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Abstract: Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders.
Its administration can significantly increase the survival rate after liver transplantation, reduce fat
deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide
Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose
metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering
the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the
management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant,
and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on
lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders.
Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this
review critically examines current in vitro and in vivo preclinical studies and human clinical studies
related to liver protection.

Keywords: resveratrol; non-alcoholic fatty liver disease; nutraceutical; oxidative stress

1. Introduction

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a non-flavonoid phenol produced by
numerous plants in response to bacteria or fungi colonization. It can be found mainly in
grape peel, blueberries, raspberries, mulberries, and peanuts while its high concentration
in red wine explains, in part, the relatively low incidence of cardiovascular disease in the
French population despite the prevalence of a high-fat diet (HFD) among this population [1].
Numerous studies have shown that resveratrol can prevent or slow the progression of
a wide variety of diseases, including malignant tumours, neurodegenerative diseases,
cardiovascular disorders, ischemic lesions, and viral infections [2–5].

Interestingly one of the most important scientific fields in this context is currently
represented by its potential therapeutic effects in liver diseases [6,7].

The mechanisms underlying the beneficial effects of resveratrol have not been fully
elucidated and have mainly been related to its antioxidant activity [8]. This property
has been shown to protect tissues such as the liver, kidneys, and brain from a variety of
types of damage caused by oxidative stress [9]. Considering the spread of liver diseases—
in particular, metabolic (dysfunction) associated fatty liver disease (MAFLD)—all over
the world and the necessity for new useful therapeutic approaches, efforts made by the
scientific community in exploring the role of nutraceuticals in this scenario are crucial for
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assessing the applicability of the evidence obtained from in vitro and clinical trials and
translating it to routine clinical practice. For these reasons, in this comprehensive review,
we analyzed the current scientific knowledge about the use of resveratrol for treatment of
liver diseases from in vitro models up to clinical trials.

2. Resveratrol and Liver Disease: Molecular Mechanisms
2.1. Steatosis

Obesity is a major risk factor for non-alcoholic fatty liver disease [10]. Resveratrol
possesses beneficial properties that are fundamental in preventing this metabolic condition,
therefore attenuating liver inflammation [11–14]. The effects of resveratrol on non-alcoholic
fatty liver disease (NAFLD) are correlated to the regulation of Low-Density Lipoprotein
(LDL) receptors [15].

Poulsen et al. [11] showed that resveratrol reduces the diet-induced accumulation
of hepatic fat through increased oxidation of fatty acids and reductions in lipogenesis.
These effects are mediated by the activation of the AMPK/SIRT1 (AMP-activated protein
kinase/sirtuin 1) axis [16,17]. RSV (resveratrol) supplementation in rodents fed with a high-
fat diet demonstrated an increased number of mitochondria and, in particular, an increase
in hepatic decoupling protein 2 expression, which could be involved in the normalization
of the hepatic fat content [18]. Resveratrol significantly reduced TAG (triacylglycerols)
and cholesterol, as well as the number and size of lipid droplets [19,20]. It would appear
that a low dose of resveratrol (0.005%) is more effective than higher doses (0.02%) at
reducing the development of hepatic steatosis, along with increases in body weight, plasma
TAG levels, and total cholesterol levels [21]. The observed effects could be related to
the suppression of fatty acid (FA) synthase, glucose-6-phosphate dehydrogenase, and
phosphatide phosphohydrolase, whilst also partly being a consequence of the activation of
FA oxidation in hepatic adipose tissue [22].

Bujanda et al. [23] investigated the action of resveratrol on hepatic steatosis in an
animal model of a high carbohydrate-fat diet. They found that liver fat deposition was
reduced in the resveratrol treated group (10 mg/day) compared to the controls. This effect
was mainly related to an increase in SOD (superoxide dismutase), GPx (glutathione peroxi-
dase), CAT (catalase), and a reduction in NOS (nitric oxide synthase) activity [23]. Focusing
attention on the molecular mechanisms related to the role of resveratrol in alcoholic fatty
liver disease—the activation of SIRT1 (sirtuin 1) and AMPK (AMP-activated kinase)—two
critical signalling molecules that regulate the metabolic pathways of liver lipids were high-
lighted [24,25]. Resveratrol is a potent activator of both SIRT1 and AMPK [26]. Chronic
consumption of ethanol causes an inhibition of the hepatic SIRT1-AMPK signalling system;
resveratrol works by reversing this action and preventing the development of alcoholic
fatty liver disease [27]. In fact, in ethanol-fed mice, RSV treatment has been shown to
increase hepatic SIRT1 expression and stimulate AMPK activity, improving metabolic lipid
homeostasis and antagonizing the development and progression of the disease [28].

2.2. Oxidative Stress and Inflammation

Resveratrol has been shown to elicit relevant antioxidant properties in a wide range
of hepatic disorders [29–33]. Specifically, its effect is mainly exerted by the reduction
of RNS (ROS/reactive nitrogen species), elimination of direct free radicals, and an im-
provement in endogenous antioxidant enzyme activity (e.g., SOD, CAT, GSH) [34,35].
Moreover, RSV promotes the synthesis of antioxidant molecules and the expression of
related genes involved in the biogenesis of mitochondrial energy, mainly through the
AMPK/SIRT1/Nrf2 (nuclear factor 2), ERK/p38 (signal-regulated extracellular kinase),
MAPK (mitogen-activated protein kinase), and PTEN/Akt (phosphatase and tensin ho-
molog/protein kinase B) signalling pathways. In turn, this induces autophagy through an
mTOR-dependent (target of rapamycin in mammals) or TFEB-dependent (EB transcription
factor) pathway [36,37]. Erythroid nuclear transcription factor-2 (Nrf2; encoded by the
NFE2L2 gene in humans) is a transcription factor that regulates the gene expression of
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a large variety of antioxidant and cytoprotective enzymes through a promoter sequence
called ARE (antioxidant response element) [38,39]. In this sense, resveratrol acts as an
antioxidant by inhibiting Nrf2 ubiquitination, safeguarding the maintenance of its crucial
functioning [40]. Nrf2, in turn, translocates into the nucleus, inducing the transcription
of various antioxidant genes, such as SOD and CAT improving, then the antioxidant
defence [41].

Resveratrol promotes the transcriptional functions of FoxOs (forkhead box protein O1)
in order to facilitate the transcription of various antioxidant genes such as HO-1 (heme oxy-
genase 1) [42]. Moreover, RSV up-regulates PTEN, an important PI3K (phosphatidylinositol
3-kinase) antagonist, by blocking the activation of Akt, leading to reduced phosphorylation
of FoxOs, and in turn increasing its nuclear activity [43].

The protein kinase activated by AMP (AMPK), in conditions of energy depletion, plays
an important role in the regulation of energy homeostasis, tumorigenesis, and longevity,
in addition to an antioxidant role, in response to resveratrol [44]. In fact, AMPK directly
phosphorylates human FoxO1 in vitro and increases FoxO1-dependent transcription of
manganese superoxide dismutase and catalase [30].

2.3. Liver Fibrosis

Oxidative stress plays a crucial role, in the NAFLD setting, promoting progression
towards liver fibrosis [45]. In this regard, RSV seems to play an interesting role in the
regulation of de novo fibrogenesis deposition, acting on several key pathways [46]. In
fact, RSV administration reduces portal pressures, the activation of hepatic stellate cells,
and improves hepatic endothelial functioning in cirrhotic rats, with an overall positive
effect on cirrhosis and portal hypertension [47–49]. Specifically, the administration of
resveratrol (10 and 20 mg/kg/day) to cirrhotic rats for 2 weeks showed reductions in portal
pressure without significant changes in systemic hemodynamics. This effect was attributed
to improved acetylcholine vasodilatory responsiveness associated with reduced production
of TXA2 (thromboxane A2) and, increased endothelial NO synthesis, which is, in turn,
associated with a consequential significant reduction in hepatic fibrosis. Moreover, in this
complex biologic network, the well-known action of RSV on the expression of collagen-1,
TGF-β (transforming growth factor β), NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells), desmin mRNA, and α-SMA (α-smooth muscle actin) protein expression
seems to play a crucial role in hepatocytes [47,50,51].

Another interesting study, using an animal DMN (dimethyl-nitrosamine) model of
liver fibrosis, demonstrated the effect of RVS in reducing the liver tissue infiltration of
inflammatory cells and fibrosis deposition [52]. The molecular mechanisms highlighted
as underlying this process in cultured cells of hepatocytes included reduction in MDA
(malondialdehyde) levels and increases in GPx and SOD levels, as well as an inhibition of
mRNA expression of inflammatory mediators, including inducible NO, TNF-α (tumour
necrosis factor-α), and IL-1β (interleukin-1β) [53,54].

2.4. Cholestatic Liver Damage

A cascade of inflammatory responses can lead to liver injury, through hepatic regenera-
tion and fibrogenesis. Bile salts, associated with cholestasis, are involved in these processes.

An interesting study evaluated the hepatoprotective effects of resveratrol against
cholestatic damage in a rat model via bile duct ligation. Resveratrol significantly reduced
TNF-α and IL-6 mRNA in cultured cells of hepatocytes, reducing the number of CD68 (+)
Kupffer cells recruited in the liver. In the same experimental model, there was a reduction
in fibrotic tissue deposition that was mainly linked to lower TIMP-1 (tissue inhibitor of
metalloproteinase-1) and collagen Iα1 mRNA expression. These findings were associated
with an increase in Ki67 (+) hepatocytes, thereby promoting their proliferation [55]. An-
other study, involving the application of a model of cholestatic liver damage induced
by ANIT (α-naphthyl isothiocyanate), showed that resveratrol pre-treatment effectively
attenuated ANIT-induced acute cholestasis and liver injury in rats [56,57]. In this setting,
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the suppression of neutrophil infiltration, and the upregulation of the expression of trans-
porters and liver enzymes, were the mechanisms identified as being responsible for the
reduction in bile acid accumulation and the related damage [58].

2.5. Hepatocellular Carcinoma and Metastasis

The anti-proliferative activity of resveratrol is mainly linked to triggering apoptosis of
tumour cells [59–64]. Apoptosis can be activated through two main pathways: the intrinsic
pathway mediated by mitochondria-apoptosomes and the extrinsic pathway induced by death
receptors [65,66]. Activation of death receptors of the TNF (tumour necrosis factor) receptor
superfamily, p. Eg, Fas (CD95/APO-1) or TRAIL (TNF-related apoptosis-inducing ligand
receptors) causes the release of the caspase-8 initiator, which can mediate the apoptosis signal
through direct cleavage of downstream caspase effectors, such as caspase-3 [67]. The intrinsic
pathway is triggered by the dispensing of apoptogenic factors such as Omi/HtrA2 (serine
protease HTRA2, mitochondrial), Smac/DIABLO (second mitochondria-derived activator of
caspases/direct IAP (apoptic protein inhibitors) binding protein with low pI), cytochrome
c, apoptosis-inducing factors (AIF), endonuclease G, caspase-2 and caspase-9 from the mito-
chondrial intermembrane space [68]. Dissemination of cytochrome c into the cytosol activates
caspase-3 through the creation of an apoptosome complex containing cytochrome c/apoptotic
protease activating factor-1 (Apaf-1)/caspase-9; Omi/HtrA2 and Smac/DIABLO encourage
caspase activation by neutralizing the effects of apoptotic protein inhibitors (IAPs) [68,69].
Focusing on these mechanisms, in cultured cells of hepatocytes, resveratrol induces can-
cer cell death by modulating various transduction pathways through the regulation of Fas
and Fas-ligand (FasL) levels [70,71]. Moreover, the ability of RSV to induce apoptosis by
inhibiting the PI3K/Akt/mTOR pathway has been demostrated [72–77], thus, modulating
the mitogen-activated protein kinase (MAPK) cascade [75,76,78] and inhibiting the activation
of NF-κB [79,80]. In addition, RSV’s anticancer properties seem to be not only related to its
biologic influence on the apoptosis cycle, as highlighted by the inhibition of signal transducers
and activators of transcription 3 (STAT3) [81], a key element in tumorigenesis due to its
induction of tumour cell proliferation, survival, invasion, angiogenesis, and metastasis [82,83].
A reduction in both HCC (hepatocellular carcinoma) occurrence and the number of hep-
atic nodules represent the basis of RSV’s protective mechanisms, as highlighted in animal
models using carcinogenic chemicals such as DENA (diethyl nitrosamine) [84], DENA plus
phenobarbital [62,85], and DENA plus 2-AAF (2-acetylaminofluorene) [86] or transgenic mice
(e.g., transgenic mice expressing the hepatitis B viral protein (HBx)) [87]. Dietary resveratrol
restored cellular antioxidant defences, thus, reducing DENA-induced lipid peroxidation and
increasing protein carbonyl formation. It also increased hepatic Nrf2 and reduced iNOS
(inducible nitric oxide synthase) expression. Moreover, though its activity on Nrf2, in another
experimental context, a direct anti-inflammatory effect linked to a reduction in the levels and
expressions of hepatic TNF-α, IL-1β, and IL-6 was highlighted [88]. Furthermore, resveratrol
has been shown to elicit a remarkable anti-angiogenic effect during the development of
DENA-induced hepatocellular carcinogenesis, blocking VEGF (vascular endothelial growth
factor) expression through HIF-1α (hypoxia-inducible factor-1α) downregulation [89]. It
has also been demonstrated that resveratrol is involved in the inhibition of cell cycle pro-
gression through reductions in the levels of p34cdc2 and cyclin B1 [90]. An initial study in
2001, reported that RSV at doses of 100 and 200 µM inhibited hepatoma cell proliferation
and suppressed hepatoma cell invasion at concentrations of 25 µM [91]. Polyphenol sup-
pressed the expression of antioxidant proteins that protect cells from ROS or cellular oxidative
damage in SK-HEP-1 cells. This occurs by repressing the expression of these proteins and,
thus, resveratrol is involved in increasing the susceptibility of cancer cells to oxidative stress.
Paradoxically, the molecular mechanism underlying the anti-tumour role of resveratrol is
its pro-oxidant action. Furthermore, in human HepG2 cells, the anti-tumour effects of RSV
were attributed to its capacity to mediate cell cycle arrest in the G1 and G2/M phases [92]. A
direct link between RSV and cell proliferation was also demonstrated in another study which
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showed how resveratrol induces reductions in cyclin D1, p38 MAP kinase, Akt, and Pak1
(p21 (RAC1) activated kinase 1) expression [76].

2.6. Hepatic Glucose Metabolism and Diabetes

Many studies have highlighted the positive influence of resveratrol on the liver of
diabetic animals [93,94]. In fact, resveratrol can restore the liver’s regulatory role in glucose
homeostasis [95,96]. This is associated with its ability to induce changes in the activi-
ties of carbohydrate metabolism enzymes in the livers of animals with diabetes. The
molecular mechanisms behind this effect include decreasing the activity of key gluco-
neogenesis enzymes [97] and decreasing phosphoenolpyruvate carboxykinase protein
levels, a rate-limiting enzyme for gluconeogenesis [98]. RSV also increases hexokinase and
pyruvate kinase activity and decreases the activity of lactate dehydrogenase and glucose-6-
phosphatase [99]. Furthermore, resveratrol has been shown to increase glycogen synthase,
decrease glycogen phosphorylase, and increase the glycogen content in the liver [99]. All of
these effects determine a shift in the metabolic pathways towards reduced hepatic glucose
production. The effects of resveratrol in the liver are also accompanied by increases in
insulin concentrations in the blood, which is, which is, at least in part, also responsible
for these changes [100]. Therefore, the role of resveratrol in glucose metabolism is linked,
first of all, to the increases in insulin levels with consequent reductions in hepatic glucose
production, and secondly, to the increased use of glucose by insulin-sensitive tissues. The
beneficial effects of resveratrol have also been linked to its direct and insulin-independent
role in skeletal muscle and liver [101]. This property is accompanied by an antioxidative
and anti-inflammatory effect of resveratrol and a further beneficial effect of resveratrol on
metabolic disorders.

2.7. Chemical Liver Injury

Rivera et al. [102] examined the effect of resveratrol on CCI4-induced hepatotoxicity
(carbon tetrachloride). After liver CCl4-induced damage, in cultured cells of hepatocytes,
lipid peroxidation and γ-glutamyl transpeptidase activity are significantly increased [103].
In this context, resveratrol partially prevents increases in lipid peroxidation and γ-glutamyl
transpeptidase [104]. Additionally, this effect was obtained at a dose of 50 mg/kg/day for
14 days in a model of chemically induced acute liver injury [105]. These hepatoprotective
effects are associated with the antioxidant and cleansing properties of RSV, through a
reduction in the activity of xanthine oxidase, a partial restoration of GSH, in addition to
its ability to inhibit apoptosis [105,106]. Resveratrol has also been shown to be protective
against heat stress-induced hepatic damage [107]. Therefore, the role of resveratrol in liver
protection against chemical damage derives mainly from its ability to suppress oxidative
stress and apoptosis.

2.8. Resveratrol and Liver Viruses

The ability of resveratrol to inhibit the replication of infective viral agents in Cy-
tomegalovirus (CMV), varicella-zoster, influenza A and herpes simplex virus has been
extensively investigated [108–111]. Nakamura et al. [112] found that resveratrol signifi-
cantly influenced viral hepatitis C (HCV) RNA replication within the HuH-7 OR6-derived
cell test system [112]. RSV additionally prevented the formation of hepatic steatosis in
C57BL/6 mice infected with recombinant core HCV adenoviruses by inhibiting the ex-
pression of SIRT1 and PPAR-α (peroxisome proliferator-activated receptor-α) [113]. In
transgenic hepatitis B virus (HBV) X protein (HBx) mice, RSV at a dose of 30 mg/kg/day
had beneficial pleiotropic effects on intracellular reactive oxygen species, hepatocyte pro-
liferation, and lipogenic genes. This resulted in delayed HBx-mediated hepatocellular
carcinogenesis and significantly reduced the incidence of HCC [114,115]. In contrast, in
another study, RSV activated hepatitis B virus (HBV) transcription, most likely due to its
ability to stimulate SIRT proteins which activate HBV gene expression [114,115]. There-
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fore, the studies conducted so far have yielded contradicting evidence on the effects of
resveratrol on HCV and HBV.

3. Resveratrol and Liver Disease: Scientific Evidence in Animal Models
3.1. Paracetamol and Resveratrol

The most common cause of acute liver failure worldwide is the use of paraceta-
mol [116]. Paracetamol poisoning is a form of pharmaceutical intoxication stemming from
high the administration or repeated administration of this over-the-counter analgesic [117].
Known also as acetaminophen, paracetamol is a known hepatotoxin, which induces liver
damage mainly by oxidative stress [118,119]. Liver damage does not result from parac-
etamol itself, but from one of its metabolites, NAPQI (N-acetyl-p-benzoquinone imine).
NAPQI reduces the concentration of glutathione, a natural antioxidant, in the liver and
causes direct damage to liver cells leading to liver failure [120]. Risk factors for toxicity
include chronic excessive alcohol intake, fasting or anorexia nervosa, and the use of certain
medications such as isoniazid [121]. Thanks to its free radical scavenging properties and
antioxidant effects, resveratrol has been shown to elicit many hepatoprotective effects
against paracetamol-mediated toxicity. Treatment of hepatocytes with resveratrol, before
and after paracetamol use, showed a decrease in AST (aspartate aminotransferase), ALT
(alanine aminotransferase), TNF-α, MDA (malondialdehyde), and a reduction in neutrophil
infiltration [122]. Other studies—also on mice—showed a reduction in ALT levels and
interleukin 6 (IL-6) after acetaminophen-induced hepatic injury [123].

To better understand paracetamol-induced liver injury, two mouse models have been
used. The two mouse strains, C57BL/6 and BALB/c are predominantly characterized by the
development of Th1 and Th2 responses, respectively. After intraperitoneal administration
of paracetamol, more severe liver damage was observed in C57BL/6 mice compared to
BALB/c mice. By the same modality, after intraperitoneal paracetamol administration,
hepatic mRNA expression of TNF-α and IL-6 was measured. TNF-α, a pro-inflammatory
marker, was highly induced 24 h after paracetamol administration in C57BL/6 mice, while
there was no change in BALB/c mice. IL-6 mRNA expression, an anti-inflammatory
marker, was higher in the livers of BALB/c mice than those of C57BL/6 mice 24 h after
administration. Furthermore, treatment of CD-1 mice- another sensitive strain- with
resveratrol, protected the mice against acetaminophen-induced liver damage, and in mice,
with attenuated toxicity, both lower TNF-α expression and higher IL-6 expression levels
were found [123].

3.2. Ethanol and Resveratrol

The high production of alcohol-derived acetate triggers mechanisms that promote
inflammation [124–127]. The metabolic activities of cytochromes on alcohol metabolites
cause the release of free radicals, which, in turn, stimulate inflammatory processes in the
liver [128–130].

Studies have shown the potential therapeutic utility of resveratrol in alcohol-induced
liver damage. Bujanda et al. [131] demonstrated that resveratrol administered in drinking
water prevents ethanol-induced liver injury, mortality, and oxidative stress in mice. The
described effects are also associated with the decrease in ALT, AST, MDA, and the reversal
of the increase in IL-1 and transaminase levels induced by ethanol. Chronic alcohol
intoxication was induced by the progressive administration of up to 40% alcohol in drinking
water. Mice given RSV received 10 mg/mL in drinking water and were assessed through
transaminases, IL-1, and TNF-α blood levels. Histological evaluation of liver damage
was performed and survival among animals was recorded. During the 10-week course of
ethanol administration, a mortality of 100% was observed in the control group, but only
50% in the resveratrol group. Resveratrol alleviated alcohol-induced fatty liver disease in
male mice by increasing the activity of AMPK and SIRT1, which are involved in the control
of liver lipid metabolism pathways [28]. The hepatoprotective role of resveratrol is also
linked to its antioxidant properties, this is evident from studies conducted by Kasdallah-
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Grissa et al. [132,133]. In these studies, dietary resveratrol prevented ethanol-induced
lipid peroxidation in rats, resulting in a decrease in MDA (Malondialdehyde) content, an
indicator of oxidative stress. For this purpose, recruited male Wistar rats were divided into
three groups. The control group received a daily intraperitoneal injection of 0.9% saline.
The second study group of rats was injected daily with 35% ethanol at 3 g/kg body weight.
The third group was given the same dose of ethanol and supplemented with RSV (5 g/kg)
in the standard diet. The treatment lasted 6 weeks and resulted in a 51.5% increase in MDA
levels in the liver. However, in rats treated with ethanol in combination with RSV, the
increase in MDA levels was significantly reduced, almost to the level observed in control
rats. Resveratrol also produced an increase in antioxidant enzymes, namely SOD, catalase
(CAT), and GPx.

3.3. Resveratrol in Chemical-Induced Hepatotoxicity

Many chemicals can cause liver damage. Resveratrol can positively contribute to
this kind of chemical-induced damage. One of the hepatotoxic chemicals, cadmium,
was investigated. Resveratrol in mice models treated with cadmium prevents oxidative
damage and hepatotoxicity. Cadmium-induces hepatic lipid peroxidation (LP—expressed
as malondialdehyde production) by decreasing GSH content and inhibiting catalase and
GPx activity [134,135]. Pre-administration of RSV (20 mg/kg body weight, per os)/daily
to male mice, for 3 days, followed by (7 mg/kg b.w., subcutaneous) cadmium chloride,
compared to control animals, showed a reduction in glutathione (GSH), catalase (CAT),
and glutathione peroxidase (GPx) levels in liver homogenates [134,135].

Another hepatotoxic chemical of interest is naphthalene. Naphthalene-induced liver
damage and resveratrol hepatoprotective pharmacological effects have been investigated
in mice. Treatment with resveratrol for 30 days reversed the increase in AST and ALT
enzyme activity, as well as the cytokine levels of TNF-α, IL-1β, and IL-6, while improv-
ing total antioxidant capacity [136]. A single administration of resveratrol immediately
following pyrogallol administration attenuated pyrogallol-induced hepatotoxicity and
increased oxidative stress in mice. Resveratrol reduced AST and ALT levels, as well
as the bilirubin concentration while increasing GSH content. Resveratrol also reduced
the pyrogallol-induced increase in the activity of the metabolizing enzymes CYP1A2
(cytochrome P450 1A2) and CYP2E1 (cytochrome P450 2E1) [137]. A recent study by
Farghali et al. [138] demonstrated that administration of resveratrol attenuated inflamma-
tion in d-galactosamine-sensitive and LPS-induced hepatitis [139]. This was highlighted
by a reduction in TBARS (thiobarbituric acid reactive substances), AST, ALT, conjugated
dienes, and bilirubin levels.

3.4. Resveratrol in Liver Damage Induced by Atherogenic Diet

High content atherogenic diets induce significant liver damage in both humans and
laboratory animals and are responsible for fatty liver disease [140,141]. Studies have
demonstrated the hepatoprotective effects of resveratrol in the high-fat dietary model of
liver damage [142–145].

Ahn et al. [146] showed that resveratrol added to the diet of mice significantly reduced
lipid, triglyceride, and cholesterol levels, while also suppressing the diet-induced high-fat
expression of genes involved in lipid metabolism. The addition of resveratrol in high-fat
diet-fed rats, after 8-weeks of treatment prevented lipid peroxidation, reduced TNF-α
levels, and attenuated nitric oxide synthase expression, while increasing the activity of
CAT, SOD, and GPx enzymes [23,147]. In another study using the same experimental
model [148], resveratrol not only reduced cholesterol and lipid levels but also reduced
mRNA expression of HMG-CoA (β-Hydroxy β-methylglutaryl-CoA) reductase [149]. In
this study, resveratrol also increased the Apo A-l/Apo B ratio.
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3.5. Resveratrol in Liver Ischemia-Reperfusion and Surgical Transplant

The ischemia-reperfusion currently represents a critical event in terms of the outcome
of liver transplantation [150]. Plin et al. [151] showed that resveratrol is protective against
injury caused by ischemia-reperfusion in rats. The study evaluated the role of RSV in
preventing 40 h cold storage-induced liver injury followed by hot reperfusion. Resvera-
trol offered protection and prevented oxidative stress and inflammation associated with
ischemia-reperfusion in rats [152]. Treatment with resveratrol prevented lipid peroxidation,
and enhanced SOD, CAT, and GPx activity, reducing aminotransferase levels, suppressing
cytokine production, and improving vascular function [153,154]. The anti-inflammatory,
antioxidant, and pro-apoptotic actions of resveratrol represent the basis of its positive effect
on the transplanted rat liver (allograft). Resveratrol increased survival time in rats after
liver transplantation and was also associated with decreased AST activity and decresed
levels of cytokines IL-2 and interferon-γ (INF-γ). Resveratrol also inhibited signalling path-
ways, such as NF-κB, and attenuated the expression of important signalling intermediates,
such as IβB kinase and protein kinase C Additionally, RSV also induced apoptosis in lym-
phocytes after liver allograft transplantation, as evidenced by an increase in the Bax/Bcl-2
(BCL2 associated X/B-cell lymphoma 2) ratio [155]. Kirimlioglu et al. [156] demonstrated
the hepatoprotective and antioxidant properties of resveratrol in rats undergoing partial
hepatectomy. The protective effect of resveratrol was associated with a reduction in lipid
peroxidation and NO content and an increase in GSH content.

3.6. Resveratrol in the Irradiation-Induced Liver Injury Model

Velioğlu-Öğünç et al. [157] demonstrated the protective role of resveratrol in irradiation-
induced liver damage. In this study, rats were treated with resveratrol (10 mg/kg/day) for
ten days. They were then exposed to full-body radiation (800 cGy) and resveratrol treat-
ment was continued for another 10 days after irradiation. Irradiation caused a significant
decrease in glutathione levels and myeloperoxidase activity, while the collagen content
increased in the liver and ileum tissues. Likewise, the plasma levels of lactate dehydroge-
nase and pro-inflammatory cytokines, 8-hydroxy-2’-deoxyguanosine, and apoptosis were
elevated. Treatment with resveratrol reversed all of these biochemical indices, prevented
lipid peroxidation in male rats undergoing X-ray irradiation, increased the GSH content,
and reduced collagen levels. Its role in irradiation-induced liver damage is, therefore,
essentially correlated to its antioxidant activity (Table 1).
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Table 1. Summary results of the intervention studies of Resveratrol in different models.

Improvement Model Dosage Mechanism Result Reference

Steatosis Rats 10 mg

Increase in SOD (superoxide dismutase),
GPx (glutathione peroxidase), CAT (catalase)

and a reduction in NOS (nitric oxide
synthase) activity

Reduction in fatty acid deposition
in liver [23]

[16]. 30 mg/kg
[17]. 200 mg/kg

Activation of the AMPK/SIRT1 (AMP
activated protein kinase/sirtuin 1) axis [16,17]

Oxidative stress and
inflammation [36]. 500 mg od for six months

AMPK/SIRT1/Nrf2, ERK/p38, MAPK and
PTEN/Akt signaling pathways, inducing

autophagy through an mTOR-dependent or
TFEB-dependent pathway

Synthesis of antioxidant molecules
and the expression of related genes

involved in the biogenesis of
mitochondrial energy

[36,37]

[43]. 10 to 1000 µM/L
Inhibition of the Nrf2 ubiquitination;

promotion of the transcriptional functions of
FoxOs

Induction of the transcription of
antioxidant genes (CAT, SOD) [41–43]

Liver fibrosis Rats [47]. 10 to 20 mg/kg od
[50]. 25 to 150 µM/L od

Reduction in MDA (malondialdehyde)
levels and increase in GPx and SOD levels,

as well as the inhibition of mRNA
expression of inflammatory mediators,
including inducible NO, TNF-α (tumor

necrosis factor-α), and IL-1β
(interleukin-1β)

Reduction in portal pressure [47,50,51]

[52]. 20 mg/kg od for 3 weeks
[54]. 20 mg/kg 3 days per week

Reduction in MDA levels and increase in
GPx and SOD levels;

inhibition of mRNA expression of
inflammatory mediators (iNOS, TNF-α,

IL-1β)

Reducing the liver tissue
infiltration of inflammatory cells

and fibrosis deposition
[52–54]

Cholestatic liver
damage

Rat model of bile duct
ligation

Reduction in TNF-α and IL-6 mRNA levels
and in the number of CD68 (+) Kupffer cells

recruited in the liver
Reduction in cholestatic damage [55]

Reduction in TIMP-1 and collagen Iα1
mRNA expression;

increase of Ki67-positive hepatocytes

Reduction in fibrotic tissue
deposition [55]
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Table 1. Cont.

Improvement Model Dosage Mechanism Result Reference

Hepatocellular
carcinoma

and metastasis

[70]. Increasing doses of RSV,
ranging from 4 to 32 µM/L

[75]. 40 µM/L

Regulation of Fas and FasL levels;
inhibition of the PI3K/Akt/mTOR pathway;

inhibition of NF-κB
Induction of apoptosis

[70–72,77]
[75,76,78]

[79,80]

Animal models exposed
to carcinogenic chemicals

(DENA)

[86]. 60 mg/kg od
[88]. 50 mg/kg

Reduction in DENA-induced lipid
peroxidation, iNOS;

increase in protein carbonyl formation, Nrf2;
reduction in the expression of hepatic

TNF-α, IL-1β, and IL-6

Restoring of cellular
antioxidant defenses

Direct anti-inflammatory effect
[86–88]

500 mg Blocking of VEGFR expression through
HIF-1a downregulation Antiangiogenetic effect [89]

RSV dissolved in DMSO at a
concentration of 25 mM

Reduction in cyclin D1, p38 MAP kinase,
Akt, and Pak1 expression Reduction in cellular proliferation [76]

Hepatic glucose
metabolism and

diabetes

[98]. 6 mg od
[99]. 5 mg/kg twice weekly for

30 days
[100]. 10 mg/kg od

Decreased activity of lactate dehydrogenase,
glucose-6-phosphatase, glycogen
phosphorylase, and reduction in

phosphoenolpyruvate carboxykinase
protein levels;

increases in hexokinase and pyruvate kinase
activity, glycogen synthase.

Increased insulin metabolism [97–100]

Chemical liver injury
Carbon

tetrachloride-induced
hepatotoxicity

[105]. 25/50/75/100 µM/L
Prevention of the increase in lipid

peroxidation and γ-glutamyl
transpeptidase activity

Antioxidant and
antiapoptotic effect [103–106]

Akt: protein kinase B, AMPK/SIRT1: AMP activated protein kinase/sirtuin 1, CAT: catalase, DENA: Diethyl nitrosamine, DMSO: Dimethyl sulfoxide, ERK: extracellular signal-regulated kinase, FoxO: forkhead
protein O box, GPx: glutathione peroxidase, HFI 1: Hypoxia-inducible factor 1, IL-1β: interleukin-1β, MAPK: mitogen-activated protein kinase, MDA: malondialdehyde, NF-κB: nuclear factor kappa light chain
enhancer of activated B cells, NO: nitric oxide, NOS: nitric oxide synthase, Nrf2: nuclear factor 2, PTEN: Phosphatase and tensin, RSV: resveratrol, SOD: superoxide dismutase; TFE: B transcription factor, TIMP:
metallopeptidase inhibitor 1, TNF-α: tumor necrosis factor-α, VEGFR: vascular endothelial growth factor receptor.
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4. Liver Disease and Resveratrol: Clinical Trials
4.1. Resveratrol and Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) affects up to 30% of adults in Western
countries and at least 15% in Asian countries. It is the most common form of liver disease
worldwide and its prevalence is expected to increase in years to come [158]. NAFLD is
characterized by the accumulation of excessive fat in the liver, mainly due to pathological
processes such as triglycerides accumulation, steatosis, and non-alcoholic steatohepatitis
(NASH) [159,160]. NAFLD and NASH can ultimately develop into cirrhosis and result
in liver failure [161]. In the United States NAFLD is the third most common cause of
liver transplant [162]. NAFLD falls under metabolic risk factors such as insulin resistance,
DM (diabetes mellitus), hyperlipidaemia, cardiovascular diseases, and chronic kidney
disease [163,164].

The clinical studies conducted so far have generally been too short to reveal noticeable
impacts on liver structure. In fact, even in a 3-month study with 150 mg of resveratrol
administrated daily to overweight or obese insulin-resistant patients with NAFLD, no
effect was highlighted in terms of liver fat content or cardio-metabolic markers [165]. This
study, although conducted using a large sample size did not take into consideration the
importance of the dose-dependent effect of resveratrol due to its low bioavailability [166].

The dose of 150 mg may was probably too low. Several systematic meta-analyses
have shown poor or no effects of resveratrol on the reduction in liver enzymes, anthropo-
metric parameters, and/or blood chemistry values [167,168]. On the other hand, another
analysis showed an interesting reduction in TNF-α in NAFLD patients [169]. A recent
meta-analysis on 17 double-blind, randomized, placebo-controlled clinical trials showed
beneficial effects [166], in particular, a significant reduction in blood pressure levels. This
was highlighted by a meta-regression analysis of longer periods treatments, and inevitably,
the highlighted results were supported by a dose-response relationship effect [170].

A clinical trial with a micronized formulation of trans-resveratrol in NAFLD patients
highlighted promising results and therefore bodes well for the treatment of this condition.
In fact, this better absorbable formulation exerted beneficial effects reducing liver fat, AST,
ALT, GGT (gamma glutamyl transferase), and insulin resistance levels. Although the treat-
ment duration, resveratrol dose, and formulation could have been the cause of these effects,
the patient sample size was too small to confirm this [171]. This elucidates the conclusion
that liver macro-modification requires long-term high-dose/good-bioavailability resvera-
trol treatment in NAFLD patients. Obviously, many more clinical studies are required to
confirm this evidence.

4.2. Effect of Resveratrol on Diabetes Mellitus

The most important biological consequences of diabetes are mainly due to the distur-
bance in oxidative balance, strictly linked to the pathogenesis of several disease-related
complications [172,173]. Resveratrol improves endothelial function, increases the oxidation
of fatty acids in the liver, and decreases oxidative stress [174], leading to an improvement
in insulin sensitivity [175]. A study in which 10 overweight subjects with impaired glucose
tolerance were administered 1, 1.5, or 2 g of resveratrol daily for four weeks, participants
showed an improvement in insulin sensitivity and postprandial glucose levels. In another
clinical study, 17 volunteers with T2D (type 2 diabetes) were treated with 150 mg/day of
RV for 30 days, showing a decreased intrahepatic lipid content and systolic blood pressure.
Similarly, when overweight and obese men were exposed to RSV for two weeks, 1 g in the
first week and 2 g in the second one, a reduction in intestinal and hepatic lipoprotein parti-
cle production was observed. RV decreased the production rate of ApoB-48 (apolipoprotein
B-48) and both the production and fractional catabolic rates of ApoB-100 (apolipoprotein
B-100), compared to a placebo [176,177]. Similar results, with no improvement in steatosis,
insulin resistance, abdominal fat distribution, and plasma lipids have been highlighted in
20 overweight/obese men with non-alcoholic fatty liver disease after receiving 3 g/day
RSV for eight weeks [35]. Some studies have analyzed the effect of resveratrol on obesity.
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A daily RSV dose of 150 mg/day administered for four weeks was given to 10 obese adults.
Resveratrol supplementation suppressed postprandial glucagon, which may be important
for the treatment of type II diabetes, as an excess of this hormone contributes to the patient’s
hyperglycaemia [178].

Resveratrol was also found beneficial in type 1 diabetic patients. A two-month trial
with 500 mg capsules of resveratrol, administered twice a day reported beneficial effects,
such as a reduction in HbA1c (glycosylated haemoglobin), FBS (fasting blood sugar), and
oxidative stress marker levels [179]. A recent meta-analysis even highlighted that in type 2
diabetic patients, resveratrol can reduce C-reactive protein (CRP) levels [180].

4.3. Cancer and Resveratrol

Thanks to their potent anti-inflammatory effect, natural compounds, such as resvera-
trol have gained significant attention for the treatment of many diseases, including can-
cer [62,181]. The insulin-like growth factor (IGF) signalling pathway, including IGF, IGF-
binding proteins (IGFBP), and IGF receptors, is related to anticarcinogenic effects related
to dietary restriction. In parallel, RSV can act as a preventive chemo-agent and caloric
restriction mimetic in humans by reducing IGF-1 (insulin-like growth factor-1) and IGFBP-3
(insulin-like growth factor-binding protein 3) as seen in 40 healthy volunteers who con-
sumed RSV at doses of 0.5, 1.0, 2.5, or 5.0 g per day for 29 days, leading to a reduced risk of
cancer [182]. Moreover, there was a dose-dependent effect, as the largest reduction was
seen at a dose of 2.5 g. Therefore, the preventive chemo action of RSV in humans was
shown to act through the IGF system, which serves as a biomarker [183]. The only study
available which has studied malignant hepatic tissue derived from patients with colorectal
cancer, highlighted that 5 gr of micronized resveratrol administered for 14 days increased
both the resveratrol and cleaved caspase-3 concentration in the malignant hepatic tissue
with no safety issues [184].

4.4. Obesity and Resveratrol

In an 11-subject crossover study, RSV mimicked the effect of calorie restriction by
reducing metabolic rate, activating AMPK in the muscle, and increasing levels of SIRT1 and
peroxisome activity. It also increased citrate synthase activity and decreased the content of
lipids within the liver, circulating glucose levels, triglycerides, alanine aminotransferase,
and other inflammation markers. The evaluation index of the homeostatic model was
also improved after the intervention [185]. To analyze the long-term effects of various
polyphenols on the metabolic profile, RSV supplements and epigallocatechin-3-gallate
(80 and 282 mg/day, respectively) were administered to 38 overweight or obese subjects
over a period of 12 weeks. An increase in mitochondrial capacity and stimulation of fat
oxidation was observed, along with an improved oxidative capacity of skeletal muscles
and preservation of fasting and postprandial fat oxidation. Consequently, the concentration
of triacylglycerol remained unchanged after RSV treatment, unlike in the placebo group,
however, no improvement in insulin resistance was found in the peripheral, hepatic, or
adipose tissues [186]. Unfortunately, a randomized, double-blind, and placebo-controlled
clinical trial in overweight and insulin-resistant patients who received resveratrol at a
dose of 75–150 mg/day for 12 weeks showed no effect on Liver fat content [165]. A recent
meta-analysis of randomized controlled trials in patients with metabolic syndrome showed
that resveratrol significantly reduced not only the total cholesterol levels, but also increased
GGT, with an overall potential cardioprotective effect [187].

4.5. Effect of Resveratrol on Other Health Conditions Associated with Oxidative Stress
and Inflammation

The antioxidant effects of RSV have been extensively highlighted in the literature. In a
study involving 10 healthy subjects, the administration of a single dose of 5 g RSV showed
a significant increase in tumour necrosis factor-α (TNF-α) in patients’ plasma after 24 h.
This increased production of TNF-α, as well as the inhibition of IL-10, was confirmed by
analysis of peripheral blood mononuclear cells (PBMCs), which were activated through
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several toll receptor agonists [188]. In a separate trial, RSV’s effect on immune cells was
evaluated in nine healthy men and women who ingested 1 g/day of RSV capsules for
28 days. The results showed that RSV induced an increase in circulating T cells and was
consequently able to reduce the plasma levels of proinflammatory cytokines TNF-α and
monocyte chemo-attractant protein 1. Moreover, RSV increased the antioxidant capac-
ity of plasma with a consequent reduction in oxidative stress markers involved in DNA
damage [189]. Administration of 75 mg/day of RSV every 12 weeks to postmenopausal
women with normal weight and glucose tolerance, highlighted no changes in inflammatory
markers, body composition, resting metabolism, plasma lipids, in the liver, in the skeleton
density muscles mass, and adipose tissue or insulin sensitivity [190]. In conclusion, patients
undergoing peritoneal dialysis in oral therapy with 450 mg of RSV delivered daily over
12 weeks, demonstrated improved urinary ultrafiltration and decreased vascular endothe-
lial growth factor, fetal liver kinase-1, and angiopoietin- 2 (markers of angiogenesis) levels
when ingested at the highest dose available [191]. A possible reason for the conflicting
results could be that a low dose or a single high dose [188] has no positive effects on health
and may even cause undesired effects. Results suggest that repeated and moderate admin-
istration of RSV (>450 mg) is better and safer than a single high dose [189,191] (Table 2 and
Figure 1).

Table 2. Summary results of the clinical trials of Resveratrol in different models.

Improvement Dosage Patients Result Reference

NAFLD 150 mg
Overweight or obese

insulin-resistant patients with
NAFLD

No effect on hepatic fat content [165]

50 mg Group 1
200 mg Group 2

44 patients, aged 29–70 years (n
= 22 per group) Reduction in the liver fat [171]

Diabetes Mellitus 1 g, 1.5 g, or 2 g daily for
4 weeks

10 overweight subjects with
impaired glucose tolerance

Improvement in insulin sensitivity
and postprandial glucose levels [175]

150 mg/day for 30 days 17 volunteers with T2D (type 2
diabetes)

Reduction in intrahepatic lipid
content and systolic blood pressure [176,177]

150 mg/day for 30 days

Evaluation of postprandial
plasma responses of the incretin

hormones and glucagon in 10
obese men

Suppression of postprandial
glucagon [178]

500 mg capsules, twice
daily for 60 days

13 patients with T1D
(type 1 diabetes)

Reduction in HbA1c (glycosylated
hemoglobin), FBS (fasting blood

sugar) and oxidative stress markers
[179]

Cancer 0.5, 1.0, 2.5, or 5.0 g
per day 40 healthy volunteers

Anticarcinogenica and caloric
restriction mimetic effect by
reducing IGF-1 and IGFBP-3

[182]

Micronized RSV, 5 g
daily for 14 days

Patients with colorectal cancer
and hepatic metastases
scheduled to undergo

hepatectomy

Increase in cleaved caspase-3, a
marker of apoptosis [184]

Obesity 150 mg/day for 30 days 11 obese men in a randomized
double-blind crossover study

In muscle: activation of AMPK,
increased levels of SIRT1 and

peroxisome activity. Increase in
citrate synthase activity and decrease

in lipid content within the liver,
circulating glucose levels,

triglycerides, alanine
aminotransferase, and other

inflammation markers

[185]

EGCG (epigallocatechin-
3-gallate) + RSV

(282 and 80 mg/d,
respectively) or placebo

for 12 wk.

randomized double-blind study,
38 overweight and

obese subjects

Increase in mitochondrial capacity
and stimulated fat oxidation,
without leading to increased

tissue-specific insulin sensitivity

[186]
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Table 2. Cont.

Improvement Dosage Patients Result Reference

Health condition
associated with oxidative
stress and inflammation

5 g, single dose

Plasma cytokine levels were
measured over 48 h after oral

administration in
10 healthy subjects

Increased production of TNF-α;
enhanced NF-κB activation [188]

1000 mg/day for
28 days

Repeated doses of resveratrol on
circulating immune cells in

healthy individuals

Increase in circulating γδ T cells and
regulatory T cells

Decrease in plasma levels of the
proinflammatory cytokines TNF-α

and MCP-1

[189]

150 mg or 450 mg daily

72 patients undergoing
peritoneal dialysis randomly

assigned to 12 week treatment of
low-dose or high-dose

trans-resveratrol or a placebo

Improvement in mean net UF
volume and UF rate through a

reduction in VEGF, Flk-1 (fetal liver
kinase-1) and Ang-2
(angiopoietin) levels

[191]

AMPK: AMP activated protein kinase, Ang-2: angiopoietin, FBS: fasting blood sugar, Flk-1: fetal liver kinase-1, HbA1c: glycosylated
hemoglobin, IGF: insulin-like growth factor, IGFBP-3: insulin-like growth factor binding protin-3, MCP-1:monocyte chemoattractant
protein-1, NAFLD: Non-alcoholic fatty liver disease, NF-κB: nuclear factor kappa light chain enhancer of activated B cells, RSV: resveratrol,
SIRT1: sirtuin 1, T1D: type 1 diabetes, T2D: type 2 diabetes, TNF-α: tumor necrosis factor-α, UF: ultrafiltration, VEGFR: vascular endothelial
growth factor receptor.
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Figure 1. Summary of the main molecular mechanisms and physiological effects exerted by Resveratrol in vitro, in vivo
and clinical studies. Red arrow (↓) indicates down-regulation; white arrow (↑) indicates up-regulation. GSH: glutathione;
SOD: superoxide dismutase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; SIRT1: sirtuin 1; FOX1:
forkhead protein O box; S1:. Synthesis Phase; PTEN/AKT: phosphatase and tensin homolog/protein kinase B; mTOR:
target of rapamycin in mammals; ROS: reactive oxygen species; TNF: tumor necrosis factor; ALT: alanine aminotransferase;
AKT-P: protein kinase B.
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5. Conclusions, Future Perspectives and Limitations

Liver diseases remain a heavy health burden worldwide. This group of diseases
requires new and safe therapeutic options for treatment. In this regard, resveratrol could
be a promising option, as shown throughout our review.

Resveratrol is already widely used as a dietary supplement. However, studies so far
have not found specific doses and administration intervals for this compound. Possible
therapeutic indications of RSV would largely benefit from a targeted approach. Under-
standing the correct use of this molecule in the different liver pathological settings could
open new therapeutic scenarios. RSV could also benefit from association therapy with other
drugs and compounds. Future perspectives are promising as RSV has been shown to have
various beneficial effects in vitro, in vivo, and in clinical trials. An important limitation, in
addition to RSV administration, is its bioavailability [184,192,193]. Although proven safe,
RSV does not have optimal pharmacokinetics and pharmacodynamics properties [194–196].

Therefore, there is still much work to be done as the remaining knowledge gaps
in relation to this compound are substantial. Well-designed clinical trials are necessary
to improve the bioavailability of resveratrol and to understand its precise therapeutic
usefulness, correct dosage, and treatment duration.
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AC, acetyl; AIF, apoptosis-inducing factors; Akt, protein kinase B; AMPK, AMP activated protein
kinase; ANIT, α-naphthyl isothiocyanate; APAF-1, apoptotic protease activating factor-1; ARE, antiox-
idant response element; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Bax/Bcl-2,
BCL2 Associated X/B-cell lymphoma 2; CAT, catalase; CRP, C-reactive protein; GSH, glutathione;
CYP1A2, cytochrome P450 1A2; CYP2E1, cytochrome P450 2E1; DENA, Diethyl nitrosamine; DM,
diabetes mellitus; DMN, dimethyl-nitrosamine; ERK, extracellular signal-regulated kinase; FA,
fatty acid; FBS, fasting blood sugar; FoxO, forkhead protein O box; GGT, Gamma Glutamyl Trans-
ferase; GPx, glutathione peroxidase; GβL, G protein similar to β subunits; HbA1c, glycosylated
haemoglobin; HBx, hepatitis B viral protein; HBV, hepatitis B virus; HCV, hepatitis C virus; HFD,
high-fat diet; HIF-1α, hypoxia-inducible factor-1α; HMG-CoA, β-Hydroxy β-methylglutaryl-CoA;
HO-1, heme oxygenase 1; IGF, insulin-like growth factor; IL-1β, interleukin-1β; INF-γ, interferon-γ;
Keap1, Kelch-like ECH-associated protein 1; LKB1, hepatic kinase B1; MAFLD, metabolic associated
fatty liver disease; MAP2K, mitogen-activated protein kinase kinase; MAPK, mitogen-activated
protein kinase; MDA, malondialdehyde; MetS, metabolic syndrome; mSIN1, mammalian stress-
activated protein kinase protein kinase 1; mTOR, target of rapamycin in mammals; mTORC2, mTOR
Complex 2; NAD, nicotinamide adenine dinucleotide; NAFLD, non-alcoholic fatty liver disease;
NAPQI, N-acetyl-p-benzoquinone imine; NF-κB, nuclear factor kappa light chain enhancer of ac-
tivated B cells; NASH, non-alcoholic steatohepatitis; Nrf2, nuclear factor 2; NOS, nitric oxide syn-
thase; P, phosphorylation; p53, phosphoprotein p53; PBMCs, peripheral blood mononuclear cells;
PDK1, phosphoinositide-dependent kinase 1; PGC-1α, activator of gamma receptors activated by
the proliferator of peroxisome 1α; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol
4,5-bisphosphate; PIP3, phosphatidylinositol-3,4,5-triphosphate; PPAR-α, peroxisome proliferator-
activated receptor-α; PTEN, Phosphatase and tensin homolog/protein kinase B; Rictor, mTOR’s
rapamycin insensitive companion; SIRT1, sirtuin 1; α-SMA, Smac/DIABLO, second mitochondria-
derived activator of caspases/direct IAP binding protein with low pI; α-smooth muscle actin; SOD,
superoxide dismutase; STAT, signal transducer and transcription activator; TAG, triacylglycerols;
TBARS, thiobarbituric acid reactive substances; TF, transcription factor; TFEB, EB transcription factor;
TGF-β, transforming growth factor β; TIMP-1, tissue inhibitor of metalloproteinase-1; TNF-α, tumor
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necrosis factor-α; TRAIL, TNF-related apoptosis-inducing ligand receptors; TXA2, thromboxane A2;
VEGF, vascular endothelial growth factor.
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