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Abstract

In one common pharmacogenomic scenario, outcome measures are compared for treated and 

untreated subjects across genotype defined subgroups. The key question is whether treatment 

benefit (or harm) is particularly strong in certain subgroups, and therefore statistical analysis 

focuses on the interaction between treatment and genotype. However, genome-wide analysis in 

such scenarios requires careful statistical thought since, in addition to the usual problems of 

multiple testing, the marker-defined sample sizes, and therefore power, vary across the individual 

genotypes being evaluated. The variability in power means the usual practice of using a common 

p-value threshold across tests has difficulties. The reason is that the use of a fixed threshold, with 

variable power, implies that the costs of type I and type II errors are varying across tests in a 

manner which is implicit rather than dictated by the analyst. In this paper we discuss this problem 

and describe an easily implementable solution based on Bayes factors. We pay particular attention 

to the specification of priors, which is not a straightforward task. The methods are illustrated using 

data from a randomized controlled clinical trial in which homocysteine levels are compared in 

individuals receiving low and high doses of folate supplements and across marker subgroups. The 

method we describe is implemented in the R computing environment with code available from 

http://faculty.washington.edu/jonno/cv.html.
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Introduction

The key statistical question in pharmacogenomic studies, in which genetic marker-defined 

subgroups are examined to see if they respond well or poorly to treatment, is how to flag a 

signal as “significant”. We describe two recent examples of case-control pharmacogenomic 

studies, in order to outline the usual current approach to the decision problem. In a recent 

study [1], epilepsy patients were treated with lamotrigine or related drugs. The cases had 

either Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis, both of which are 

potentially life threatening adverse drug reactions characterized by skin blistering. After 

quality control, 837,070 SNPs were examined using logistic regression. The authors quote 5 

× 10−8 as the genome-wide significance level that was sought (corresponding to a 

Bonferroni correction that controls the family-wise error rate) but no p-values below 10−6 

were found. Various case and control populations were examined but the number of cases in 

the different analyses performed was around 100 and so the power was low. In a second 

example, a candidate gene approach was reported in which cholesterol levels were examined 

across SNP defined subgroups in 554 statin users [2]. Again, a Bonferroni correction was 

applied to determine the p-value significance threshold. Two SNPs achieved the required 

level, with one being confirmed in a replication study.

We focus on the situation in which the phenotype is quantitative, though the methods are 

applicable generally. In the simplest situation, two treatments are randomly assigned to n 

subjects, with a quantitative summary measure (for example, a change in a biomarker) being 

subsequently measured. Information on J markers (e.g. SNPs) for each of the n study 

participants may then be used to define subgroups of interest. For example, in a recessive 

model, for each diallelic SNP, the two comparison subgroups of interest would be those that 

possess zero copies of the minor allele (subgroup 1) and those who possess one or two 

copies of the minor allele (subgroup 2). A standard analysis fits a linear model with 

treatment and marker main effects, and a treatment by marker interaction. The null 

hypothesis of interest is that the interaction parameter is zero, i.e., that individuals in each of 

the two marker-defined subgroups respond equally to treatment. The key point is that, across 

all SNPs, J interaction parameters are examined and the power to detect non-zero 

interactions will typically vary hugely over this collection, because the subgroup sizes are a 

direct function of the minor allele frequency (MAF). Conventional approaches to testing 

control a measure such as the family-wise error rate (FWER) by taking a fixed p-value 

threshold across all J tests. A key problem with this strategy is that the differential power 

(and therefore type II error) across tests, combined with a fixed type I error implies that the 

costs of the two types of error are varying across tests; one would prefer an approach in 

which both the type I and type II errors rate go to zero as the information increases. 

Intuitively, when the power is close to 1, one can afford to reduce the type I error rate, even 

if there is a corresponding decrease in power. The use of p-values in pharmacogenomics has 

been criticized previously [3] with a Bayesian approach being advocated as a possible 

solution. In this paper we describe a simple procedure with the desired characteristics, based 

on Bayes factors. Related but distinct approaches have previously been suggested [4–8].

The issue of variable power across multiple tests is common to all testing situations, but is 

acute in pharmacogenomic situations since the subset sizes are highly variable across tests. 

Wakefield et al. Page 2

Pharmacogenomics J. Author manuscript; available in PMC 2015 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The difficulties associated with fixed threshold rules has been previously pointed out in the 

context of case-control genome-wide association studies (GWAS) [9].

Materials and Methods

The VISP Trial

In this paper we analyze data from the Vitamin Intervention for Stroke Prevention (VISP) 

trial which is an NIH-funded, multi-center, double-blind, randomized, controlled clinical 

trial [10]. The aim of this trial was to determine whether a daily intake of high dose folic 

acid and vitamins B6 and B12 was associated with cardiovascular endpoints. One individual 

was removed since their data were considered outlying; this individual's data and the 

implications of retaining their data are discussed in the supplementary material. We examine 

data on n = 1, 670 individuals of European ancestry, with 837 randomized to the high dose 

and 833 to the low dose. After quality control procedures, 803, 122 SNPs were available for 

analysis. The outcome is the intermediate variable homocysteine level with high levels in 

blood being associated with cardiovascular disease. In the VISP trial, levels were measured 

longitudinally but for simplicity we take as outcome the difference between the baseline and 

the first post-baseline measurements. The average change was −0.37 μmol/L in the low dose 

group versus −2.36 μmol/L in the high dose group, to give a difference of −1.99 μmol/L (p < 

2 × 10−16) between the treatment groups. In this paper we take as our objective the 

examination of the treatment effect by marker, in order to determine whether genetic 

markers can identify subgroups with exceptionally strong or weak treatment responses.

Researchers can apply for access to the VISP genetic at http://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000343.v3.p1

Frequentist Boundaries

In this section we describe frequentist approaches to multiple hypothesis testing and begin 

by introducing some notation in the context of a quantitative trait and a pair of treatment 

groups. Let Yi and Ti = 0/1 represent the response and treatment indicator for individual i, i = 

1, ..., n, and let Mi = 0/1 be a marker indicator for individual i and for a generic SNP. In the 

VISP primary analysis we assume a recessive genetic model with Mi = 0/1 corresponding to 

0/1 or 2 copies of the minor allele. The choice of a recessive model is made for illustration 

only, and the fundamental approach and modeling issues we discuss exist for any choice (in 

the supplementary materials we report on the fitting of an additive model for the VISP data). 

We assume that J SNPs will be examined. To characterize treatment effects for a generic 

marker we use the model

(1)

with independent error terms εi having variance σ2. In model (1), xi corresponds to 

individual-level covariates that we wish to adjust for (such as age and gender), β is the main 

effect of treatment and Δ is the interaction parameter of interest, with the null hypothesis 

H0 : Δ = 0 being compared to H1 : Δ ≠ 0. Specifically, the interaction parameter Δ contrasts 

the treatment effect when Mi = 1 with the treatment effect when Mi = 0, and a non-zero 

interaction implies an association between the marker and treatment response. Hypothesis 
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testing may be based on the Z statistic , with V the estimated asymptotic variance 

of the MLE. The observed p-value based on a Z statistic is p = Pr(|Z| > zobs|H0). A small p-

value can arise because H0 is true but we were “unlucky”, or because H0 is not true. As we 

shall argue, deciding between these explanations depends on the power of the test, which in 

turn should depend on the standard error .

In the context of this paper, since J tests are performed, the multiple testing aspect must be 

considered when determining a p-value threshold from a frequentist perspective. A criterion 

that has received attention in the pharmacogenomics literature [1,2] is control of the family-

wise error rate (FWER), which is the probability of one or more false discoveries (type I 

errors). The Bonferroni correction controls the FWER at a level of α by taking the 

individual p-value threshold as α/J. Universal recommendations have been suggested for 

setting α in the GWAS literature [11,12]. However, these recommendations are independent 

of power considerations such as sample size and MAF. For example, an early study [13] 

used Bonferroni with 96 cases and 50 controls and 103,611 SNPs (to give a threshold of 

0.05/103, 611 = 4.8 × 10−7) while a much larger study [14] used Bonferroni with 17,513 

cases and 4,533 controls and 311,524 SNPs (to give a threshold of 0.05/311, 524 = 1.6 × 

10−7). More recently [15–17], the idea of a universal recommendation has been critically 

discussed, with a Bayesian approach being suggested as an alternative.

There are two primary problems with the use of the Bonferroni approach. First, controlling 

the FWER is not appropriate when we do not expect all of the nulls to be true. Second, as 

described above, a p-value threshold that is common to all tests, regardless of the power of 

each of the tests, is not sensible. Simply said, the type II error is going to zero with 

increasing sample size, so why not the type I error? In frequentist inference, consistency is 

sought, which means that procedures are favored if the correct answer (the true hypothesis in 

a testing setting) is recovered with increasing probability as the sample size increases. But 

the use of a constant threshold leads to an inconsistent procedure since, by construction, the 

type I error rate is not going to zero with increasing n. This is of course true in the usual 

frequentist hypothesis testing situations.

Other frequentist criteria can be used as an alternative to FWER. An intuitive measure is the 

expected number of false discoveries (EFD). If J0 is the true number of null signals amongst 

the J tests we have: EFD = J0 × α ≤ J × α. The latter inequality will be practically useful in 

situations in which we expect J0 to be close to J. Methods that control the false discovery 

rate (FDR) are also popular [18–20]. While EFD and FDR are more reasonable criteria than 

the FWER, one still needs to specify a threshold size, and this should decrease as the sample 

size increases. Current practice is again to ignore power when setting a p-value threshold. 

But, as with the FWER, the threshold should also go to zero with increasing sample size, so 

that both type I and II errors go to zero. However, there are no prescriptions available. We 

now describe a method for determining a significance boundary, based on a Bayesian 

formulation that provides a solution with the desired characteristics.
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Bayesian Decision Boundaries

A Bayesian assessment of the evidential content of the data with respect to the two 

hypotheses is provided by the Bayes factor, which is the ratio of the probability of the data 

under the null to the probability of the data under the alternative: BF = p(data |H0)/p(data |

H1). Large values of the Bayes factor favor the null, and values close to zero favor the 

alternative. The Bayes factor has been recently advocated as a measure of evidence in a 

number of genetic contexts [15, 16, 21–23]. To convert the evidence of the data contained 

within the Bayes factor into posterior probabilities on each of the two hypotheses one needs 

to specify a prior on these hypotheses. Let π0 represent the prior on the null being true, so 

that PO = π0/(1 – π0) is the prior odds on the null. Via Bayes theorem we can then evaluate 

the posterior probability that the null is true as

(2)

with Pr(H1|data) = 1 – Pr(H0|data). As an example, if the Bayes factor is 1/4 and the prior 

odds are 1/2, then the posterior probability on the null is . In order to pick a 

posterior probability threshold at which to declare significance we may go a step further and 

appeal to decision theory. In a Bayesian decision theory approach utilities (or costs) are 

placed on all combinations of actions (choice of whether or not to reject) and “truths” (null 

hypothesis correct or not). The principle of minimization of expected costs is then followed 

[24]. With respect to Table 1, suppose R = CII/CI is the ratio of the costs of type II to type I 

errors. Historically, a type I error has been viewed as more harmful than a type II error, but 

this slant is not always desirable. A Bayesian decision theory approach chooses H1 if the 

posterior odds on H0 falls below R which, from (2), occurs if

(3)

In general, the use of Bayes factors faces two large practical hurdles. First, one must specify 

prior distributions over all of the unknown parameters in the model, which can be a 

challenging task. For example, with respect to (1), priors would be required for α, ϕ, β, γ, Δ 

and σ. Second, the computation of the numerator and denominator of the Bayes factor 

requires evaluation of integrals whose dimensions are equal to the number of parameters 

contained in the model under H0 and H1, respectively. Such integration is not trivial and 

must be carried out J times in the multiple testing context. To overcome these hurdles, one 

suggestion is to replace the likelihood arising from the original data by the sampling 

distribution of the estimator of the parameter of interest [15]. The idea is to take the “data” 

as  in which case we have a likelihood . In large samples (such as those that are 

typically in GWAS) this distribution will be normal and, effectively, the available 

information in the data concerning the parameter of interest has been summarized in the 

sampling distribution of the estimator. Similar approaches have a long history, in particular 

in the context of clinical trials [25].

The model for a generic marker with interaction parameter Δ is
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(4)

(5)

where  is the prior standard deviation, so that a 95% prior interval on the size of the 

interaction is . The Bayes factor is relatively insensitive to the choice of W [26]. 

In terms of the likelihood, only a confidence interval is required for specification, since this 

interval may be used to find  and V for use in (4).

The model (4) and (5) leads to a very simple form of Bayes factor for the marker, as shown 

elsewhere [15]:

where Z is the Z statistic. A crucial observation is that the evidence is based on the Z score 

and on the standard error , where the latter in turn depends on the subgroup sample 

sizes.

One may view Bayes factors as a mechanism by which Z-score boundaries can be calculated 

as a function of the standard error . From rearrangement of (3) the Bayesian Z2 score 

threshold for rejection is:

(6)

to give a threshold which is an explicit function of V, R and PO. Notice that this Bayesian 

derivation makes no mention of type I and type II errors though one may calculate these 

errors from (6) if one wishes to evaluate the frequentist properties that correspond to 

particular choices of PO, R and W. An example is given in the Results section below.

We make the following observations on the Bayesian boundary (6). If the prior odds on the 

null (PO) increases, the threshold increases so that we require more evidence to overcome 

the initial scepticism. If the cost of type II to type I errors, R, increases, then the threshold 

decreases (to give a more liberal rule) and we require less evidence from the data. Beyond a 

certain point, as V decreases, the type I error decreases to zero. Specifically, let n denote an 

appropriate measure of sample size and write V = k/n, where k is not a function of n. Then, 

as n → ∞, from (6)
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so that the boundary increases, and so the type I error tends to zero. It can also be shown 

[26] that the Bayes factor tends to zero under the alternative as n → ∞ [27]. We discuss the 

behavior of the Bayesian boundary relative to a boundary that is constant with respect to n. 

Such a constant boundary may be obtained through the usual implementations of FWER, 

EFD or FDR procedures. The Bayesian approach implicitly trades type I and type II errors 

through the specification of R. This is in contrast to the usual frequentist approach in which 

a type I error is fixed and the power is then determined. Figure 1 illustrates this behavior of 

the Bayesian threshold, given by the square root of (6), for a range of standard errors that are 

consistent with the VISP trial. The critical thresholds were taken from (6) with π1 = 0.0001, 

so that with J = 803, 122 tests we would expect around J × π1 = 80 signals. These signals 

will not reflect 80 different causal variants since typically multiple SNPs will tag each 

causal variant. For reference, the Bonferroni threshold for a FWER of 20% (corresponding 

to a p-value of 0.20/803122 = 2.5 × 10−7) is indicated as a horizontal line. For small n (large 

standard error) the Bayesian approach increasingly requires greater evidence because of the 

low power. For large n (small standard error) the Bayesian approach requires more evidence 

because the power is high and so some of the small type II error is traded with type I error to 

give a more conservative procedure.

Results

A Priori Operating Characteristics

We now return to the VISP data and begin by examining the operating characteristics of 

potential Bayesian decision boundaries, based on different priors. This procedure may be 

carried out before the data are analyzed, since it allows one to choose a threshold rule aided 

by consideration of type I and type II error probabilities. For ranges of the standard error 

consistent with the VISP data (Figure S1 of the supporting material), we calculated the type 

I errors with the Z-score boundaries given by (6). We assume R = 1 (equal costs of type I 

and type II errors) and π1 = 0.001, 0.0001, 0.0001. For J = 803, 122 SNPs this corresponds 

to expecting 803, 80 and 8 non-null interactions, respectively. Figure 2 plots various useful 

operating characteristics. The negative log base 10 type I error probabilities are plotted as a 

function of the standard error in the upper left panel of Figure 2. We see the expected U-

shaped behavior of the probabilities corresponding to the Bayesian decision boundaries (as 

discussed in the last section and as seen in Figure 1). We next evaluated the power to detect 

a drop of 5 units and the resultant curves are in the upper right panel of Figure 2. As in the 

upper left panel, the π1 = 0.0001 (sceptical) prior is that which most closely mimics the 

FWER curve, at least for standard errors between 0.5 and 2.

We now transform the type I error and power into more intuitive quantities, the expected 

number of false discoveries (EFD) and the expected number of true discoveries (ETD). To 

determine the EFD and ETD we require specification of the number of null and non-null 

signals, which we label as J0 and J1, respectively (so that J = J0 + J1). We take the true 

number of signals as J1 = 50 so that there are J0 = 803, 072 null signals. Then EFD = J0 × α 

and ETD = J1 × (1 – β) where α and β are the type I and type II errors. We emphasize that in 

a GWAS in which the fraction of non-null associations is close to zero, the ETD is highly 

sensitive to the choice of J1 (in contrast to EFD, which is insensitive). The resultant plots of 
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EFD and ETD are in the bottom row of Figure 2. Care is required in the interpretation of the 

ETD plot since at each standard error it is assumed that all of the signals have this standard 

error. We also stress that when we specify a prior π1, the ETD is the true proportion of non-

null signals, not the proportion of signals that we have the power to detect. This should be 

borne in mind when we actually analyze the data and consider the proportion of signals we 

are missing; we return to this point in the Discussion. The most liberal prior of π1 = 0.001 

produces a large number of type I errors (around 20 for standard errors in the mid-range) 

and might be judged to give unacceptably poor performance. The most sceptical prior is 

more conservative than Bonferroni (with a FWER of 20%) and the prior with π1 = 0.0001 is 

a compromise for this choice of J1. For example, for a standard error of 1, around 2 false 

discoveries would be expected (as in the lower left panel) but with around 10 more true 

signals being detected (as seen in the lower right panel), which seems a reasonable trade-off. 

Note, however, that if we think the number of true signals is smaller than J1 = 50 then the 

number of true signals will fall proportionally. For example, at a standard error of 1, if J1 = 

5 then we would only expect to detect a single additional signal, when compared to the use 

of Bonferroni. Armed with this information we move to an analysis of the VISP data.

VISP Analysis

We fitted model (1) to the J = 803, 122 SNPs with gender and age (by quintile) being 

included and corresponding to the xi term. The genetic subgroups are defined as having at 

least one copy of the minor allele as compared to two copies of the major allele. The number 

in the former subgroup ranges between 21 and 1,564 across SNPs. The standard error of  is 

 where ntm is the number of individuals in treatment group 

t, t = 0/1 and marker subgroup m, m = 0/1 for a generic SNP. Hence, the standard error is 

driven by the smallest subgroup. To emphasize, the same 833 low dose and 837 high dose 

responses are used in each of the J comparisons, but they are differentially distributed in the 

four treatment × marker cells across the J comparisons.

Figure 3 plots the Z-scores versus the standard error, along with boundary corresponding to 

a FWER of 20%, and Bayes boundaries with π1 = 0.001, 0.0001, 0.00001 and ratio of costs 

R = 1 (to give a posterior probability threshold of 0.5). We chose W to give a 95% prior 

interval for the interactions Δ of ±10. The curvature in the three Bayes boundaries 

acknowledges the variable power. For both the most conservative prior and the Bonferroni 

approach (with a FWER of 20%, which gives a p-value threshold of 2.5 × 10−7) two SNPs 

are flagged. With a FWER of 5% the Bonferroni threshold is 6.2 × 10−8 and results in a 

single SNP being deemed significant. With the more optimistic prior of π1 = 0.0001, a 

further two signals are flagged (and these are not significant using Bonferroni). There are 

few strong signals for these data, however. Table S1 in the supplementary materials contains 

more details on each of the top SNPs.

Figure 4 plots the posterior probabilities of the alternative hypothesis (with π1 = 0.0001) 

versus chromosomal position (this is similar to a Manhattan plot in which – log10 p-values 

are plotted against position). The 3 SNPs that fall outside of the boundary in Figure 3 are 

highlighted. The strongest signal is for SNP rs3736238 on chromosome 17. For this SNP 

there are 42 individuals in the M = 1 subgroup, of which 24 and 18 are in the low and high 

Wakefield et al. Page 8

Pharmacogenomics J. Author manuscript; available in PMC 2015 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dose groups, respectively. The interaction effect was  (so that we have an 

enhanced effect), with s.e.  to give a Z score of –4.8 and a p-value of 1.5 × 10−8. 

The reciprocal of the Bayes factor (evidence in favor of the alternative) is 1.1 × 106. The 

posterior probability on the alternative is 0.99 so that under this prior there is strong 

evidence to conclude the interaction is real. The probability of this signal being a false 

discovery is 0.01 under our assumed prior.

To illustrate the sensitivity of the conclusions to the prior on the effect size, reducing the 

95% prior interval on Δ to ±3 gives 1/BF = 1.6 × 104 and a posterior probability on the 

alternative of 0.38. Figure S2 of the supporting material gives the behavior of the Z-score 

threshold, as shown previously as Figure 1, under the revised prior on Δ. Hence, for this 

SNP, the significance is greatly reduced because the observed size of effect was –6.7, which 

is very unlikely under the revised prior. If we change the prior on the alternative to π1 = 

0.00001, then the posterior probability on the alternative is reduced to 0.91 (so that the 

probability that this is a false discovery is 0.09). Figure S4 of the supporting material 

contains the π1 = 0.00001 version of Figure 4.

The most significant SNP, rs3736238, is in gene flotillin 2 (FLOT2) on chromosome 17 and 

is located in an exonic splicing enhancer and thus may regulate splicing processes and 

subsequent mRNA stability. The amino acid substitution at amino acid position 279 of 

FLOT2 arises from the missense SNP rs3736238 (F-SNP database http://

compbio.cs.queensu.ca/F-SNP). Hence, this SNP could affect the protein secondary 

structure or function. FLOT2 encodes a caveolae-associate protein, which may function in 

neuronal signaling (www.genecards.org). A recent study [28] showed that the DHHC5 

protein palmitoylates FLOT2 in response to neuronal differentiation signals. It may also be 

related to the progression of multiple types of cancers and metastasis formation [29]. 

Currently the function of FLOT2 with respect to homocysteine levels or stroke related 

diseases is unknown but is worthy of further research. Given that there is no obvious 

compelling functional argument for the association with this SNP, and the not completely 

conclusive evidence arising from the posterior probability (which is highly sensitive to π1) 

we would recommend that further work, preferably at the molecular level, be carried out for 

confirmation. The MAF is 1.3% for this SNP and so the enhanced effect will only be seen in 

a small group of individuals.

The second signal is rs16893296 on chromosome 6 with a posterior probability on the 

alternative of 0.96. point estimate and standard error are –4.6 and 0.85 with a p-value of 7.1 

× 10−8. The nearby genes are LOC442160 and LOC442161. This variant is in a weak 

DNaseI site, but has a low conservation score, which is fairly weak evidence for being 

“functional”. The third significant SNP rs1739317 (posterior probability on the alternative 

of 0.81 and a p-value of 4.0 × 10−7) is located on chromosome 6 with nearby genes C6orf32 

and LOC134997. The evidence that this SNP is functional is weak since this variant is also 

in a weak DNaseI site with a low conservation score. The mechanisms for the associations 

between this SNP and homocysteine levels are unknown. Hence, to validate the results, 

again replication studies are needed.
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On Figure 4, lines of significance corresponding to ratios of cost equal to 1 and 3 are drawn 

at posterior probabilities of 0.5 and 0.25, respectively. An additional signal is called 

significant if we apply the more liberal 0.25 boundary. Further details for all four flagged 

SNPs are contained in the supporting materials.

Figure 5 shows that the p-values and Bayes factors differ in their rankings due to the 

differing sample sizes/standard errors. The points are color-coded by the size of the standard 

error and we see that the points with larger standard errors are consistently ranked as giving 

greater evidence for the alternative under the Bayesian approach. This behavior occurs here 

because of the association between the Z2 boundary and the standard error for these priors, 

as shown in Figure 1. Specifically, the majority of the signals occur in that portion of the 

latter curve in which the Bayes boundary lies below the FWER boundary. Figure S3 of the 

supporting material shows an example in which distinctly different behavior occurs.

Discussion

In this section we expand on the practical difficulties of implementing the method described 

here, and in particular on the choice of prior distributions. We also report some additional 

analyses that address the sensitivity of our conclusions to various model choices.

The posterior probability of the alternative is highly dependent on the choice of prior on the 

null π0, and a sensitivity analysis is always warranted. Ideally, rather than fix π0 as we have 

done, one would estimate of π0 from the totality of data (i.e. over all J SNPs), but this is 

difficult because in a GWAS the proportion of detectable null signals is typically very close 

to 1; there may be many thousands of small but non-zero effects, but the power to detect 

these signals is low, with usual sample sizes. In other contexts, such as the analysis of gene 

expression data [20], the data can be used to estimate π0 more reliably. If the same prior on 

the null is used for all the tests, the rankings based on the Bayes factor will remain the same 

as the ranking based on posterior probabilities. However, calibrating the Bayes factors to the 

probability scale requires prior probabilities. Within a sensitivity exercise one may include 

an analysis in which any available information on particular SNPs may be included. 

Recently, the utility of including prior information, in this case based on a search of medical 

abstracts, has been demonstrated [30].

In our VISP analysis, we chose the value π1 = 0.0001 by examining frequentist summaries 

before the real data analysis was performed. We define π1 as the proportion of SNPs that 

would be associated with the disease, if the power were 1. This proportion includes tag 

SNPs and so we would not expect the number of non-null signals to be binomial (since the 

signals do not correspond to independent Bernoulli random variables, which will induce 

overdispersion) though under our chosen prior, one would expect J × π1 = 80 non-null 

interactions. After the data are analyzed we can, for those SNPs declared as null (i.e. all but 

3 SNPs in the VISP trial), sum up the posterior probabilities of being non-null, and this 

gives the expected number of false non-discoveries (where the expectation is over the 

posterior distribution). For the VISP data, this expected number is 24.6 so that we are 

missing a large number of signals, with lack of power being a major issue. For the three 

significant signals, at the 0.5 threshold, the probabilities of the null being true are 0.01, 0.04 
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and 0.19, so that the expected number of false discoveries is 0.24. Taking the threshold of 

significance as 0.25 gives an additional SNP as being declared significant. The sum of the 

posterior probabilities of the null is 0.98 in this case and so, under this prior, we would 

expect one of the reports signals to be a false discovery. The supporting material contains a 

discussion of the results under the more conservative π1 = 0.00001 prior.

A related interesting exercise is to simulate the distribution of observed effect sizes under 

our assumed priors (on both the proportion of non-null signals and the effect sizes), using 

the observed distribution of standard errors. The distribution of effect sizes is N(Δ, V + W) 

for the non-null signals and N(0, V) for the null signals. We can then evaluate the power, and 

hence determine the number of signals we would expect to detect given our prior 

assumptions. For the VISP data, with a proportion of non-null signals π1 = 0.0001, R= 1 and 

95% range for the effect sizes of ±10, we would expect to see 52 true positives and one false 

positive. Given we only observed three non-null signals, this implies that either the range of 

effect sizes (as defined through W) was too wide or, more probably, that our estimate of π1 

was optimistic. Repeating this exercise with π1 = 0.00001 gives 5 true positives and close to 

0 false positives, which is more consistent with that which was observed.

The posterior probability (and the Z-score threshold) is equally sensitive to R as to π1, as one 

can see from the symmetry in (6). The form of the latter suggests that all we need to do is to 

fix PO/R. As mentioned above, in the VISP analysis we selected π1 by examining the 

frequentist operating characteristics. An alternative method [26] for obtaining PO/R is to 

specify a value for the Z2 boundary, , at a particular V (for example, at a MAF and sample 

size that one is familiar with) and then solve for U = log(PO/R) via

With this value of PO/R one can then proceed to use (6) across the observed range of 

standard errors.

Finally, we describe some alternative analyses of the VISP data and model extensions.

Alternative Genetic Model

In the analyses of the paper we assume a recessive genetic model. As an alternative, in the 

supplementary material we report the results from the fitting of an additive model. For these 

data the three most significant SNPs were the same under both the recessive and additive 

models and the posterior probabilities of non-null association were very similar.

Constant Variance Assumption

It may be important to allow different variances in each of the treatment groups [6,7] to 

improve power and we have carried out an additional analysis to address this issue. With 

respect to model (1) we allowed for different variances in the two treatment groups, and 

derived the asymptotic variance V̂ under this model. In addition, we carried out an analysis 

using sandwich estimation. The results are reported in the supplementary material; for these 
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data, the conclusions show only small changes. This is not surprising here, since it is known 

that for equal sized groups the two-sample t test gives the same statistic [31].

Joint Modeling of Main Effect and Interaction

Another important modeling choice that has been considered previously [4–8] is the joint 

relationship between the main effect of genotype and the interaction. There are two 

components to this modeling: one may jointly model the probabilities of the events “main 

effect is zero” and “interaction effect is zero”, and one may also jointly model the sizes of 

the main and interaction effects. Here we have chosen, primarily for simplicity, to model the 

effects separately in the sense that the existence or size of a main effect has no impact on our 

prior on the existence or size of an interaction. In other approaches [5] interactions are not 

allowed unless main effects are present. In our context we would not wish to make this 

strong assumption since the marker effect may only exist amongst the treated, that is, with 

respect to model (1) there may be situations in which γ = 0 and Δ ≠ 0. In other situations one 

may wish to model the dependence between main and interaction effects’ in the 

supplementary materials we describe a more complex model in which one may encode more 

refined prior beliefs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bayesian Z-score threshold as a function of the standard error; FWER is the family-wise 

error rate which is set at 0.2; here we take the number of tests as J = 803, 122. The Bayesian 

threshold is based on a prior on the alternative of 0.0001, a ratio of costs of type II to type I 

errors of R = 1 and a prior standard deviation on the interaction effect size of ; this 

prior gives a 95% interval of (−10,10).
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Figure 2. 
Operating characteristics of prospective Bayesian decision boundaries. A comparison with a 

Bonferroni correction corresponding to a family-wise error rate of 0.2 is also included. For 

all Bayesian boundaries R = 1 and “Bayes 1”, “Bayes 2”, “Bayes 3” correspond to priors of 

π1 = 0.001, 0.0001, 0.00001. In the top right panel the power to detect a drop of 5 is plotted. 

The expected number of false discoveries (EFD) is plotted in the lower left panel and the 

expected number of true discoveries (ETD) in the lower right. It is assumed that there are J1 

= 50 non-null associations.
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Figure 3. 
Z-score threshold as a function of the standard error for the VISP data, ratio of costs of type 

II to type I errors R = 1 and varying priors on the alternative of π1 = 0.001, 0.0001, 0.00001 

(to give Bayes 1, Bayes 2, Bayes 3 boundaries, indicated in blue). The purple lines 

correspond to the Bonferroni correction for a family-wise error rate of 20%.
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Figure 4. 
Posterior probability on the alternative plotted versus genomic position for the VISP data. 

Each point corresponds to a marker subgroup so that points closer to 1 have a greater 

probability of corresponding to a significant interaction. The prior on the alternative is π1 = 

0.0001. The horizontal dashed blue line at 0.5 corresponds to a threshold with R = 1 (equal 

costs of type I and type II errors) while the line at 0.25 corresponds to R = 3 (type II errors 

being three times worse than type I errors). SNP labels are attached to the three SNPs which 

we would declare as significant under the R = 1 rule.
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Figure 5. 
–log10BFs versus –log10 p-values, color-coded by standard error with W = 10. The signals 

with larger standard errors are generally more significant under the Bayesian approach than 

under the approach based on Z-scores only.
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Table 1

2 × 2 table of losses for the case of two hypotheses H0 and H1; CI and CII are the costs of type I and type II 

errors, respectively.

Truth

H 0 H 1

Decision
H 0 0 C 11

H 1 C 1 0
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