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The challenge of infectious diseases remains a critical concern to the global public health.
Recently, it is common to encounter touch-screen electronic devices everywhere to
access services. The surface of such devices may easily get contaminated by an
infected person, which leads to transmission of infectious diseases between
individuals. Moreover, the challenge is complicated by surgical infections from
implantable biomedical devices. Such problems can be minimized by the use of long-
term active antimicrobial surface coatings. We present herein the preparation of novel
electroactive antimicrobial surface coatings through the covalent attachment of the
biguanide moiety onto 3,4-ethylenedioxythiophene (EDOT). The biguanide-
functionalized EDOT (EDOT-BG) was thus electropolymerized on different substrates to
give the corresponding poly(EDOT-BG) polymer. The poly(EDOT-BG) polymer showed an
excellent bactericidal efficiency (~92% bacterial death) and excellent biocompatibility with
mammalian cells. Furthermore, the antimicrobial EDOT-BG was electro-copolymerized
with antifouling tetra ethylene glycol functionalized-EDOT (EDOT-EG4) to give a
multifunctional poly(EDOT-EG4-co-EDOT-BG) copolymer. The poly(EDOT-EG4-co-
EDOT-BG) copolymer showed excellent resistance to protein adsorption and
mammalian/bacterial cell binding without losing its bactericidal efficiency. These novel
materials can be applied to domestic and bioelectronic devices to minimize infectious
diseases.
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1 INTRODUCTION

Developing functional surface coatings for domestic and biomedical devices is imperative to enhance
their durability and safer use. Functional surface coatings such as self-cleaning (Zhu D. et al., 2014),
electrochromic (Gunbas and Toppare, 2012), fire-retardant (Weil, 2011), antifogging (Wang et al.,
2015), hydrophobic (Park et al., 2012), antimicrobial (Siedenbiedel and Tiller, 2012), and antifouling
(Goda and Miyahara, 2019) have been extensively studied. Among the coating materials,
antimicrobial surface coatings attract significant attention due to rising concerns about microbial
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infections including the current Covid-19 (Rakowska et al., 2021)
infection. Previously, various antimicrobial surface coatings with
different killing mechanisms (Siedenbiedel and Tiller, 2012) such
as biocide-releasing (Stasko and Schoenfisch, 2006; Rosenberg
et al., 2008; Coneski et al., 2010), contact-active (Tiller et al., 2001;
Tiller et al., 2002), or repelling (Ho et al., 2004) have been
reported for textiles (Dhende et al., 2011), glasses (Zhang
et al., 2010), and biomedical devices (Hasan et al., 2013;
Zander and Becker, 2018). Apparently, the activity of biocide-
releasing surfaces declines through time as the concentration of
biocides to be released decreases and may not be enough to kill
the microorganisms. In addition, such systems could have
harmful consequences to the surrounding environment due to
the toxicity of released biocides. On the other hand, the
antimicrobial activity of contact-active surfaces will be affected
by the deposition of dead microorganisms or other fouling agents
in the long run. Therefore, the development of long-term active,
biocide-free, and antifouling surface coatings is indispensable.

For instance, antimicrobial coatings can be prepared by
covalent linkage of the antimicrobial moieties onto the
available materials such as polymers. In this manner, cationic
polymeric materials functionalized with quaternary ammonium
and peptide groups have been prepared, and their antimicrobial
activities were studied extensively (Tew et al., 2002; Gabriel et al.,
2008; Tew et al., 2010; Grace et al., 2016). Specifically, guanidine
and biguanide derivatives such as poly(hexamethylene biguanide
hydrochloride) (PHMB) are prominent antimicrobial
disinfectants so far (Ikeda et al., 1984; Budhathoki-Uprety

et al., 2012; Bottcher et al., 2013; Zhi et al., 2017). For
example, a report by Novak’s group demonstrated moderate to
significant antibacterial activity of guanidinium-functionalized
polycarbodiimides against some Gram-positive and Gram-
negative bacteria (Budhathoki-Uprety et al., 2012). Similarly,
Clardy’s group prepared norspermidine (natural biofilm
disrupter) to mimic antimicrobial guanidine and biguanide-
containing compounds that showed up to 20-fold increased
potency in preventing biofilm formation and breaking down
of existing biofilms (Bottcher et al., 2013). Further study by
Zhi et al. demonstrated the preparation of dual-purpose
surface coatings through the conjugation of antimicrobial
PHMB with antifouling allyloxy polyethylene glycol that
showed broad-spectrum antimicrobial activity and potent
antibiofilm properties (Zhi et al., 2017).

Likewise, electrically conducting polymers have been explored
in the preparation of functional surface coatings due to their
responses to electrical stimuli, flexibility compared to metal
counterparts, and easy modification of the side chains for
specific applications (Ayalew et al., 2019). In addition, the
properties of conducting polymer materials can easily be tuned
by copolymerization of different monomers each with specific
properties to get an intermediate/new property compared to the
individual polymers (Zhao et al., 2013; Malmstrom et al., 2017).
In this regard, poly(3,4-ethylenedioxythiophene) (PEDOT) is one
of the most studied conducting polymers in the preparation of
antimicrobial and/or antifouling surface coatings with the ease
of covalent linkage of functional moieties on the monomer and
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well-established electropolymerization techniques (Reynoso
et al., 2021). Electropolymerization helps to deposit the
polymers directly on a substrate of interest. A good example is
a zwitterionic sulfobetaine-functionalized-PEDOT (PSBEDOT)
studied by Cao et al. that showed switchable antifouling and
antimicrobial properties under different applied potentials. The
cationic PSBEDOT surface showed good antimicrobial activity,
while the zwitterionic PSBEDOT surface was highly resistant to
cell attachment (Cao et al., 2016). However, such switchable
materials require control of the surface potential through
electrochemical techniques that could be difficult to control
from a remote distance and in complex environments such as
in implanted bioelectronic devices.

Therefore, this study is intended to develop a new electrically
conductive dual-purpose surface coating that can kill
approaching microbes and less adhesive to biofilms or proteins
and cells. Hence, biguanide was chosen as the antimicrobial
moiety and covalently attached to 3,4-ethylenedixoxythiophene
(EDOT) to get the biguanide-functionalized EDOT (EDOT-BG)
monomer. EDOT-BG was then electrodeposited on indium-tin-
oxide coated glass slides (ITO-glass) to make the corresponding
biguanide-functionalized PEDOT (poly(EDOT-BG)) polymer.
The antimicrobial activity and the biocompatibility of
poly(EDOT-BG) were investigated using E. coli and human
embryonic kidney (HEK-293T) cells, respectively, as models.
Previous studies by our group and others proved the
antifouling properties of oligo ethylene glycol-functionalized
EDOTs such as EDOT-EG4 (Zhao et al., 2013). Similarly,
herein, EDOT-BG was electrochemically copolymerized with
EDOT-EG4 to prepare a multifunctional poly(EDOT-EG4-co-
EDOT-BG) copolymer. The simultaneous antimicrobial and
antifouling properties of the poly(EDOT-EG4-co-EDOT-BG)
copolymer were investigated from bactericidal and protein or
cell adhesion studies. The electrodeposited polymers were
characterized by scanning electron microscopy (SEM), energy-
dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS),
and cyclic voltammetry (CV) techniques. We believe that these
biguanide-functionalized PEDOT materials could have a
potential application in the preparation of long-term active
antimicrobial and antifouling surface coatings for domestic
and biomedical devices.

2 MATERIALS AND METHODS

2.1 Chemicals and Measurements
All the chemicals were of reagent grade and used without further
purification. All reactions were carried out under an N2

atmosphere using anhydrous solvents.
1H and 13C NMR spectra were recorded with Bruker AVIII-

400 spectrometers, and chemical shifts were measured in δ (ppm)
with residual solvent peaks as internal standards. UV–visible
(UV/Vis) spectra were measured on an Agilent Technologies
Cary 8454 UV-V is spectrophotometer. The mass spectrum was
obtained on a TOF-MS spectrometer. The morphology of the
electrodeposited polymers on ITO-glass slides was recorded using
a field-emission scanning electron microscope (FE-SEM, ULTRA

PLUS). Electrochemical polymerizations and electrochemical
studies were performed using an Autolab potentiostat
(PGSTAT128N, ECO CHEMIE BV, the Netherlands). The
XPS spectra were acquired with a PHI 5000 VersaProbe
(ULVAC-PHI, Chigasaki, Japan) spectrometer with a 24.7 W
micro focused Al kα X-ray source and a take-off angle of
photoelectron at 45°. The fluorescence microscopy images were
recorded with a Nikon–ECLIPS Ni-E microscope (Nikon
Corporation, Tokyo, Japan) and Olympus IX81 fluorescence
microscope (Japan).

2.2 Synthesis of the Monomer and Polymers
2.2.1 Synthesis of Biguanide Hydrochloride Bearing
3,4-Ethylendioxythiophene
First, amino-functionalized 3,4-ethylendioxythiophene (EDOT-
NH2) was prepared from the hydroxymethyl-functionalized
EDOT (EDOT-OH) starting material in a few steps. The
detailed synthesis procedure for EDOT-NH2 is presented in
the Supplementary Information. The biguanide hydrochloride-
functionalized EDOT (EDOT-BG) was then synthesized from
EDOT-NH2 as follows: EDOT-NH2 (1.0 g, 5.85 mmol) was added
to a 100 ml two-neck round-bottom flask, backfilled with N2 gas,
and dissolved in dimethyl formamide (DMF) (1.5 ml). To the
above solution, HCl (37%, 0.49 ml) was added dropwise via a
syringe. A white solid was formed, and it was dissolved by
increasing the temperature to 60°C. Once dissolved, the
mixture was cooled to room temperature and dicyandiamide
(0.54 g, 6.43 mmol) dissolved in DMF (1.5 ml) was added via a
syringe, followed by refluxing the contents at 85°C for 5 h under
an N2 atmosphere. The reaction mixture was cooled to room
temperature, and excess ethyl acetate was added. A colorless solid
was precipitated, filtered, and washed with ethyl acetate (3x) to
yield the corresponding EDOT-BG product (1.7 g, 83%). 1H
NMR (400 MHz, DMSO-d6) δ: 8.73 (b, s, 4H), 6.77 (s, 1H),
6.64 (dd, 2H, J = 5.3, 3.6 Hz), 4.52 (b, s, 1H), 4.37–4.34 (m, 1H),
4.04 (dd, 1H, J = 11.8, 7.3 Hz), 3.19 (dd, 1H, J = 13.5, 3.4 Hz), 3.02
(dd, 1H, J = 13.3, 8.1 Hz). 13C NMR (100 MHz, DMSO-d6) δ:
155.7, 154.5, 140.9, 140.2, 100.5,100.2, 70.5, 65.3, 38.5. HR (ESI-
MS) m/z: [M + H]+ Calcd for C9H13N5O2S: 256.0868; found:
256.0866.

2.2.2 Electropolymerization and Characterization of
the Polymers
The poly(EDOT-BG) homopolymer and copolymers with either
unfunctionalized EDOT or EDOT-EG4 were deposited on ITO-
glass slides through the electropolymerization technique. The
monomer solutions were prepared by dissolving the appropriate
amount of monomer/s in MeCN to give a final concentration of
10 mM. To enhance the solubility of EDOT-BG, conc. H2SO4

(3%, v/v) was added to the MeCN solution. In addition, the
sodium dodecyl sulfate (SDS) surfactant (20 mM) was added to
enhance the polymer film stability to be used in aqueous solvents.
A three-electrode system electrochemical cell with a Ag/AgNO3

reference electrode, a Pt wire counter electrode, and ITO-glass
slides as a working electrode was employed. The polymerization
was performed by applying a constant potential of 1.0 V for 60 s
in the presence of LiClO4 electrolyte (0.1 mM). The polymer films
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were rinsed with water and MeCN to remove monomer and
electrolyte residues and dried with nitrogen blowing (Figures
1A,B). The polymer films were characterized with SEM, UV/Vis
spectroscopy, XPS, and CV.

2.3 Cell Viability Studies on
Biguanide-Functionalized PEDOT Surfaces
For biocompatibility studies of biguanide-functionalized
PEDOTs, human embryonic kidney (HEK-293T) cell lines
were used. The polymer-coated ITO-glass slides (1 × 1 cm)
were sterilized with 70% (v/v) ethanol for 20 min, followed by
rinsing with phosphate-buffered saline (PBS) (Uni-Region Bio-

Tech, Taiwan) three times. The slides were then placed
separately into a 12-well cell culture plate, and freshly
prepared HEK-293T cells were seeded onto each slide at a
density of 2 × 104 cells/cm2. The cells were incubated with
complete Dulbecco’s modified Eagle’s medium (DMEM, Life
technologies, United States) at 37°C for 48 h in 5% CO2. The
cells were then stained with a live/dead cell double staining kit
(Life technologies, United States) according to the
manufacturer’s guidelines, and thus, the fluorescent signal
was obtained using fluorescence microscopy (IX83, Olympus,
Japan). The live (green) and dead (red) cells were counted, and
the data are presented in mean ± standard deviation (SD) with
three replicates. In addition to the live/dead cell viability assay,

FIGURE 1 | (A) Three-electrode system electropolymerization cell set-up [the purple color of the working electrode (ITO-glass) shows the electrodeposited polymer
film] and (B) photo of the polymer films of poly(EDOT-BG) (i), poly(EDOT-BG-co-EDOT-EG4) (ii), PEDOT (iii), and poly(EDOT-co-EDOT-BG) (iv) electrodeposited on
ITO-glass slides.

SCHEME 1 | (A) Synthesis route of the biguanide hydrochloride-functionalized 3,4-ethyledioxythihiophene (EDOT-BG) monomer and (B) electrodeposition of
poly(EDOT-BG), poly(EDOT-co-EDOT-BG), and poly(EDOT-EG4-co-EDOT-BG) copolymers on ITO-glass slides.
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the biocompatibility of the prepared materials was performed
with the MTT viability assay, and the detailed procedure is
mentioned in the Supplementary Information.

2.4 Antimicrobial Property
The antimicrobial activity study was performed using Escherichia
coli (E. coli) bacteria as a model. The detailed bacterial sample
preparation and bactericidal activity study procedures are stated
in the Supplementary Information. Briefly, the polymer-coated
ITO-glass slides (1 × 1 cm) were placed in 12-well cell culture
plates and sterilized with 70% ethanol for 20 min. The E. coli
sample (1 × 106 cells/mL) in PBS was seeded on each slide and
incubated for 2 h at 37°C. After the incubation, the samples were
washed with PBS and the bactericidal activities for all the samples
were analyzed by OD (600 nm) measurements and live/dead cell
staining assay methods.

2.5 Antifouling Properties of
poly(EDOT-EG4-co-EDOT-BG): Protein
Adsorption and Cell Adhesion
Protein adsorption. In order to study protein adsorption
properties, quartz crystal microbalance (QCM) measurement
was carried out on a Q-Sense AB system (Biolin Scientific,
QE401-F1521, Sweden) at 25°C. The poly(EDOT-BG) and
poly(EDOT-EG4-co-EDOT-BG) polymers were
electrodeposited on gold QSX 301 sensor crystals. Each crystal
was fixed in the measurement chamber. A baseline was
established by injecting 1X PBS buffer (pH 7.2) through the
chamber at a rate of 50 μL/min. Following a baseline stabilization,
the bovine serum albumin (BSA) protein solution (1 mg/ml) was
injected at a rate of 50 μL/min for about 20 min. Afterward, PBS
buffer was injected to remove loosely bound protein from the
polymer surface until equilibrium was reached. Finally, a change
in frequency (Δf) between the PBS background baseline and the
equilibrium baseline was calculated to determine the antifouling
properties of the polymers. The QCM measurements were
performed at least twice to confirm the reproducibility.

Cell Adhesion Tests. The antifouling property of the
copolymer was demonstrated using mammalian and bacterial
cells. For mammalian cell adhesion studies, HEK-293T cells were
used as a model. First, the polymer-coated ITO-glass slides (1 ×
1 cm) were sterilized with 70% alcohol and placed in 12-well cell
culture plates. The cells were then seeded on each sample at a
density of 2 × 104/ml. The cells were incubated at 37°C with 5%
CO2 for 48 h. Finally, the slides were washed with PBS gently, and
the cells were stained with a live/dead cell staining kit (Life
technologies, United States) according to the manufacturer’s
guidelines. The fluorescence signal of the attached cells was
observed under fluorescence microscopy (IX83, Olympus,
Japan). The antifouling property of poly(EDOT-EG4-co-EDOT-
BG) was determined by comparing the cell density data with
PEDOT, poly(EDOT-co-EDOT-BG), and poly(EDOT-BG)
polymers. The results were determined in mean ± SD.

Similarly, for antifouling studies on the bacterial sample, the
polymer-coated ITO-glass slides were sterilized and placed in cell
culture plates. 50 µL of E. coli at a concentration of 1 × 106 cells/mL
was pipetted onto each polymer-coated sample and incubated for
2 h at room temperature. The slides were then washed with sterile
PBS, and the surface-attached bacteria were stained with a live/
dead bacterial viability kit (Thermo Fisher Scientific, Cat. L7007)
for 15 min in the dark. After gently rinsing with sterile water and
drying in the air, the surface-attached bacteria were examined
using a Nikon–ECLIPS Ni-E fluorescence microscope (Nikon
Corporation, Tokyo, Japan). Three images were chosen
randomly for each surface with three replicates, and the relative
number of living (green) versus dead (red or yellow) bacteria was
counted using ImageJ software.

3 RESULTS AND DISCUSSION

3.1 Synthesis of the EDOT-BG Monomer
and Polymers
Primarily, amino-functionalized EDOT (EDOT-NH2) was
synthesized from the commercially available hydroxymethyl

FIGURE 2 | UV/Vis spectra (A) and cyclic voltammograms (B) of PEDOT (a), poly(EDOTBG) (b), poly(EDOT-co-EDOT-BG) (c), and poly(EDOT-EG4-co-EDOT-BG)
(d) films electrodeposited on ITO-glass slides. The cyclic voltammogram was recorded using Ag/AgCl as a reference electrode and Pt wire as a counter electrode in PBS
with 10 mM [Fe(CN)]3-/4- redox couple at a scan rate of 100 mV/s.
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EDOT (EDOT-OH) starting material in a few steps. Briefly,
EDOT-OH was first mesylated to give the EDOT-OMs
intermediate. The EDOT-OMs were reacted with sodium azide
to give azide-functionalized EDOT (EDOT-N3) via nucleophilic
substitution. EDOT-N3 was then reduced to give EDOT-NH2.
Finally, EDOT-NH2 was reacted with dicyandiamide in aq. HCl
to give the biguanide hydrochloride-functionalized EDOT
(EDOT-BG) product in a moderately high yield (Scheme 1a).
The detailed synthesis procedure for EDOT-NH2 is presented in
the Supplementary Information. The structure of EDOT-BG was
characterized by 1H and 13C NMR spectroscopy and mass
spectrometry techniques (Supplementary Information). In

addition, tetra ethylene glycol-functionalized EDOT (EDOT-
EG4) was synthesized following the reported procedure (Luo
et al., 2012).

The polymers were prepared through the electropolymerization
method, which is a straightforward technique to deposit polymers
directly onto a conducting substrate. Hence, the biguanide-
functionalized PEDOT homopolymers and copolymers were
electropolymerized onto ITO-glass slides successfully after a series
of optimizations. However, initially, the electrodeposition of
poly(EDOT-BG) was difficult due to less solubility of the EDOT-
BG monomer in commonly used organic solvents for
electropolymerization such as MeCN and CH2Cl2. On the other
hand, electropolymerization in an aqueous solvent resulted in less
stable films that dissolve easily and could not attach on the ITO-glass
slides. In addition, the electropolymerization in a mixture of H2O
andMeCNwas also unsuccessful due to the dissolution of the film in
this solvent system. Further electropolymerization efforts using ionic
liquids such as 1-butyl-3-methylimidazolium hexafluorophosphate
(BMIMPF6) and 1-butyl-3-methylimidazolium octyl sulfate (BMIM
OSU) as both a supporting electrolyte and solvent were also
unsuccessful.

Previously, we faced such difficulties during the
electropolymerization of zwitterionic phosphorylcholine
bearing EDOT (EDOT-PC) due to the insolubility of the
monomer in MeCN or other common solvents, which was later

FIGURE 3 | SEM images (upper) and EDX elemental mapping (lower) of PEDOT, poly(EDOT-co-EDOT-BG), and poly(EDOT-BG) polymers electrodeposited on
ITO-glass slides.

TABLE 1 | Atomic elements of PEDOT, poly(EDOT-co-EDOT-BG), and
poly(EDOT-BG) polymer films electrodeposited on ITO-glass slides.

Element PEDOT PEDOT-co-
EDOT-BG

PEDOT-BG

Wt% At% Wt% At% Wt% At%

C K 48.53 58.38 44.51 53.88 29.58 36.00
N K - - 6.93 7.19 17.17 17.92
O K 40.72 36.77 37.30 33.90 47.74 43.61
S K 10.75 4.85 9.42 4.27 4.49 2.05
Cl K - - 1.84 0.75 1.02 0.42
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circumvented by the addition of a surfactant. The addition of the
surfactant enhanced the EDOT-PC solubility inMeCN, which led to
successful electrodeposition of poly(EDOT-PC) (Zhu B. et al., 2014).
Similarly, here, the sodiumdodecyl sulfate (SDS) surfactant (20mM)
was added to the EDOT-BG suspension in MeCN forming a turbid
solution which was further dissolved by the addition of conc. H2SO4

(3%, v/v), which resulted in a clear monomer solution. Thus, a thin
purple poly(EDOT-BG) polymer film was electrodeposited on ITO-
glass successfully when a constant potential of 1.0 V was applied for
60 s in the presence of LiClO4 (0.1M) supporting electrolyte. The
electrodeposition was performed with a three-electrode system
electrochemical cell set-up using ITO-glass as a working
electrode, Ag/AgNO3 as a reference electrode, and Pt wire as a
counter electrode (Figure 1A).

The property of polymers can be tuned through
copolymerization of different monomers each with a specific
function. To examine the effect of biguanide concentration on
antimicrobial properties, EDOT-BG was copolymerized with

unfunctionalized EDOT from a mixture of equimolar monomers.
A dark-blue poly(EDOT-co-EDOT-BG) copolymer filmwas formed
as confirmed by structural analysis data. Previously, we have
demonstrated the antifouling properties of oligoethylene glycol-
functionalized PEDOT polymers that resisted protein adsorption
and cell adhesion on various surfaces (Zhao et al., 2013).
Consequently, herein, we copolymerized EDOT-BG with tetra
(ethylene glycol)-functionalized EDOT (EDOT-EG4) to create
multifunctional (electroactive, antimicrobial, and antifouling)
surface coatings. Hence, the equimolar feed ratio of EDOT-EG4
and EDOT-BG was mixed to give a final concentration of 10mM
and electropolymerized on ITO-glass slides to give a thin light purple
poly(EDOT-EG4-co-EDOT-BG) copolymer. PEDOT was also
electrodeposited on ITO-glass slides and used as a reference
material for the antimicrobial and antifouling studies on
biguanide-functionalized PEDOTs (Figure 1B; Scheme 1B).

3.2 Characterizations of the Polymer Films
3.2.1 UV/Vis Spectroscopy
The electrodeposition of the polymers on ITO-glasses was
confirmed by UV/Vis spectral analysis of the films. PEDOT
and poly(EDOT-co-EDOT-BG) showed blue-colored thicker
films, while poly(EDOT-BG) and poly(EDOT-EG4-co-EDOT-
BG) showed light purple thinner films (Figure 2A). Generally, the
UV/Vis spectra of the polymers showed two broad absorption
peaks at around 500 nm and 700–800 nm due to the π → π*
transition of the thiophene ring and polarons, respectively, which
is a common property of doped PEDOT derivatives.

3.2.2 Energy-Dispersive X-Ray and X-Ray
Photoelectron Spectroscopy Measurements
In addition, EDX elemental mapping of the films also confirmed the
successful electrodeposition of PEDOT and poly(EDOT-BG)
homopolymers and the poly(EDOT-co-EDOT-BG) copolymer. The
detailed quantitative analyses of the atomic elements from the EDX
spectra show distinct signals from N and Cl atoms for poly(EDOT-
BG) and poly(EDOT-co-EDOT-BG) films, which are the constituent
elements of the biguanide hydrochloride functional group (Figure 3).
In addition, the polymer films produced signals from C, O, and S,
which are the constituent elements of EDOT as indicated in Table 1.

Furthermore, XPS measurements were performed mainly to
confirm the copolymerization of EDOT-BG with either EDOT or
EDOT-EG4. As shown in Figure 4, a characteristic peak for the
nitrogen element (N 1s peak) was observed at ~400 eV from the
poly(EDOT-BG) homopolymer and copolymers (poly(EDOT-co-
EDOT-BG) and poly(EDOT-EG4-co-EDOT-BG)). XPS spectra
are in agreement with a previous report (Zhi et al., 2017). As
expected, the N peak intensity of the copolymers is lower
compared to the poly(EDOT-BG) homopolymer, supporting the
EDX elemental mapping.

3.2.3 Scanning Electron Microscopy Images of
Polymer Films
Field emission scanning electron microscopy (FE-SEM) was
utilized to study the morphology of the electrodeposited films.
The SEM micro image of the PEDOT film indicated its
characteristic nano-wire-like morphology, while poly(EDOT-

FIGURE 4 | XPS spectra of polymer films electrodeposited on ITO-glass
slides. The dotted line indicates the characteristic N atom peak observed from
poly(EDOT-BG) (C), poly(EDOT-co-EDOT-BG) (B), and poly(EDOT-EG4-co-
EDOT-BG) (A) films that confirmed the successful copolymerization. (D)
represents PEDOT spectrum as a reference.
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co-EDOT-BG) and poly(EDOT-BG) films showed granular and
smooth morphologies, respectively (Figure 3).

3.3 Electrochemical Properties of the
Polymers
The electroactivity of electrically conducting polymers is an
important factor in the use of such materials in the

manufacturing of various devices such as bioelectronics.
Hence, the electrochemical properties of the electrodeposited
polymers were analyzed by the CV technique in PBS buffer
using 10mM [Fe(CN)6]3-/4- as the redox couple. The cyclic
voltammogram was recorded using a three-electrode system
autolab potentiostat using Ag/AgCl as a reference electrode, Pt
wire as a counter electrode, and polymer-coated ITO-glass slides
as the working electrode. The cyclic potential for each polymer was

FIGURE 5 | Examples of fluorescence microscopy images of a live/dead cell assay of HEK cells cultured for 48 h on (A) bare ITO-glass slide, (B) PEDOT, (C)
poly(EDOT-co-EDOT-BG), and (D) poly(EDOT-BG) polymer films; (E) quantitative cell viability graph (%).

FIGURE 6 | Bactericidal efficiency of the polymers on E. coli. (A) Fluorescence microscopy images of live (green) and dead (red) bacteria cells cultured on different
substrates (incubated for 2 h at 37°C) and (B) graph showing the bactericidal efficiency (%).
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scanned between −0.2 and 0.6 V at a scan rate of 100 mV/s over two
cycles. The voltammograms of the respective polymer films showed
the corresponding oxidation/reduction peaks associated with the
mass transfer of [Fe(CN)6]3-/4- and polymers that confirmed the
electroactivity of the polymers. As a result, oxidation peak potentials
of 0.35, 0.53, 0.46, and 0.43 V as well as reduction peak potentials of
0.07, −0.06, −0.024, and 0.022 V were obtained for PEDOT,
poly(EDOT-BG), poly(EDOT-co-EDOT-BG), and poly(EDOT-
EG4-co-EDOT-BG) polymers, respectively (Figure 2B).
Surprisingly, poly(EDOT-co-EDOT-BG) and poly(EDOT-EG4-co-
EDOT-BG) showed intermediate oxidation/reduction peak potential
values compared to PEDOT and poly(EDOT-BG) homopolymers,
which is another confirmation for successful electrodeposition of
copolymers in agreement with XPS and EDX results.

3.4 Cell Viability (Biocompatibility) Studies
The biocompatibility of PEDOT-based materials has been
reported by various researchers (Luo et al., 2008). Similarly,
herein, we investigated the biocompatibility of the biguanide-
functionalized PEDOT derivatives from cell viability studies
using a human embryonic kidney 293T (HEK-293T) cell as a
model. A bare ITO-glass slide was used as a reference. The HEK-
293T cells were seeded on each blank and polymer-coated ITO-
glass slides at a concentration of 2 × 104 cells/cm2 and incubated
for 48 h at 37°C in the presence of 5% CO2. The viability of HEK-
293T cells was then determined from fluorescence microscopy

images of live (green) and dead (red) cells stained with a live/dead
cell viability assay kit (Figures 5A–D). The quantitative analysis
was carried out by counting the live and dead cells, and the results
confirmed the biocompatibility of poly(EDOT-BG) and
poly(EDOT-co-EDOT-BG) polymers with above 98.5% cell
viability, nearly the same value compared with a bare-ITO
glass slide and PEDOT polymer (~99% viability) (Figure 5E).
This confirmed that the biguanide-functionalized PEDOT
polymer films are less toxic and can be used as coating
materials for domestic and biomedical devices including
implantable bioelectronics. In addition to the live/dead cell
viability assay, the biocompatibility of the polymers was
determined from the MTT viability assay. Similarly, the MTT
assay also confirmed the biocompatibility of the biguanide-
functionalized PEDOTs with comparable cell viability of
poly(EDOT-BG) (95.7%) to unfunctionalized PEDOT (96.1%)
(Supplementary Figure S2).

3.5 Evaluation of Antimicrobial Activities
The antimicrobial properties of the biguanide-functionalized
PEDOT derivatives were examined on E. coli as a model
bacterial strain. Bare ITO-glass and unfunctionalized PEDOT
were used as references. All samples (bare ITO-glass, PEDOT,
poly(EDOT-BG), and poly(EDOT-co-EDOT-BG)) were cut into
1 × 1 cm size, sterilized, and placed in a 12-well cell culture plate.
50 µL of E. coli (106 cells/mL) in PBS was spread on each sample

FIGURE 7 | Antifouling properties of the poly(EDOT-EG4-co-EDOT-BG) polymer from cell adhesion and protein adsorption studies. Representative fluorescence
microscopy image of HEK 293T cells (stained with green staining dye) attached on poly(EDOT-BG) (A) and poly(EDOT-EG4-co-EDOT-BG) polymers (C); fluorescence
microscopy image of E. coli (stained with red staining dye) attached on poly(EDOT-BG) (B) and poly(EDOT-EG4-co-EDOT-BG) (D). QCM measurements for protein
adsorption on poly(EDOT-BG) and poly(EDOT-EG4-co-EDOT-BG) films electrodeposited on a gold QCM crystal (E) and quantitative cell density of HEK 293T cells
cultured for 48 h on PEDOT, poly(EDOT-BG), poly(EDOT-co-EDOT-BG), and poly(EDOT-EG4-co-EDOT-BG) polymers electrodeposited on ITO-glass slides (F). The
scale bar for Figures (B) and (D) is 10 µm.
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and incubated for 2 h at 37°C. After the incubation, the samples
were washed with PBS, and antibacterial activities were
determined from the OD measurement at 600 nm by a plating
method and live/dead staining assay.

The OD was recorded at 600 nm for the suspension culture
obtained after the incubation and plated on a Luria broth (LB)
agar plate. The OD measurement for the suspension of each
sample indicated a decreasing value in the order of ITO-glass >
PEDOT > poly(EDOT-co-EDOT-BG) > poly(EDOT-BG).
Similarly, a higher number of bacterial colonies were observed
on bare ITO-glass slides. In contrast, very few colonies could be
formed on poly(EDOT-BG) films, which demonstrated the
efficient bactericidal activity of biguanide-functionalized
PEDOTs (Supplementary Figure S1). Further bactericidal
activity was examined from fluorescence microscopy images of
the bacteria on the surface of each polymer film (after 2 h
incubation) stained with a live/dead bacterial assay kit
(Invitrogen, Thermo Fisher, United States) for 15 min in the
dark. The bactericidal efficiency was thus determined by counting
the live (green) and dead (red) bacteria cells. As shown in Figure 6,
the poly(EDOT-BG) homopolymer showed a higher bacterial killing
efficiency above 91%, while PEDOT and poly(EDOT-co-EDOT-BG)
showed killing efficiencies of 52 and 70%, respectively. It is
noteworthy that the composition of the biguanide moiety is
critical to the bactericidal activity as observed from the killing
efficiency of the poly(EDOT-BG) homopolymer and poly(EDOT-
co-EDOT-BG) copolymer. Although the detailed killing mechanism
from biguanide-functionalized PEDOTs is not studied here, we
believe that it might be due to a strong interaction between the
cationic biguanide moiety and bacterial cell membrane components
to disrupt the membrane and hence release the contents as
mentioned elsewhere (Bottcher et al., 2013; Chindera et al., 2016;
Zhi et al., 2017). The biguanide group in our material is covalently
immobilized on the substrate; hence, the bacterial killingmechanism
would be different from other similar biguanide moiety-containing
molecules that can penetrate the cell membrane and cause
chromosome condensation (Chindera et al., 2016).

3.6 Cell Adhesion and Protein Adsorption
Properties of the
Poly(EDOT-EG4-co-EDOT-BG) Copolymer
The antifouling nature of a material is vital for prolonged use of the
device, especially for implantable biomedical devices. Protein
molecules from the extracellular matrix may first bind to the
surface of the material, making the surface prone to cell adhesion.
The cells will then bind to the surface and hinder the function of the
material after long exposure. To tackle such problems, materials with
antifouling properties are desirable, which can protect protein
adsorption and hence cell adhesion. Poly(ethylene glycol)-
functionalized polymers are one of the best candidates in
the preparation of such antifouling surfaces (Zhao et al.,
2013). Hence, tetra ethylene glycol-functionalized EDOT
(EDOT-EG4) was electrochemically copolymerized with
EDOT-BG to create the multifunctional poly(EDOT-EG4-
co-EDOT-BG) copolymer with simultaneous antimicrobial
and antifouling properties.

First, the antifouling property was evaluated from protein
binding studies. The protein binding property was monitored on
QCM using bovine serum albumin (BSA) (1 mg/ml) as a model
protein. The poly(EDOT-BG) homopolymer was used as a
reference. Both poly(EDOT-BG) and poly(EDOT-EG4-co-
EDOT-BG) films were electropolymerized on gold QCM
sensor crystals through the potentiostatic technique. The in
situ protein binding was thus assessed from the difference in
change of frequency (Δf) between poly(EDOT-BG) and
poly(EDOT-EG4-co-EDOT-BG) due to protein adsorption on
the surfaces. As can be seen from Figure 7E, the decrease in
frequency was more pronounced for poly(EDOT-BG) compared to
poly(EDOT-EG4-co-EDOT-BG) during the passage of BSA solution
over the QCM crystal. After saturation, the fluent was switched to
PBS buffer solution to remove loosely bound protein from the
surfaces. Only a small rise in the frequency of poly(EDOT-BG)-
coated crystals was observed compared to the frequency of the
poly(EDOT-EG4-co-EDOT-BG) copolymer, confirming a larger
amount of protein adsorption on the former. The poly(EDOT-
BG) polymer showed a higher Δf (22 Hz) compared to Δf (~1 Hz)
for poly(EDOT-EG4-co-EDOT-BG), confirming the excellent
antifouling nature of the poly(EDOT-EG4-co-EDOT-BG)
copolymer. Furthermore, the antifouling property of poly(EDOT-
EG4-co-EDOT-BG) was determined from a cell adhesion study
using HEK-293T cells by comparing the cell densities obtained after
48 h with respect to PEDOT, poly(EDOT-BG), and poly(EDOT-co-
EDOT-BG) polymers. As shown in Figures 7A,C,F, very few cells
could attach on poly(EDOT-EG4-co-EDOT-BG) compared to other
polymers in agreement with previous studies of oligo ethylene
glycol-functionalized materials (Wu et al., 2019).

Finally, both the antifouling and antimicrobial properties of
poly(EDOT-EG4-co-EDOT-BG) were studied using E. coli as
model bacteria. A very small amount of bacterial cells could
attach on poly(EDOT-EG4-co-EDOT-BG) compared to those
attached on the poly(EDOT-BG) homopolymer. Furthermore,
those small numbers of attached E. coli on poly(EDOT-EG4-co-
EDOT-BG) are dead cells as can be seen from the fluorescence
image (Figures 7B,D, F). This confirmed that the
copolymerization helped to integrate the antifouling property
of EDOT-EG4 with the antimicrobial nature of the poly(EDOT-
BG) surface without affecting the bactericidal activities much.

4 CONCLUSION

In summary, novel biguanide-functionalized PEDOT derivatives,
poly(EDOT-BG), poly(EDOT-co-EDOT-BG), and poly(EDOT-
EG4-co-EDOT-BG) polymers, were designed and prepared
through electropolymerization on different substrates. The
bactericidal activity studies on E. coli demonstrated the
antimicrobial properties of the polymers with bacterial killing
efficiencies of 70 and 91% for poly(EDOT-co-EDOT-BG) and
poly(EDOT-BG) polymers, respectively. The lower bactericidal
efficiency of poly(EDOT-co-EDOT-BG) compared to the
poly(EDOT-BG) homopolymer confirmed the importance of
biguanide concentration on the antimicrobial activity. Further
copolymerization of EDOT-BG with EDOT-EG4 resulted in a
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dual-purpose poly(EDOT-EG4-co-EDOT-BG) copolymer with
simultaneous antimicrobial and antifouling properties. The
poly(EDOT-EG4-co-EDOT-BG) copolymer resists both protein
adsorption and mammalian/bacterial cell adhesions in addition to
killing those small numbers of attached bacteria on the surface.With
their less toxicity to mammalian cells, the biguanide-functionalized
PEDOT derivatives can have a potential application in the
preparation of multifunctional electroactive surface coatings for
domestic touch-screen and bioelectronic devices.
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