM, replica i and “parame-
ter set” Λm≡(Tm, λm) are in one-to-one correspondence in  
the new algorithm. Hence, the present algorithm can be  
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We need to deal with the produced “child” conformations 
with care. Because the produced preliminary conformations 
often have unnatural structures by the crossover operation, 
they have high potential energy and are unstable. This is  
particularly a serious problem for simulations with explicit 
solvent and lipid molecules. Therefore, a propagation pro-
cess is introduced before the selection operation. As the 
propagation process, we perform a short MC or MD simu-
lation with restraint potentials Erst(θ) of the (backbone)  
dihedral angle θ in the selected n amino acids as follows:

Erst(θ) = kθ(θ − θchild)2 (57)

where kθ is the force constant, and θchild is a dihedral angle 
proposed by exchanging dihedral angles between “parent” 
conformations by the crossover operation. The initial con-
formations for these propagation simulations are the ones 
before the crossover. Namely, by these propagation simula-
tions, the corresponding backbone conformations of the n 
amino acids gradually transform from the ones before the 
crossover to the ones after the crossover.

We remark that PMC/GAc and PMD/GAc can be com-
bined with REM for further enhancement of conformatonal 
space [144].

conformations are “selected” or accepted from the parents 
with the following Metropolis criterion:

w(p → c) = min (1, exp{−β[Ec − Ep]}), (56)

where Ep and Ec stand for the potential energy of the 
parental conformation and the final child conformation of 
the parent-child pair, respectively.

In Step 2, we can employ various kinds of GAc operations. 
Here, we just present a case of the two-point crossover [142]. 
The following procedure is carried out (see Fig. 2):

1. Consecutive amino acids of length n residues in the 
amino- acid sequence of the conformation are selected 
randomly for each pair of selected conformations.

2. Dihedral angles (in only backbone or all dihedral angles) 
in the selected n amino acids are exchanged between the 
selected pair of conformations.

Note that the length n of consecutive amino-acid residues 
can, in general, be different for each pair of selected confor-
mations. Motivated by the fragment assembly method [146], 
we take n to be an integer ranging from 2 to 10.

Figure 1 Flow charts of general genetic algorithm (left side) and PMC/GAc or PMD/GAc (right side).
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this multicanonical weight factor into four multicanonical 
weight factors that cover different energy regions [73–75] 
and assigned these multicanonical weight factors into four 
replicas (the weight factors cover the potential energy ranges 
from −13791.5 to −11900.5 kcal/mol, from −12962.5 to 

Examples of Simulation Results
The first example is the C-peptide of ribonuclease A  

in explicit water [85]. In the model of simulations, the  
N-terminus and the C-terminus of the C-peptide analogue 
were blocked with the acetyl group and the N-methyl group, 
respectively. The number of amino acids is 13 and the 
amino- acid sequence is: Ace-Ala-Glu−-Thr-Ala-Ala-Ala-
Lys+-Phe-Leu-Arg+-Ala-His+-Ala-Nme [147,148]. The initial 
configuration of our simulation was first generated by a high 
temperature molecular dynamics simulation (at T=1000 K) 
in gas phase, starting from a fully extended conformation. 
We randomly selected one of the structures that do not have 
any secondary structures such as α-helix and β-sheet. The 
peptide was then solvated in a sphere of radius 22 Å, in 
which 1387 water molecules were included (see Fig. 3). 
Harmonic restraint was applied to prevent the water mole-
cules from going out of the sphere. The total number of 
atoms was 4365. The dielectric constant was set equal to 1.0. 
The force-field parameters for protein were taken from the 
all-atom version of AMBER parm99 [151], which was found 
to be suitable for studying helical peptides [30], and TIP3P 
model [155] was used for water molecules. The unit time 
step, ∆t, was set to 0.5 fsec.

In Table 1 the essential parameters in the simulations per-
formed in this example are summarized.

We first performed a REMD simulation with 32 replicas 
for 100 psec per replica (REMD1 in Table 1). During this 
REMD simulation, replica exchange was tried every 200 
MD steps. Using the obtained potential-energy histogram of 
each replica as input data to the multiple-histogram analysis 
in Eqs. (4) and (5), we obtained the first estimate of the mul-
ticanonical weight factor, or the density of states. We divided 

Figure 2 Schematic process of the two-point crossover operation. In this process, all dihedral angles (in backbone and side chains) within the 
randomly selected n consecutive amino acids are exchanged between a pair of conformations.

Figure 3 The initial configuration of C-peptide in explicit water, 
which was used in all of the 32 replicas of the first REMD simulation 
(REMD1 in Table 1). The red filled circles stand for the oxygen atoms 
of water molecules. The number of water molecules is 1387, and they 
are placed in a sphere of radius 22 Å. As for the peptide, besides the 
backbone structure (in blue), side chains of only Glu−-2, Phe-8, Arg+-10, 
and His+-12 are shown (in yellow). The figure was created with 
Molscript [149] and Raster3D [150].
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analysis (PCA) [156–158] (for a review, see Ref. [159]). In 
Figure 6 the potential of mean force (PMF), or free energy, 
along the first two principal component axes at 300 K is 
shown. There exist three distinct minima in the free-energy 
landscape, which correspond to three local-minimum- energy 
states. We show representative conformations at these  
minima in Figure 7. The structure of the global-minimum 
free-energy state (GM) has a partially distorted α-helix with 
the salt bridge between Glu−-2 and Arg+-10. The structure is 
in good agreement with the experimental structure obtained 
by both NMR and X-ray experiments. In this structure there 
also exists a contact between Phe-8 and His+-12. This con-
tact is again observed in the corresponding residues of the 
X-ray structure. At LM1 the structure has a contact between 
Phe-8 and His+-12, but the salt bridge between Glu−-2 and 
Arg+-10 is not formed. On the other hand, the structure at 
LM2 has this salt bridge, but it does not have a contact 

−10796.5 kcal/mol, from −11900.5 to −9524.5 kcal/mol, and 
from −10796.5 to −8293.5 kcal/mol). We then carried out  
a MUCAREM simulation with four replicas for 1 nsec per 
replica (MUCAREM1 in Table 1), in which replica exchange 
was tried every 1000 MD steps. We again used the potential- 
energy histogram of each replica as the input data to the 
multiple- histogram analysis and finally obtained the multi-
canonical weight factor with high precision. As a production 
run, we carried out a 15 nsec multicanonical MD simulation 
with one replica (REMUCA1 in Table 1) and the results of 
this production run were analyzed in detail.

In Figure 4 we show the probability distributions of 
potential energy that were obtained from the above three 
generalized- ensemble simulations, namely, REMD1, 
MUCAREM1, and REMUCA1. We see in Figure 4(a) that 
there are enough overlaps between all pairs of neighboring 
canonical distributions, suggesting that there were suffi-
cient numbers of replica exchange in REMD1. We see in 
Figure 4(b) that there are good overlaps between all pairs  
of neighboring multicanonical distributions, implying that 
MUCAREM1 also performed properly. Finally, the multi-
canonical distribution in Figure 4(c) is completely flat between 
around −13000 kcal/mol and around −8000 kcal/mol. The 
results suggest that a free random walk was realized in this 
energy range.

In Figure 5a we show the time series of potential energy 
from REMUCA1. We indeed observe a random walk cover-
ing as much as 5000 kcal/mol of energy range (note that 
23 kcal/mol≈1 eV). We show in Figure 5(b) the average 
potential energy as a function of temperature, which was 
obtained from the trajectory of REMUCA1 by the reweight-
ing techniques. The average potential energy monotonically 
increases as the temperature increases.

We have analyzed the data by the principal component 

Figure 4 Probability distributions of potential energy of the 
C-peptide system obtained from (a) REMD1, (b) MUCAREM1, and 
(c) REMUCA1. See Table 1 for the parameters of the simulations. 
Dashed curves in (c) are the reweighted canonical distributions at 290, 
300, 500, and 700 K (from left to right).

Table 1 Summary of parameters in REMD, MUCAREM,  
and REMUCA simulations

Number of 
replicas, M

Temperature,  
Tm (K) (m=1, ..., M)

MD steps  
per replica

REMD1*

32

250, 258, 267, 276, 
286, 295, 305, 315, 
326, 337, 348, 360, 
372, 385, 398, 411, 
425, 440, 455, 470, 
486, 502, 519, 537, 
555, 574, 593, 613, 
634, 655, 677, 700

2.0×105

MUCAREM1 4 360, 440, 555, 700 2.0×106

REMUCA1 1 700 3.0×107

* REMD1 stands for the replica-exchange molecular dynamics  
simulation, MUCAREM1 stands for the multicanonical replica- 
exchange molecular dynamics simulation, and REMUCA1 stands for 
the final multicanonical molecular dynamics simulation (the produc-
tion run) of REMUCA. The results of REMD1 were used to determine 
the multicanonical weight factors for MUCAREM1, and those of 
MUCAREM1 were used to determine the multicanonical weight  
factor for REMUCA1.
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3513. The computer code developed in Refs. [73,92,160,161], 
which is based on the version 2 of PRESTO [162], was used 
after modification for calculatoin with the CHARMM force 
field. The MD time step was 1.0 fsec. We made two produc-
tion runs of about 1 μsec, each of which was a MUCAREM 
simulation with eight replicas. They are referred to as 
MUCAREM1 and MUCAREM2. The former consisted of 
1.127 μsec covering the temperature range between 269 K 
and 699 K, and the latter 1.157 μsec covering the tempera-
ture range between 289 K and 699 K.

In Figure 8 we show the time series of the mainchain  
root-mean-square deviation (RMSD) during MUCAREM1 
and MUCAREM2.

We consider that the backbone folded into the native 
structure from unfolded ones if the mainchain RMSD 
becomes ≤3.0 Å. The folding event is counted separately if  
it goes through an unfolded structure (with the backbone 
RMSD ≥6.5 Å). With this criterion, we observed 11 folding 
events in seven different replicas (namely, Replicas 5, 7,  
and 8 in MUCAREM1 and Replicas 1, 2, 4, and 5 in 
MUCAREM2).

In Figure 9 we show the snapshots of the replicas folding 
into native-like conformations for the two MUCAREM  
production runs.

In Figure 10 we compare the obtained low-RMSD confor-
mations and the native structure. They are indeed very close 
to the native structure.

The third example is a REM MC simulation for the pre-
diction of membrane protein structures [163]. Here, we used 
another implicit membrane model [164–169], where four 
elementary harmonic restraints are added to the original 
CHARMM potential energy function in order to mimic 
restrained membrane environment. Only the transmembrane 
helices are used in our simulations, and loop regions of the 
membrane proteins as well as lipid and water molecules 
were neglected. While membrane environment enhances  
the stability of helix structures, it also restricts sampling in 

between Phe-8 and His+-12. Thus, only the structures at GM 
satisfy all of the interactions that have been observed by the 
X-ray and other experimental studies.

The second example is a MUCAREM simulation of fold-
ing of a small protein [127]. The system that we simulated  
is chicken villin headpiece subdomain in explicit water. The 
number of amino acids is 36. The force field CHARMM22 
[152] with CMAP [153,154] and TIP3P water model 
[152,155] were used. The number of water molecules was 

Figure 6 Potential of mean force (kcal/mol) of the C-peptide 
 system along the first two principal components at 300 K. The free 
energy was calculated from the results of REMUCA production run 
(REMUCA1 in Table 1) by the single-histogram reweighting tech-
niques and normalized so that the global-minimum state (GM) has the 
value zero. GM, LM1, and LM2 represent three distinct minimum 
free-energy states.

Figure 5 Time series of potential energy of the C-peptide system from the REMUCA production run (REMUCA1 in Table 1) (a) and the aver-
age potential energy as a function of temperature (b). The latter was obtained from the trajectory of REMUCA1 by the single-histogram reweighting 
techniques.
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their functions. Thus, we also focus our interests in this work 
on the reproduction of their distortions in larger proteins 
such as bacteriorhodopsin which has seven distorted helices.

To solve this problem we extended the above method to 
include the flexible treatment of backbone structures and 
reproduced small membrane protein structures: glycophorin 
A of a transmembrane helix dimer and phospholamban of  
a distorted transmembrane helix [169].

Our method for membrane structure predictions is as  
follows. We first obtain the amino-acid sequences of trans-
membrane helices of the target protein by bioinformatics 
servers such as SOSUI [174], TMHMM [175], MEMSAT 
[176], and HMMTOP [177]. In the present work, however, 
the amino-acid sequences of transmembrane helices were 
taken from the experimental structure as in the previous 
work [167,168]. Different servers may predict different 

conformational space in the membrane region. Thus, this 
model greatly reduces the search area in the conformational 
space during folding processes. This model is supported by 
many experimental data such as two-stage model (for a 
review, see Ref. [170]). As for a simulation method, we 
employed the replica-exchange Monte Carlo (MC).

Although the previous method treated helix structures as 
rigid bodies and required the known helix structures from 
the native structure, this approach reproduced nativelike 
structures of bacteriorhodopsin [167,168], which has seven 
transmembrane helices with 249 amino acids and a retinal 
from Halobacterium salinarum (PDB ID: 1IW6 [171], 1PY6 
[172], 1BRR [173]). This protein has a function of proton 
pump in bio-membrane with excitations of the retinal mole-
cule by light. However, 60% of all transmembrane helix 
structures are distorted in PDB, which seems to be related to 

Figure 7 The representative structures at the global-minimum free-energy state ((a) GM) and the two local-minimum states ((b) LM1 and  
(c) LM2). As for the peptide structures, besides the backbone structure, side chains of only Glu−-2, Phe-8, Arg+-10, and His+-12 are shown in ball-
and-stick model.

Figure 8 Time series of the backbone RMSD from the native structure of villin headpiece during MUCAREM1 (left) and MUCAREM2 (right).
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and replica-exchange Monte Carlo method was implemented 
in it. Only the transmembrane helices were used in our sim-
ulations, and loop regions of the membrane proteins as well 
as lipid and water molecules were neglected. The membrane 
environment for this protein for the membrane thickness  
and the region of transmembrane region of the helices was 
taken from Orientation of Proteins in Membrane (OPM) 
[180]. The amino-acid sequences of the transmembrane  
helices are EWIWLALGTALMGLGTLYFLVKG (9–31), 
KFYAITTLVPAIAFTMYLSMLL (41–62), IYWARYADW 
LFTTPLLLLDLALL (78–100), QGTILALVGADGIMIGT 
GLVGAL (105–127), RFVWWAISTAAMLYILYVLFFGF 
(134–156), TFKVLRNVTVVLWSAYPVVWLIGSE (170–

helix ends. In order to study end dependence we also made 
shorter simulations with a little shorter helices and con-
firmed that we obtained similar results. We then perform 
REM simulations of these transmembrane helices. Our pro-
cedure for membrane protein structure predictions is sum-
marized in Figure 11 [169]. The MC program is based on 
CHARMM macromolecular mechanics program [178,179], 

Figure 9 Snapshots of villin headpiece during the MUCAREM production runs that folded into native-like conformations: MUCAREM1 
(above) and MUCAREM2 (below).

Figure 10 Low-RMSD conformations of villin headpiece obtained 
in MUCAREM1 and MUCAREM2 (colored in orange). The X-ray 
structure (PDB ID: 1YRF) is also superimposed (colored in blue and 
green). Here, the α-helices in the X-ray structure are colored in green 
and the rest in blue. Three phenylalanine side chains (Phe7, Phe11, and 
Phe18), which form a hydrophobic core, are shown in ball-and-stick 
representation. (a) The lowest-backbone-RMSD conformation observed 
in the two MUCAREM production runs (Replica 5 of MUCAREM2). 
The backbone RMSD value is 1.1 Å (for non-terminal 34 residues).  
(b) A low-RMSD conformation observed in MUCAREM1 (Replica 8). 
The RMSD value is 1.0 Å for residues 9 to 32 and 3.3 Å for non-termi-
nal 34 residues.

Figure 11 Our prediction procedure for membrane protein  
structures.
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boundary z-coordinate value of the membrane planes, respec-
tively, and here they depend on each helix atoms due to the 
known data from OPM [180] although constant membrane 
plane region is also possible like a previous research condi-
tion. dL and dU are the corresponding central value constants 
of the harmonic restraints. This term has a non-zero value 
only when the Cα atoms of the N-terminus or C-terminus of 
the i-th helix are apart more than di

L (or di
U). This restraint 

energy was introduced so that the helix ends are not too 
much apart from the membrane boundary planes.

Erestr3 is the energy that restrains all Cα atoms within the 
sphere (centered at the origin) of radius dCα

. rCα
 is the distance 

of Cα atoms from the origin, and k3 and dCα
 are the force con-

stant and the central value constant of the harmonic restraints, 
respectively.

Erestr4 is the energy that restraints the dihedral angles of the 
main chain so that helix structures may not deviate too much 
from ideal helix structures, preventing them from forming 
random-coil structures. NBD is the total number of (ϕ, ψ) 
angles in the helix backbones. Here, all the backbone dihe-
dral angles ϕj and ψj ( j=1, ..., NBD) are restrained. ϕ0 and ψ0 
are the reference value of the harmonic restraint to keep the 
helix structures without forming random coil structure, and 
αj

ϕ, αj
ψ are the anges of the harmonic restraints.

We set k1=5.0, di,i+1=(46, 53, 34, 19, 95, 30) where  
i=1, 2, ..., 6, k2=5.0, zL

0,i =(−14, −16, −20, −15, −19, −24, 
−18) where i=1, 2, ..., 7, zU

0,i =(12, 14, 15, 15, 14, 11, 12) 
where i=1, 2, ..., 7, dU=dL=2.0, k3=0.5, dCα

=80, k4=30.0, 
k5=30.0, ϕ0=−62, ψ0=−40, αj

ϕ =16, and αj
ψ =13.

We used 40 replicas and the following temperatures: 400, 
415, 435, 455, 485, 518, 552, 589, 629, 671, 716, 764, 815, 
870, 928, 990, 1056, 1127, 1202, 1283, 1369, 1460, 1558, 
1662, 1774, 1892, 2019, 2154, 2298, 2452, 2616, 2791, 
2978, 3177, 3390, 3616, 3808, 4050, 4250, and 4500 K. We 
remark that because short simulations suggested that the 
choice of the minimum temperature of 300 K did not change 
overall helix orientations compared to 400 K, we set the 
minimum temperature to 400 K instead of 300 K to reduce 
the number of replicas. We used rather high temperature val-
ues compared to experimental conditions. This is because 
our implicit membrane model guarantees the helix stability 
and enhances conformational sampling. Replica exchange 
was attempted at every 50 MC steps. We performed four 
independent simulations in total of 1,363,925,000 MC steps 
(the number of MC steps in each simulation was 308,000,000, 
250,000,000, 343,200,000, and 462,775,000 MC steps).

We used the CHARMM19 parameter set (polar hydrogen 
model) for the potential energy of the system [178,179]. No 
cutoff was introduced to the non-bonded terms. Each helix 
structure was first minimized subjected to harmonic restraint 
on all the heavy atoms. In order to prepare random initial 
conformations, we first performed regular constant tempera-
ture MC simulations of all the replicas for 3,000,000 MC 
steps at 4500 K. We then performed equilibrium MC simula-
tion for 3,000,000 MC steps at the above 40 temperatures, 

194), and LNIETLLFMVLDVSAKVGFGLILL (201–224), 
which are the same as in Refs. [167,168], where two  
numbers in parentheses after each sequence correspond to 
the first and last amino-acid numbers of each helix. The  
N-terminus and the C-terminus of each helix were blocked 
with the acetyl group and the N-methyl group (first residue 
and last residue), respectively. The initial structure for each 
helix was an ideal helix structure and they were placed in the 
membrane region randomly. We added the following four 
elementary harmonic restraints as a simple implicit mem-
brane model to the original CHARMM potential energy 
function of bond length, bond angle, torsion angle, van der 
Waals, electrostatic interaction, etc. in order to mimic the 
restrained membrane environment. The restraint energy 
function is given by

Erestr = Erestr1 + Erestr2 + Erestr3 + Erestr4 , (58)

where each term is defined as follows:

Erestr1 = 
NH−1

∑
i=1

k1 θ(ri,i+1 − di,i+1)[ri,i+1 − di,i+1]2, (59)

Erestr2 = 
NH

∑
i=1

{k2 θ(|zi
L

 − zL
0,i| − dL)[|zi

L
 − zL

0,i| − dL]2

+ k2 θ(|zi
U

 − zU
0,i| − dU)[|zi

U
 − zU

0,i| − dU]2}, (60)

Erestr3 = ∑
Cα

k3 θ(rCα 
− dCα

)[rCα 
− dCα

]2, (61)

Erestr4 = 
NBD

∑
j=1

k4 θ(|ϕj − ϕ0| − αj
ϕ)[|ϕj − ϕ0| − αj

ϕ]2

+ 

NBD

∑
j=1

k5 θ(|ψj − ψ0| − αj
ψ)[|ψj − ψ0| − αj

ψ]2. (62)

Erestr1 is the energy that restrains pairs of adjacent helices 
along the amino-acid chain not to be apart from each other 
too much (loop restraints), where ri,i+1 is the distance between 
the C atom of the C-terminus of the i-th helix and the Cα 
atom of the N-terminus of the (i+1)-th helix, and k1 and di,i+1 
are the force constant and the central value constant of the 
harmonic restraints, respectively. Each di,i+1 is proportional 
to the loop length connected between helices. θ(x) is the step 
function, which has 1 when x is larger than or equal to 0, 
otherwise zero. NH is the total number of transmembrane 
helices in the protein.

Erestr2 is the energy that restrains helix N-terminus and 
C-terminus to be located near membrane boundary planes. 
Here, the z-axis is defined to be the direction perpendicular 
to the membrane boundary planes. k2 is the force constant  
of the harmonic restraints. zL

0,i and zU
0,i are the z-coordinate 

values of the Cα atom of the N-terminus or C-terminus of  
the i-th helix near the fixed lower membrane boundary and 
the upper membrane boundary, respectively. zL

0,i and zU
0,i are 

the fixed lower boundary z-coordinate value and the upper 
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similar structures and at the temperature of 400 K. The rows 
of Cluster 1, Cluster 2, Cluster 3, Cluster 4 and Cluster 5 
represent various average values for the structures that 
belong to each cluster. The number of structures in each 
cluster (the total number was 42238 structures) was 9123, 
13146, 7457, 5121, and 4418 for Cluster 1, Cluster 2, Cluster 
3, Cluster 4, and Cluster 5, respectively. Thus, the global- 
minimum free energy state is Cluster 2, and the second- 
lowest minimum state is Cluster 1.

Figure 13 shows the representative structure in each clus-
ter from the highest density region. The root-mean-square- 
deviation (RMSD) value of each representative structure 
with respect to the Cα atoms was 3.6 Å, 8.8 Å, 15.8 Å, 15.9 Å, 
and 16.6 Å for Cluster 1, Cluster 2, Cluster 3, Cluster 4, and 
Cluster 5, respectively. From these RMSD values, we see 
that the native-like structure is the second-lowest free energy 
state (Cluster 1) and that the global-minimum free energy 
state (Cluster 2) is the second closest to the native structure. 
In the structure of Cluster 2, the space where the retinal mol-
ecule occupies in the native structure is filled with a helix, 

and the last conformation for each replica was the initial 
structure for the REM simulations. We repeated this process 
four times for four independent REM simulations with dif-
ferent seeds. In those simulations, the dielectric constant was 
set to ϵ=1.0 as in the previous works [164–169], because 
these works confirmed that the results with ϵ=1.0 value were 
in better agreement with the experimental structures than 
ϵ=4.0. The interpretation was that in the native structure 
there are few lipid molecules between helices. In MC 
move, we updated conformations with a rigid translation  
and rotation of each α-helix, a rotation of torsion angles of 
backbones by directional manipulation and concerted rota-
tion [181–183], and torsion rotations of side-chains. There 
are 2NH+NSD+NBD+NCR kinds of MC moves, where NSD is 
the total number of dihedral angles in the side-chains of NH 
helices and NCR is the total number of the combination of 
seven successive backbone torsion angles by the concerted 
rotation in the helix backbone. One MC step in this article is 
defined to be an update of one of these degrees of freedom, 
which is accepted or rejected according to the Metropolis 
criterion.

We investigated the free energy landscape obtained by the 
principal component analysis. We classified the sampled 
structures at the minimum temperature of 400 K into clusters 
of similar structures by the k-means clustering method [184]. 
Although we can express the system more accurately as  
we use more principal axes in k-means clustering, we here 
classify and analyze the sampled structures at the lowest 
temperature by the first three principal components. In  
Figure 12, the projection of sampled structures from the 
REM simulations at 400 K on the first, second, and third 
principal component axes. We obtained five distinct clusters 
of similar structures. If we perform constant temperature 
simulations at the lowest temperature, the simulations will 
get trapped in any of the clusters in Figure 12, depending on 
the initial conformations of the simulations. However, each 
replica during the REM simulations did not get trapped in 
one of the local-minimum free energy states, by going 
through high temperature regions. Every replica could over-
come energy barriers at higher temperatures during the  
simulations. This is the advantage of the replica-exchange 
method. Table 2 lists average quantities of five clusters of 

Figure 12 Projection of sampled structures at temperature 400 K 
on the first, second, and third principal axes from the REM simulations. 
Structures are classified into clusters of similar structures by k-means 
method and analyzed in detail. Clusters are highlighted by different 
colors: red, blue, yellow, green, and black. PCA1, PCA2, and PCA3 
represent the principal component axes 1, 2, and 3, respectively.

Table 2 Various average quantities for each cluster and at the temperature of 400 K

Str Etot Eelec Evdw Edih Egeo RMSD

Cluster 1 9123 −7587±355 −7006±51 −1197±83 202±14 106±215 6.2±5.6
Cluster 2 13146 −7422±182 −6976±45 −1166±44 213±11 147±123 12.2±2.4
Cluster 3 7457 −7287±210 −6943±31 −1143±71 211±10 229±142 14.9±2.5
Cluster 4 5121 −7421±109 −7010±36 −1145±43 213±10 160±71 16.3±1.1
Cluster 5 4418 −7300±309 −6954±41 −1096±67 207±11 184±258 16.7±1.0
400 K 42240 −7412±263 −6979±48 −1158±68 210±12 166±170 12.5±4.8

The following abbreviations are used: Str: number of structures, Etot: average total potential energy, Eelec: average electrostatic energy, Evdw: average 
Lennerd-Jones energy, Edih: average dihedral energy, Egeo: average constraint energy (all in kcal/mol), RMSD: average root-mean-square deviation 
of all Cα atoms (in Å).
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larger RMSD values came from the neglect of the retinal 
molecule in our simulations.

In order to study bendings of helices more quantitatively, 
we analyzed the data by the software HELANAL-Plus. They 
are in good agreement between PDB and Cluster 1 struc-
tures. Most properties of helices are similar between them, 
and because of the similarity in maximum bending and  
average bending with standard errors, this suggests that the 
tendency of bending was highly reproduced, although over-
all helix geometry is assigned differently (L vs. K) in Helix 
D, Helix E, and Helix G. However, there is disagreement in 
data about the maximum bending location in Helix D (85T 
for PDB and 77G for Cluster 1). This seems to result from 
the lack of interactions with the retinal molecule because the 
retinal binding positions are 79D, 82M, and 86G near the 
C-terminus side.

These results imply that the position of the kinks of helices 
are determined by their amino-acid sequences and that the 
amount of bends of helices are determined by the inter-
actions with surrounding molecules such as other helices, 
retinal, and lipid molecules.

The fourth example is a PMD/GAc simulation of a small 

and this increases the contact between helices and seems to 
stabilize this structure more than the native-like structure of 
Cluster 1 with the empty space for the retinal molecule. 
Moreover, this result that a helix occupies the retinal space is 
consistent with previous works [167,168] which did not 
include the flexibility of helix structures. However, the pre-
vious works were not able to obtain the native-like structure 
such as Cluster 1. Hence, the extension of including the free-
dom of helix structure distortion has improved the accuracy 
of prediction for membrane protein structure determination 
by simulation. Our results suggest that in the simulations 
without a retinal molecule the structures can interchange 
between the structures of Cluster 1 and Cluster 2. After an 
insertion of a retinal, it then stabilizes the native-like struc-
ture. It is important that the association of helices enabled 
them to make a room for an insertion of a retinal molecule. 
This is consistent with the experimental results of bacterior-
hodopsin, which observed the spontaneous insertion of a  
retinal molecule by a helix association [185].

We now examine the distortions of each helix of native-
like structure in Cluster 1. They are compared with the native 
structures in Figure 14. Note that the positions of the kinks 
of helices are all correctly reproduced. The RMSD values 
with respect to backbone atoms are 0.7 Å, 0.9 Å, 1.6 Å, 
2.7 Å, 1.1 Å, 2.2 Å, and 0.4 Å for Helix A, Helix B, Helix C, 
Helix D, Helix E, Helix F, and Helix G, respectively. These 
helix structures reproduced the bending of helices with 
smaller RMSD values for the helices apart from the retinal 
molecule in the native state (Helices A, B, and G), whereas 
the helices with larger RMSD values of about 2.0 Å are for 
the helices in close contact with the retinal in the native 
structure (Helices C, D, E, and F). They suggest that the 

Figure 13 Typical structures in each cluster selected in the highest 
density region. The RMSD from the native conformation with respect 
to all Cα atoms is 3.6 Å, 8.8 Å, 15.8 Å, 15.9 Å, and 16.6 Å for Cluster 1, 
Cluster 2, Cluster 3, Cluster 4, and Cluster 5, respectively. Helices are 
colored from the N-terminus to the C-terminus: blue (Helix A), light-
blue (Helix B), green (Helix C), deepgreen (Helix D), yellow (Helix E), 
orange (Helix F), and red (Helix G).

Figure 14 Comparison of distortions of each helix structure in 
Cluster 1 with the native helix structure by two different representation 
methods, (a) cartoon and (b) ribbon. The transparent structures are the 
native structures. The RMSD from the native conformation with 
respect to backbone atoms is 0.7 Å, 0.9 Å, 1.6 Å, 2.7 Å, 1.1 Å, 2.2 Å, 
and 0.4 Å for Helix A, Helix B, Helix C, Helix D, Helix E, Helix F, and 
Helix G, respectively. The coloring of helices is the same as in Figure 
13.
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namely, REMUCA, MUCAREM, and MREM. We also  
presented PMC/GAc and PMD/GAc, which are based on 
genetic crossover.

These methods can be used not only to predict the tertiary 
structures of proteins but also to calculate free energy land-
scapes of protein folding and protein-ligand docking, etc.
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