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Free fatty acid receptors (FFARs) are a class of G protein-coupled receptors (GPCRs) that 
have wide-ranging effects on human physiology. The four well-characterized FFARs are 
FFAR1/GPR40, FFAR2/GPR43, FFAR3/GPR41, and FFAR4/GPR120. Short-chain (<6 
carbon) fatty acids target FFAR2/GPR43 and FFAR3/GPR41. Medium- and long-chain 
fatty acids (6–12 and 13–21 carbon, respectively) target both FFAR1/GPR40 and FFAR4/
GPR120. Signaling through FFARs has been implicated in non-alcoholic fatty liver disease 
(NAFLD), non-alcoholic steatohepatitis (NASH), intestinal failure-associated liver disease 
(IFALD), and a variety of other liver disorders. FFARs are now regarded as targets for 
therapeutic intervention for liver disease, diabetes, obesity, hyperlipidemia, and metabolic 
syndrome. In this review, we provide an in-depth, focused summary of the role FFARs 
play in liver health and disease.

Keywords: free fatty acid receptor, fatty acid, G protein-coupled receptor, liver disease, non-alcoholic fatty liver 
disease, non-alcoholic steatohepatitis, intestinal failure-associated liver disease

INTRODUCTION

According to the WHO, in 2016 nearly 40% of adults worldwide were overweight and, of 
those, 13% were obese. Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease 
(NAFLD) are obesity-related conditions that continue to increase in prevalence as the global 
obesity epidemic worsens (Mantovani et  al., 2020). Free fatty acid receptors (FFARs) are a 
previously orphan class of G protein-coupled receptors (GPCRs) that are now understood to 
mediate metabolic signaling effects in response to fatty acid (FA) agonism. Obesity, T2DM, 
and NAFLD are an intimately related set of conditions that each contribute to the metabolic 
syndrome phenotype (Lusis et  al., 2008). The effects of FFAR signaling on these conditions 
and the potential for therapeutic intervention through these receptors have only recently 
been investigated.

Fatty acids are liberated by hydrolysis of dietary triacylglycerol into glycerol and FAs in 
the digestive tract. FAs are categorized by length and the presence or absence of carbon–carbon 
double bonds (i.e., saturation). While some degree of overlap exists, each FFAR is characterized 
by a unique combination of tissue-specific expression, FA agonist affinity, and signaling and 
metabolic effects (Figure  1). The physiologic interplay between obesity, T2DM, and NAFLD 
centers FFARs as prime therapeutic targets for these conditions. Furthermore, intestinal failure-
associated liver disease (IFALD) and other metabolic liver disorders may also benefit from 
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FFAR-targeted therapies. Here, we systematically categorize each 
FFAR in terms of cell and tissue distribution, affected signaling 
pathways, pathophysiology, and receptor agonism as they relate 
to opportunities for intervention in liver disease (Figure  2).

FFAR1/GPR40

FFAR1 is a 300 amino acid, 31.45  kDa membrane protein 
encoded by the single exon FFAR1 gene on chromosome 19. 
FFAR1 is highly expressed in insulin-producing pancreatic β 
cells, enteroendocrine K and L cells, immune cells, taste buds, 
and the central nervous system (Kimura et  al., 2020). To a 
lesser degree, FFAR1 is expressed in pancreatic α cells, 
enteroendocrine I cells, and osteoblasts and osteoclasts (Mancini 
and Poitout, 2013). Newer evidence suggests that FFAR1 is 
also expressed in hepatocytes (Lu et  al., 2021). Medium chain 
fatty acids (MCFAs) and long chain fatty acids (LCFAs) serve 
as agonists at FFAR1 with LCFAs exhibiting greater potency 
(Briscoe et  al., 2003). Saturated and unsaturated FAs both 
exhibit high FFAR1 potency with micromolar range minimum 
effective concentrations in vitro (Christiansen et  al., 2015).

Activation of FFAR1  in pancreatic beta cells results in Gq 
signaling and subsequent potentiation of glucose-stimulated insulin 
secretion (GSIS; Itoh et  al., 2003). In enteroendocrine I, K, and 
L cells, FFAR1 agonism results in Gs signaling and elaboration 
of the hormones cholecystokinin (CCK), glucose-dependent 
insulinotropic peptide (GIP), and glucagon-like-peptide 1 (GLP-1), 
respectively (Luo et  al., 2012). In immune cells, specifically 
monocytes and hepatic Kupffer cells, FFAR1 activation leads to 

beta arrestin recruitment and subsequent induction of 
differentiation into M2 macrophages (Ohue-Kitano et  al., 2018). 
The signaling effects of FFAR1 agonism vary widely and are 
tissue and agonist dependent. An understanding of the importance 
of FFAR1 signaling in human physiology and the potential as 
a therapeutic target have been attained largely through the use 
of knockout models and agonist/antagonist screening projects. 
Here we  focus on FFAR1  in liver disease.

Contrary to earlier findings from Steneberg et al., FFAR1KO 
mice demonstrate obesity, hyperinsulinemia, and hepatic steatosis 
on a low-fat diet (LFD) whereas wild type mice only develop 
these findings on a high-fat diet (HFD; Steneberg et  al., 2005; 
Lu et  al., 2021). Furthermore, FFAR1 antagonism results in 
loss of the antilipogenic effects of docosahexaenoic acid (DHA) 
administration in cultured hepatocytes (On et  al., 2019). 
Additionally, FFAR1KO animals exhibit diabetic, inflammatory, 
and obesity phenotypes which are associated with NAFLD 
(Kebede et  al., 2008). Collectively, these findings suggest the 
absence of FFAR1 signaling, whether through genetic knockout 
or pharmacologic antagonism, results in physiology similar to 
that seen in patients with metabolic syndrome.

FFAR1-specific agonists have not been studied in liver disease. 
However, omega-3 FAs are among the most potent FFAR1 
agonists, are highly concentrated in fish, seafood, nuts, and 
plant oils, and have been used successfully in treating liver 
disease. Supplementation with omega-3 FAs has shown benefit in 
treating patients with NAFLD, non-alcoholic steatohepatitis 
(NASH), alcoholic cirrhosis, and IFALD (Jump et  al., 2015; 
Nandivada et  al., 2015; Wang et  al., 2019). In patients with 
NAFLD, omega-3 FA supplementation is associated with an 

FIGURE 1 | Free fatty acid receptor distribution and agonists. Created with Biorender.com.
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increased hepatic omega 3 to omega 6 FA ratio, which in 
turn is associated with decreased progression of NAFLD to 
NASH and hepatocellular carcinoma (Puri et  al., 2007). In 
alcoholic cirrhosis, experimental evidence suggests that omega-3 
FAs may prevent ethanol-induced hepatitis and steatosis (Wada 
et  al., 2008). IFALD is hepatic dysfunction that occurs in 
patients with prolonged parenteral nutrition dependence. 
Provision of an intravenous omega-3 fatty acid rich fish oil 
lipid emulsion (Omegaven®, Fresenius Kabi, United States) has 

contributed to the reduction in liver transplantation and mortality 
for pediatric IFALD patients (Gura et  al., 2020).

Omega-3 FAs are potent agonists of FFAR1 and omega-3 
FA supplementation is associated with improvement in NAFLD, 
NASH, and IFALD. However, further studies are needed to 
establish if omega-3 FA-induced hepatoprotection is mediated 
through FFAR1. Experimental models of these liver diseases 
used in conjunction with FFAR1 knockout animals and/or 
FFAR1 antagonists offer the potential to further elucidate the 

FIGURE 2 | Summary of hepatic effects of free fatty acid receptor (FFAR) signaling. FFAR1-4 each stimulates complex signaling pathways that affect 
gastrointestinal hormone secretion, carbohydrate and lipid metabolism, adipocyte differentiation, and immunomodulation. Common themes include FFAR knockout 
and antagonism associated with metabolic syndrome and liver injury (red boxes and arrows) and increased FFAR expression, signaling, or agonism associated with 
hepatoprotection, decreased hyperglycemia, and anti-inflammation (green boxes and arrows). Created with Biorender.com.
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disease mechanisms and better characterize FFAR1 as a target 
for therapeutic intervention with omega-3 FAs or FFAR1-
specific agonists.

A number of synthetic FFAR1 agonists have been evaluated 
in clinical trials treating obesity and diabetes but none are 
yet FDA-approved for use (Ichimura et  al., 2014). Notable 
among these agents is the FFAR1 agonist TAK-875. In a phase 
III trial of treating Japanese patients with type 2 diabetes, 
TAK-875 was well-tolerated and demonstrated efficacy in 
improving glycemic control but drug development was terminated 
due to asymptomatic elevations in liver enzymes (Kaku et  al., 
2015). Subsequent toxicology studies have shown that TAK-875-
induced liver injury may be  mediated through formation of 
hepatic acyl glucuronide metabolites (Otieno et  al., 2018). 
Currently this toxicity appears limited to TAK-875 and the 
implications of these findings on development of other FFAR1 
agonist remains to be  seen.

Many other FFAR-1 agonists are in varying stages of drug 
development primarily with the intention of treating type 2 
diabetes (Kimura et  al., 2020). To our knowledge, synthetic 
FFAR1 agonists have not yet been evaluated as therapies for 
treating metabolic liver disease in the animal models or clinical 
trials. Such studies would likely offer greater insight into the 
promising role FFAR1 plays in NAFLD, NASH, IFALD, and 
other liver diseases as well as potentially identify new treatments 
for these diseases.

FFAR2/GPR43

FFAR2 is widely expressed in adipocytes, enteroendocrine, 
pancreatic β, and various inflammatory cells such as macrophages 
and neutrophils (Ge et  al., 2008; Tolhurst et  al., 2012; McNelis 
et  al., 2015; Kamp et  al., 2016). Hepatic expression of FFAR2 
has not been reported. FFAR2 preferentially binds the short 
chain FAs (SCFAs) acetate and propionate, followed by butyrate 
(Brown et  al., 2003; Le Poul et  al., 2003). FFAR2 activation 
leads to intracellular coupling with the pertussis toxin-sensitive 
Gi/o protein and with Gq proteins (Brown et  al., 2003). 
Activation of the Gi/o family of G proteins inhibits cAMP 
production and activates the ERK cascade, whereas signaling 
via Gq proteins increases intracellular calcium and promotes 
activation of the MAP cascade (Kimura et  al., 2020). These 
interactions result in downstream signaling that is implicated 
in a wide array of metabolic effects.

FFAR2 regulates lipid metabolism and glucose levels via 
effects on hormone secretion and inflammation (Ge et  al., 
2008; Tolhurst et al., 2012). While not expressed in hepatocytes, 
FFAR2-mediated modulation of the intestinal microbiota 
inflammasome may have implications for NAFLD/NASH 
progression (Henao-Mejia et  al., 2012). Oral administration of 
probiotics ameliorated HFD-induced NAFLD in rats via increased 
generation of SCFAs and increased FFAR2 expression (Liang, 
Liang et  al., 2019). This effect may be  due to the role of the 
FFAR2 pathway in inhibiting inflammatory cytokines and 
reducing chronic inflammation, both with positive consequences 
on metabolic liver disease (Liang et al., 2019). SCFAs produced 

by intestinal microbiota promoted IL-10 production (Sun et al., 
2018), while binding of SCFAs to FFAR2 on colonic epithelial 
cells alleviated colonic inflammation (Macia et  al., 2015).

The metabolic consequences of FFAR2 activation can also 
be  attributed to effects on adipocytes. SCFAs increase leptin 
secretion via FFAR2 both in vitro in adipocytes and in vivo 
in mice (Zaibi et al., 2010). In a different study, FFAR2 signaling 
inhibited lipogenesis in adipose tissue (Kimura et  al., 2013). 
Together, this data suggest a possible role for the FFAR2 
signaling pathway in preventing the deleterious consequences 
of metabolic syndrome and subsequent NAFLD.

FFAR2 stimulates enteroendocrine L cell GLP-1 secretion 
and prevents hyperglycemia. FFAR2 knockout mice have reduced 
GLP-1 secretion and impaired glucose tolerance compared to 
wild-type mice (Tolhurst et  al., 2012). In a murine NAFLD 
model, the SCFA sodium butyrate prevented progression of 
NAFLD to NASH and increased GLP-1 receptor expression 
(Zhou et al., 2018). However, the authors concluded that sodium 
butyrate may prevent fatty liver disease progression via histone 
deacetylase rather than FFAR2 as GLP-1 receptor expression 
was unaffected by FFAR2 siRNA in vitro.

FFAR2 is structurally similar to FFAR3 which has made 
the development of selective FFAR2 agonists challenging. 
Compounds 1 and 2 have been developed as potent and selective 
FFAR2 agonists (Hudson et  al., 2013). Relative to FFAR1 and 
FFAR4, the hepatic effects of FFAR2 signaling are indirect as 
FFAR2 is not expressed in the liver. Research is ongoing to 
determine if FFAR2-selective agonists can ameliorate metabolic 
liver disease and other disorders of dysregulated energy 
homeostasis (Milligan et  al., 2017).

FFAR3/GPR41

FFAR3 shares ~40% amino acid homology with FFAR2 and 
is conserved among species (Brown et  al., 2003; Wang et  al., 
2009). FFAR3 is expressed in sympathetic ganglion, 
enteroendocrine, and pancreatic β-cells (Kimura et  al., 2011; 
Priyadarshini and Layden, 2015). However, conflicting data 
exist as to whether or not FFAR3 is expressed in adipocytes 
(Mishra et  al., 2020). Similar to FFAR2, hepatic expression of 
FFAR3 has not been reported. FFAR3 plays an important role 
in neural activity, lipid metabolism, and regulation of plasma 
glucose (Kimura et  al., 2011). Similar to FFAR2, FFAR3 also 
preferentially binds SCFAs (Brown et al., 2003). However, FFAR3 
potency is greatest with SCFAs of 3–5 carbon length (Le Poul 
et al., 2003). FFAR3 effects are mediated through Gi/o proteins 
and result in cAMP inhibition and phosphorylation of ERK1/2 
(Brown et  al., 2003).

FFAR3 activation, similar to FFAR2, stimulates GLP-1 
secretion, thereby preventing hyperglycemia (Tolhurst et  al., 
2012). Dietary intake of SCFAs in mice protects against 
HFD-induced obesity and improves hepatic lipid metabolism 
(Shimizu et  al., 2019). In FFAR3 deficient-mice, SCFA 
administration does not protect against HFD-induced obesity 
or steatosis (Shimizu et  al., 2019). In a different study, FFAR3 
knockout mice had reduced weight gain compared to 
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wild-type mice under standard laboratory conditions but this 
difference was lost under germ-free conditions (i.e., in the 
setting of a reduced microbiome; Samuel et al., 2008). Collectively, 
these findings suggest that FFAR3 is essential for normal growth 
which is mediated in part by SCFA produced by intestinal 
flora. Furthermore, FFAR3 signaling may be a means to protect 
against NAFLD. However, the overlap in ligand binding and 
function between FFAR3 and FFAR2 could potentially confound 
these findings (Ichimura et  al., 2014).

Development of selective FFAR3 ligands has been limited 
by the structural similarity between FFAR2 and FFAR3 and 
the low potency of endogenous ligands (Kimura et  al., 2020). 
Selective FFAR3 agonists would be useful in research applications 
and potentially human therapeutics. Hudson et al. (2014) report 
on a potent positive allosteric modular-agonist of FFAR3, while 
other investigators have reported on the use of FFAR3 selective 
agonists such as AR420626 (Schmidt et  al., 2011; Engelstoft 
et  al., 2013). In continued similarity to FFAR2, FFAR3 is not 
expressed in the liver but FFAR3 signaling nonetheless poses 
potential to have significant though indirect hepatic effects. 
Future studies investigating FFAR3 agonists in the NAFLD/
NASH models would be  beneficial in further evaluating the 
therapeutic potential of these agents in liver disease.

FFAR4/GPR120

FFAR4 is a GPCR for unsaturated LCFAs expressed in many 
human tissues (Hirasawa et al., 2005). Highest FFAR4 expression 
is found in lung, pituitary, small intestine, colon, adipose tissue, 
and macrophages including Kupffer cells (Gotoh et  al., 2007; 
Oh et  al., 2010). Two human FFAR4 isoforms exist: a short 
form of 361 residues and a long form of 377 residues. The 
long form has an interposed 16-residue segment in the third 
intracellular loop. Both isoforms are activated by omega-3 FAs. 
However, downstream signaling differs between isoforms. LCFA 
binding to the short isoform results in G-protein-dependent 
activation of phospholipase C and intracellular calcium 
mobilization (Watson et al., 2012). This is the primary mechanism 
for FFAR4-mediated hormone secretion. However, the interposed 
residues in the long isoform prevent G-protein signaling. Both 
the short and long isoforms bind β-arrestin 2 through a 
G-protein-independent mechanism and are internalized (Watson 
et  al., 2012). The FFAR4/β-arrestin 2 complex inhibits 
inflammatory cascades. Interaction of the FFAR4/β-arrestin 2 
complex with NLRP3 (nucleotide-binding oligomerization 
leucine-rich repeat and pyrin domain-containing protein 3) 
(NLRP3) prevents Caspase-1 from cleaving pro-IL-1β and 
pro-IL-18 into IL-1β and IL-18, respectively, (Yan et  al., 2013). 
FFAR4/β-arrestin 2 also interacts with TAK1-binding protein 
1 (TAB1), inhibiting TAK1 activation and stimulation of the 
IKKβ/NFκB and JNK/AP1 pathways (Oh et  al., 2010).

FFAR4 is a key mediator of hormone secretion in the 
gastrointestinal tract and pancreas. In the stomach and 
duodenum, activation of FFAR4 inhibits ghrelin secretion 
(Gong et  al., 2014). FFAR4 activation in intestinal L- and 
K-cells results in secretion of GLP-1, GIP, inhibition of 

glucagon-like-peptide 2 (GLP-2), and CCK (Hirasawa et al., 2005; 
Iakoubov et  al., 2007; Tanaka et  al., 2008; Tsukahara et  al., 
2015). However, GLP-1 secretion may be  more dependent 
on FFAR1 rather than FFAR4 activation (Xiong et al., 2013). 
In mouse pancreatic islets, ligand binding inhibits δ-cell 
somatostatin secretion and stimulates β-cell insulin secretion 
(Zhang et al., 2017). In adipose tissue, FFAR4 mediates adipocyte 
differentiation and enhances glucose uptake via GLUT4 
translocation (Oh et  al., 2010). Anti-inflammatory effects have 
been noted in macrophages and across a range of tissues 
including adipose tissue, skeletal muscle, liver, and brain (Oh 
et  al., 2010; Raptis et  al., 2014; Wellhauser and Belsham, 2014; 
Williams-Bey et  al., 2014).

Hepatic expression of FFAR4 is primarily found in Kupffer 
cells. Emerging evidence suggest that the potent anti-
inflammatory effects of FFAR4 agonism, in addition to the 
systemic metabolic effects, may protect against liver injury. 
Obese children carrying the R270H loss-of-function mutation 
are more likely to have elevated alanine aminotransferase 
(ALT) level and higher ferritin, suggesting increased liver 
injury and inflammation (Marzuillo et  al., 2014). Another 
FFAR4 variant (rs11187533) has been associated with lower 
fasting glucose and decreased markers of liver injury in obese 
children (Codoner-Alejos et  al., 2020).

FFAR4 holds particular relevance in metabolic and 
inflammatory disorders which have subsequent harmful effects 
on the liver. Adipocyte differentiation and lipogenesis are 
FFAR4-dependent. FFAR4 knockout mice fed a HFD had 
increased weight gain, adiposity, hepatosteatosis, fasting plasma 
glucose, and insulin resistance compared to wild-type mice 
(Ichimura et  al., 2012). In addition, obese humans were found 
to have increased FFAR4 expression in adipose tissue. A FFAR4 
loss of function mutation (p.R270H) is associated with risk 
of obesity. Inflammatory conditions are a key component in 
the pathogenesis of insulin resistance and metabolic syndrome 
and have been linked to FFAR4. A synthetic, specific, small 
molecule FFAR4 agonist (cpdA) administered to mice receiving 
a HFD prevented adipocyte tissue macrophage infiltration, 
decreased expression of the pro-inflammatory genes including 
TNF-α, IL-1β, and IL-6, increased insulin sensitivity, and 
decreased hepatosteatosis (Oh et  al., 2014). These effects were 
not seen in FFAR4 knockout mice. In addition, pre-treatment 
of macrophages in vitro with DHA or cpdA prevented 
lipopolysaccharide-induced activation of the TAK1, IKKβ/NFκB, 
and JNK/AP1 pathways.

Omega-3 FAs are FFAR agonists and have been investigated 
in preventing hepatic ischemia–reperfusion injury. Injection of 
the intravenous omega-3 fatty acid rich fish oil lipid emulsion 
Omegaven® 1  h prior to murine hepatic ischemia decreased 
subsequent ALT, aspartate aminotransferase (AST), and hepatic 
necrosis (Raptis et  al., 2014). In the same study, Omegaven® 
administered in vitro to hepatic macrophages resulted in FFAR4 
activation and internalization similar to a FFAR4 agonist. In 
a murine model of parenteral nutrition-induced liver injury, 
intravenous fish oil was hepatoprotective in wild-type mice, 
but not in FFAR4 knockout mice (Fell et  al., 2019). However, 
Baker et  al. (2019) demonstrated that intravenous fish oil 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Secor et al. FFAR in Liver Disease

Frontiers in Physiology | www.frontiersin.org 6 April 2021 | Volume 12 | Article 656441

administration prior to hepatic ischemia–reperfusion injury in 
FFAR4 knockout mice protected against injury, suggesting that 
FFAR4 alone does not account for the hepatoprotective effects 
of fish oil.

Administration of a FFAR4 agonist in a murine model of 
NASH suppressed macrophage infiltration and reversed hepatic 
inflammation (Chen et  al., 2020). Similarly, DHA prevented 
development of steatohepatitis in a murine model of NASH 
in wild-type mice, but not in FFAR4 knockout mice (Nakamoto 
et  al., 2018). In 20 children with NAFLD treated with DHA 
for 18 months, no changes were observed in BMI, γ-glutamyl 
transferase (GGT), or basal insulin and glucose (Nobili et  al., 
2014). However, the significant decreases were seen in 
triglycerides, ALT, and AST. Liver biopsy (obtained before 
and after treatment) demonstrated DHA-associated marked 
reduction in steatosis, decreased inflammatory macrophages, 
and increased hepatocyte FFAR4 expression. Two randomized 
controlled trials using DHA supplementation in children with 
ultrasound-proven NAFLD have demonstrated improved insulin 
resistance and reduced hepatic steatosis (Nobili et  al., 2011, 
2013). An additional randomized controlled trial found that 
omega-3 FA supplementation did not reduce ALT or steatosis 
on ultrasound, but did decrease AST and GGT, while increasing 
adiponectin (Janczyk et  al., 2015).

Omega-3 FA supplementation has also been studied in the 
models of alcoholic liver disease. Ethanol induces adipocyte 
death, FA release, and altered adipokine secretion leading to 
hepatosteatosis (Zhong et  al., 2012). Omega-3 FAs prevent 
ethanol-induced adipose lipolysis through FFAR4 stimulation 
and decrease hepatotoxicity and steatosis (Wang et  al., 2017). 
As mentioned previously, omega-3 FAs are not FFAR-specific 
agonists. More studies are required to establish that omega-3 
FA-induced improvements in liver disease are mediated through 
FFAR4-dependent pathways.

Targeting FFAR4 as a therapy to modulate metabolic and 
inflammatory pathways is under active investigation. In addition 
to omega-3 FA supplementation, numerous small molecule 
agonists have been studied: GW9508, TUG-891, NCG21, 
Merck cpdA, GSK137647A, GSK cpd39, GPR120 agonist III, 
and PBI-4547 (Ulven and Christiansen, 2015; Chen et  al., 
2020; Simard et  al., 2020). A key challenge remains the 
suboptimal selection of FFAR4 over FFAR1 among many 
agonists. A FFAR4-selective small molecule holds significant 
promise for the treatment of metabolic and inflammatory 
disease, including NAFLD, alcoholic liver disease, and other 
liver pathologies.

DISCUSSION

Free fatty acid receptors are a recently discovered class of 
GPCRs that are responsible for many integral agonist- and 
tissue-specific responses to dietary FAs. In states of health, 
FFAR signaling promotes GSIS, enterohepatic and 
enteroendocrine homeostasis, and nutrient-sensitive energy 
regulation, in addition to a host of other extra-intestinal 
effects. Many animal studies and human clinical trials have 

demonstrated the potential of naturally occurring and synthetic 
FFAR agonists in treating diabetes. More recently, omega-3 
fatty acids, which are known agonists of FFAR1 and FFAR4, 
have shown efficacy in treating NAFLD, NASH, alcoholic 
hepatitis, and IFALD. While the hepatoprotective effects of 
omega-3 fatty acids may be  mediated through non-FFAR 
pathways, evidence is mounting to suggest that FFARs are 
central regulators of hepatic energy metabolism. Further 
experiments using FFAR knockout animals and/or FFAR-
specific antagonists in the liver disease models could provide 
insight into the mechanism of these diseases, determine if 
omega-3 FA hepatoprotection is mediated through FFAR-
dependent pathways, and further characterize FFARs as clinical 
targets for liver disease.

The deleterious hepatic effects of altered or absent FFAR1 
and FFAR4 signaling have been independently demonstrated 
through the knockout animal models, mutant alleles, and 
receptor antagonists. Furthermore, the expression of FFAR1 
on hepatocytes and FFAR4 on hepatic Kupffer cells makes 
targeting these receptors as an intuitive strategy for treating 
liver disease. Experimental evidence suggest that FFAR-targeted 
therapies offer the potential to reduce hyperglycemia without 
inducing hypoglycemia, promote insulin sensitivity, reduce 
obesity, and prevent hepatic lipotoxicity. Agents with this 
capacity would benefit the hundreds of millions of patients 
worldwide with overweight, obesity, T2DM, and/or NAFLD. 
Furthermore, FFAR agonists with similar effects could 
potentially benefit patients with IFALD and other metabolic 
liver diseases. As of yet, no one FFAR agonist has demonstrated 
this potential but many agents currently under investigation 
have shown promise.

In summary, leveraging FFAR signaling to treat metabolic 
liver disease is a potential area of research that has largely 
been unexplored. While many studies have focused on the 
insulin-sensitizing effects of FFAR agonism, more investigation 
is needed into the direct and indirect hepatic effects of FFAR 
agonists. Specifically, examining the effects of natural and 
synthetic FFAR1- and FFAR4-specific agonists in treating NAFLD, 
NASH, and IFALD are promising avenues that warrant 
further investigation.
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